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Abstract To limit in vivo experiments, the use of quantitative
structure-activity relationships (QSARs) is advocated by
REACH regulation to predict the required fish, invertebrate,
and algae EC50 for chemical registration. The aim of this work
was to develop reliable QSARs in order to model both inver-
tebrate and algae EC50 for organic solvents, regardless of the
mechanism of toxic action involved. EC50 represents the con-
centration producing the 50 % immobilization of invertebrates
or the 50 % growth inhibition of algae. The dataset was com-
posed of 122 organic solvents chemically heterogeneous which
were characterized by their invertebrate and/or algae EC50.
These solvents were described by physico-chemical descriptors
and quantum theoretical parameters calculated via density
functional theory. QSAR models were developed by multiple
linear regression using the ordinary least squares method and
descriptor selection was performed by the Kubinyi function.
Invertebrate EC50 was well-described with LogP, dielectric
constant, surface tension, and minimal atomic Mulliken
charges while algae EC50 of organic solvents (except amines)
was predicted with LogP and LUMO energy. To evaluate ro-
bustness and predictive performance of the QSARs developed,
several strategies have been used to select solvent training sets

(random, EC50-based selection and a space-filling design) and
both internal and external validations were performed.
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Introduction

Solvents are widely used in many sectors of industry and ev-
eryday life such as detergents, agrochemicals, cosmetics, phar-
maceuticals, paints, varnishes, inks, etc. Their use has become
and more supervised since 2007 by the European regulation
Registration, Evaluation, Authorization and restriction of
Chemicals (REACH) [1]. Solvents have then to be registered
to the European Chemicals Agency (ECHA, http://echa.
europa.eu/) requiring, in particular, ecotoxicological
information such as acute aquatic toxicity on different trophic
levels (fish, invertebrates, and algae). Acute aquatic toxicity is
widely evaluated through EC50 values which represent the
concentration of chemicals leading to an effect on 50 % of
the tested population referred to in a test period [2]. The
effect is death for fish, immobility for invertebrates, and
inhibition of growth for algae on 96 h, 48 h and 72 h,
respectively. To limit in vivo testing, alternative methods are
advocated by REACH and other organisms like OCDE [3]
such as quantitative structure-activity relationships (QSAR).
QSARs are mathematical models relating the physico-
chemical properties of molecules with their toxicity. QSARs
can then be applied after validation to other molecules to pre-
dict their activity on the basis that similar chemicals have sim-
ilar activities [4, 5]. Many QSAR models predict EC50 of fish
[6, 7], invertebrates [8, 9], and algae [10, 11]. Various descrip-
tors are involved in such models as LogP [12, 13], hardness
[14], HOMO energy [11, 15] or Balaban indice [8]. QSARs are
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generally dedicated to specific chemical families as for exam-
ple benzoic acid [13, 16], alcohols [17], benzene [18], hydro-
carbon [19], phenol [20] and may regard or not the toxic action
mechanism involved [10]. Only a few general models have
been developed to predict invertebrates or algae EC50 with
physico-chemical and theoretical parameters for a large set of
chemicals [12, 14, 15, 21, 22]. Other models exist based on
fragment methods [23–25]. However, to our knowledge, no
QSAR was developed for a large dataset of organic solvents.

In a previous study [26], a 4-parameter QSAR was devel-
oped allowing the prediction of fish LC50 for organic solvents
with the octanol-water partition coefficient, LUMO energy, sur-
face tension, and dielectric constant, regardless of the toxic
action mode. The purpose of this study is to complete this
previous work by studying EC50 prediction of organic solvents
for the two other trophic levels, namely invertebrates and algae.
Indeed, the knowledge of EC50 values for fish, invertebrates,
and algae allow the determination of the aquatic predicted no-
effect concentration (PNEC-aquatic) that represents the concen-
tration below which the exposure to a chemical causes no ad-
verse effects to species in the environment [2]. PNEC-aquatic is
of major relevance for environmental risk assessment.

Here, three strategies (namely random selection, EC50-
based selection, or space-filling approach) were applied to
select the solvents of the training sets used for the QSAR
development. The predictive performances of the QSAR
models were compared to that of LogP-based relations avail-
able in the ECOSAR program (ht tp : / /www.epa .
gov/oppt/newchems/tools/21ecosar.htm).

Material and methods

Data set

The experimental acute toxicity was expressed as
pEC50 = log(EC50) for both invertebrates and algae tro-
phic levels which are representative for ecotoxicological
evaluation of industrial chemicals. EC50 denotes the con-
centration in mmol/L producing the 50 % immobilization
of invertebrates or the 50 % growth inhibition of algae
population referred to in a test period of 48 h and 72 h
respectively [2]. For each trophic level, different species
were considered: Daphnia magna for invertebrates,
Scenedesmus subspicatus and Selenastrum capricornutum
for algae. EC50 values were collected in INERIS
(http://www.ineris.fr/), ESIS (http://ecb.jrc.ec.europa.
eu/esis/) and ECHA (http://echa.europa.eu/) databases for
good reliability of the data. When several reliable
experimental values were available, the geometric mean
was used. The final database includes 154 chemically
heterogeneous solvents: 122 solvents were described
with invertebrate EC50 values, 75 solvents with algae

EC50 values, and 141 with fish LC50 (see Table 1). The
trophic level of acute toxicity data found in the literature
is specified for each solvent. The pEC50 ranged from
−2.67 to 2.73 and from −1.72 to 2.91 for invertebrate
and algae trophic level, respectively. Chemicals may be
categorized for the three trophic levels as (1) very toxic
(EC/LC50 < 1 mg.L−1), (2) toxic (EC/LC50 < 10 mg.L−1),
(3) harmful (EC/LC50 < 100 mg.L−1), (4) not harmful
(EC/LC50 > 100 mg.L−1) (see Table 1).

Solvent descriptors

Both physico-chemical and quantum theoretical descriptors
have been used for solvent description. These 33 descriptors
were widely described in a previous paper [26]. Briefly, the
physico-chemical descriptors used are those classically
employed for both solvent classification [27, 28] and toxicity
QSARs [8, 13] purposes: octanol/water partition coefficient
(LogP), molecular weight (Mw), boiling point (bp), density
(d), molar volume (Vm), dipole moment (μ), dielectric con-
stant (ε), refractive index (nr), surface tension (γ), vapor ten-
sion (Pvap), Hildebrand parameter (δ), and Hansen solubility
parameters (δd, δp, and δh). Descriptors values were found in
several databases [29–33] (https://reaxys.com; https://
scifinder.cas.org).

The ecotoxicity behavior of chemicals may stem from
chemical reactivity and selectivity. Therefore, it has been
chosen to include relevant quantum descriptors that were
computed by the density functional theory (DFT) after
geometric optimization with ADF software (http://www.
scm.com). Descriptor calculations were performed with
the Perdew, Burke, and Ernzerhof (PBE) [34] generalized
gradient approximation (GGA) exchange-correlation func-
tional method and a triple zeta (TZP) basis set. These
theoretical descriptors were the energy of the highest oc-
cupied molecular orbital (HOMO), the energy of the low-
est unoccupied molecular orbital (LUMO), the hardness
(LUMO-HOMO), the electronegativity ((HOMO +
LUMO)/2), the polarisability (α), the maximal (qmax)
and minimal (qmin) atomic Mulliken charges, the maximal
(Vmax) and minimal (Vmin) electrostatic potential values,
the surface area (Surf), the molecular volume (Vol), and
the molecule’s ovality (Ov). Three descriptors were
added and are related to the electrostatic potential
(ESP) computed between -3 eV and +3 eV on the sol-
vent accessible surface around the molecule: the surface
Sneg with ESP lower than −0.1 eV, the surface S with
ESP ranging from −0.1 eV up to 0.1 eV, and the surface
Spos with ESP larger than 0.1 eV. S represents hydro-
phobic regions while Sneg and Spos represent hydro-
philic ones in relation with base or acid Lewis nature.
Topological descriptors were also calculated using
ProChemist software (http://pro.chemist.online.fr/) such
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Table 1 List of the organic
solvents in the dataset with the
corresponding type of acute
toxicity data (F for fish, I for
invertebrates and A for algae) and
the ecotoxicological class for the
three trophic levels assigned
according to the European
Commission (EC, 1991): (1) very
toxic (LC50 < 1 mg.L-1), (2)
toxic (LC50 < 10 mg.L-1), (3)
harmful (LC50 < 100 mg.L-1),
(4) not harmful
(LC50 > 100 mg.L-1)

CAS
number

Name Molecular
formula

EC50 Ecotox
class fish

Ecotox
class inv.

Ecotox
class algae

56-23-5 Carbon tetrachloride CCl4 F,I,A 3 3 3

56-81-5 Glycerol C3H8O3 F,I 4 4

57-55-6 1,2-Propylene glycol C3H8O2 F,I,A 4 4 4

60-29-7 Diethyl ether C4H10O F,I 4 4

62-53-3 Aniline C6H7N F,I,A 3 1 4

64-17-5 Ethanol C2H6O F,I 4 4

64-18-6 Formic acid CH2O2 F,I 4 4

64-19-7 Acetic acid C2H4O2 F 4

67-56-1 Methanol CH4O F,I,A 4 4 4

67-63-0 Isopropyl alcohol C3H8O F,I 4 4

67-64-1 Acetone C3H6O F,I 4 4

67-66-3 Chloroform CHCl3 F,I,A 3 3 3

67-68-5 Dimethyl sulfoxide C2H6OS F,I,A 4 4 4

68-12-2 N,N-Dimethylformamide C3H7NO F,I 4 4

71-23-8 1-Propanol C3H8O F,I 4 4

71-36-3 1-Butanol C4H10O F,I 4 4

71-41-0 1-Pentanol C5H12O F,I,A 4 4 4

71-43-2 Benzene C6H6 F,I,A 3 2 3

71-55-6 1,1,1-Trichloroethane C2H3Cl3 F,I,A 3 3 3

74-95-3 Dibromomethane CH2Br2 F,I,A 3 3 4

75-05-8 Acetonitrile C2H3N F,I,A 4 4 4

75-09-2 Dichloromethane CH2Cl2 F,I 4 4

75-12-7 Formamide CH3NO F 4

75-15-0 Carbon disulfide CS2 F,I 2 2

75-29-6 2-Chloropropane C3H7Cl F 4

75-34-3 1,1-Dichloroethane C2H4Cl2 F,I 4 3

75-35-4 1,1-Dichloroethylene C2H2Cl2 F,I,A 4 3 2

75-65-0 tert-Butanol C4H10O F,A 4 4

75-89-8 2,2,2-Trifluoroethanol C2H3F3O F 4

75-97-8 3,3-Dimethyl-2-butanone C6H12O F 4

76-05-1 Trifluoroacetic acid C2HO2F3 I,A 4 4

78-59-1 Isophorone C9H14O F,I,A 4 4 4

78-83-1 Isobutanol C4H10O F,I,A 4 4 4

78-92-2 2-Butanol C4H10O F,I 4 4

78-93-3 Methyl ethyl ketone C4H8O F,I 4 4

79-00-5 1,1,2-Trichloroethane C2H3Cl3 F,I,A 3 3 4

79-01-6 1,1,2-Trichloroethylene C2HCl3 F,I,A 3 3 3

79-16-3 N-Methylacetamide C3H7NO F,I 4 4

79-20-9 Methyl acetate C3H6O2 F,I 4 4

79-34-5 1,1,2,2-Tetrachloroethane C2H2Cl4 F,I 3 3

91-17-8 Decahydronaphtalene C10H18 F,I 2 2

91-22-5 Quinoline C9H7N F,I,A 3 3 2

95-47-6 o-Xylene C8H10 F,I 2 2

95-48-7 o-Cresol C7H8O F,I,A 2 3 4

95-50-1 o-Dichlorobenzene C6H4Cl2 F,I 2 2

96-22-0 3-Pentanone C5H10O F 4

96-49-1 Ethylene carbonate C3H4O3 F,I 4 4

97-99-4 Tetrahydrofurfuryl alcohol C5H10O2 F 4

98-00-0 Furfuryl alcohol C5H6O2 F 4
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Table 1 (continued)
CAS
number

Name Molecular
formula

EC50 Ecotox
class fish

Ecotox
class inv.

Ecotox
class algae

98-01-1 Furfural C5H4O2 F,I 3 3

98-82-8 Isopropylbenzene C9H12 F,I,A 2 2 2

98-86-2 Acetophenone C8H8O F,I,A 4 4 3

98-95-3 Nitrobenzene C6H5NO2 F,I,A 3 3 3

100-41-4 Ethylbenzene C8H10 I,A 2 2

100-42-5 Styrene C8H8 F,I,A 2 2 2

100-47-0 Benzonitrile C7H5N F 4

100-51-6 Benzyl alcohol C7H8O F,I,A 4 4 4

100-52-7 Benzaldehyde C7H6O F,I,A 2 3 4

101-84-8 Diphenyl ether C12H10O F,I,A 2 2 2

102-82-9 Tributylamine C12H27N F,I,A 3 2 2

103-50-4 Dibenzyl ether C14H14O F,I,A 2 1 2

103-73-1 Phenetole C8H10O F 3

104-51-8 Butylbenzene C10H14 F 2

104-76-7 2-Ethylhexanol C8H18O F,I,A 3 3 3

105-37-3 Ethyl propionate C5H10O2 F 4

106-42-3 p-Xylene C8H10 F,I,A 2 2 2

107-06-2 1,2-Dichloroethane C2H4Cl2 F,I,A 4 4 4

107-07-3 2-Chloroethanol C2H5ClO F,I 3 4

107-10-8 Propylamine C3H9N I 3

107-15-3 1,2-Diaminoethane C2H8N2 F,I,A 4 3 4

107-21-1 Ethylene glycol C2H6O2 F,I,A 4 4 4

107-31-3 Methyl formate C2H4O2 F,I,A 4 4 4

107-88-0 1,3-Butanediol C4H10O2 F,I,A 4 4 4

108-03-2 1-Nitropropane C3H7NO2 F,I,A 4 4 3

108-10-1 Methyl isobutyl ketone C6H12O F,I 4 4

108-20-3 Diisopropyl ether C6H14O F,I 4 4

108-21-4 Isopropyl acetate C5H10O2 F,I 4 4

108-24-7 Acetic acid, anhydride C4H6O3 F,I 4 3

108-38-3 m-Xylene C8H10 F,I,A 3 2 2

108-39-4 m-Cresol C7H8O F,I,A 3 3 4

108-67-8 Mesitylene C9H12 F,I 2 2

108-83-8 Diisobutyl ketone C9H18O F,I,A 3 4 3

108-87-2 Methylcyclohexane C7H14 F 3

108-88-3 Toluene C7H8 F,I 2 3

108-89-4 4-Methylpyridine C6H7N F 4

108-90-7 Monochlorobenzene C6H5Cl F,I,A 2 2 3

108-93-0 Cyclohexanol C6H12O F,I,A 4 3 3

108-94-1 Cyclohexanone C6H10O F,I,A 4 4 3

108-95-2 Phenol C6H6O F,I 2 3

108-99-6 3-Methylpyridine C6H7N F,I,A 4 4 4

109-60-4 n-Propyl acetate C5H10O2 F,I,A 3 3 4

109-65-9 1-Bromobutane C4H9Br F 3

109-66-0 n-Pentane C5H12 F,I,A 2 2 2

109-69-3 1-Chlorobutane C4H9Cl F,A 4 4

109-73-9 n-Butylamine C4H11N F,I 3 2

109-86-4 2-Methoxyethanol C3H8O2 A 4

109-87-5 Dimethoxymethane C3H8O2 F,I,A 4 3 3

109-89-7 Diethylamine C4H11N F 4
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Table 1 (continued)
CAS
number

Name Molecular
formula

EC50 Ecotox
class fish

Ecotox
class inv.

Ecotox
class algae

109-94-4 Ethyl formate C3H6O2 F,I 4 4

109-99-9 Tetrahydrofuran C4H8O F 4

110-12-3 5-Methyl-2-hexanone C7H14O F,I,A 4 3 4

110-19-0 Isobutyl acetate C6H12O2 F,I 3 4

110-63-4 1,4-Butanediol C4H10O2 I,A 4 4

110-71-4 1,2-Dimethoxyethane C4H10O2 I,A 4 4

110-80-5 2-Ethoxyethanol C4H10O2 I 4

110-82-7 Cyclohexane C6H12 F,I,A 2 2 2

110-83-8 Cyclohexene C6H10 F,I,A 2 2 3

110-86-1 Pyridine C5H5N F,I,A 4 4 4

110-91-8 Morpholine C4H9NO F,I,A 4 3 3

111-27-3 1-Hexanol C6H14O F,I,A 4 4 3

111-40-0 Diethylenetriamine C4H13N3 F,I 4 3

111-46-6 Diethylene glycol C4H10O3 F,I,A 4 4 4

111-76-2 2-Butoxyethanol C6H14O2 F,I,A 4 4 4

111-77-3 Diethylene glycol
monomethyl ether

C5H12O3 F,I 4 4

111-87-5 1-Octanol C8H18O F,I 3 2

111-90-0 Diethylene glycol
monoethyl ether

C6H14O3 I 4

111-96-6 Diethylene glycol dimethyl
ether

C6H14O3 F,I 4 4

112-25-4 Ethylene glycol hexyl ether C8H18O2 F,I,A 4 4 4

112-27-6 Triethylene glycol C6H14O4 F,I 4 4

112-60-7 Tetraethylene glycol C8H18O5 I 4

119-64-2 Tetralin C10H12 F,I,A 2 2 2

120-82-1 1,2,4-Trichlorobenzene C6H3Cl3 F,I,A 2 2 2

121-44-8 Triethylamine C6H15N F,I 3 3

121-69-7 N,N-Dimethylaniline C8H11N F,I 3 2

123-51-3 3-Methyl-1-butanol C5H12O F 4

123-54-6 Acetyl acetone C5H8O2 F,I 3 3

123-75-1 Pyrrolidine C4H9N F 4

123-86-4 n-Butyl acetate C6H12O2 F,I,A 3 3 4

123-91-1 1,4-Dioxane C4H8O2 F,I 4 4

126-33-0 Sulfolane C4H8O2S F,I,A 4 4 4

127-18-4 1,1,2,2-Tetrachloroethylene C2Cl4 F,I,A 3 3 2

131-11-3 Dimethyl phthalate C10H10O4 F,A 3 4

137-32-6 2-Methyl-1-butanol C5H12O F,I,A 3 4 4

141-43-5 Ethanolamine C2H7NO I 3

141-78-6 Ethyl acetate C4H8O2 F,I 4 4

141-79-7 Methyl isobutyl ketone C6H10O F,I 3 3

142-96-1 Dibutyl ether C8H18O F,I 3 3

156-59-2 1,2-Dichloroéthylène C2H2Cl2 F 3

287-92-3 Cyclopentane C5H10 F,I 2 3

462-06-6 Fluorobenzene C6H5F F 2

504-63-2 1,3-Propylene glycol C3H8O2 F,A 4 4

540-54-5 Propyl chloride C3H7Cl F 3

540-84-1 2,2,4-Trimethyl pentane C8H18 I 1

541-73-1 m-Dichlorobenzene C6H4Cl2 F,I,A 2 2 2

563-80-4 Methyl isopropyl ketone C5H10O A 3
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as Wiener [35], Balaban [36], Randic [37], Kier Indices
[38].

Model development procedure

Descriptor selection

QSAR models were developed by multiple linear regression
(MLR) using the ordinary least squares method. The use of
this simple learning method makes such models easy to inter-
pret and to apply. MLR calculations were achieved by using
the enhanced replacement method (ERM) with Matlab 7.9
software (QSAR/QSPR search algorithms Toolbox; www.
mathworks.fr/products/matlab/). ERM algorithm requires a
smaller number of linear regressions than a time-consuming
Full Search method while obtaining identical results [39].
Descriptor selection was performed by the Kubinyi function
(FIT) [40], expressed as:

FIT ¼ R2 N−d−1ð Þ
N þ d2
� �

1−R2
� � ð1Þ

where R2 is the determination coefficient, d the number of
descriptors selected in the model and N the number of solvents
in the training set. The optimal number of descriptors selected
in the model dopt corresponds to the maximum value of FIT in
the plot FIT vs d. The FIT statistical parameter is preferred to
the Fisher ratio F too sensitive to changes in small d values
and poorly sensitive to changes in large d values. The choice
of the descriptors was confirmed by performing Student’s t-
test at a confidence level of 95 %.

Model validation

All the models developed were evaluated through the deter-
mination coefficient R2, the adjusted determination coefficient

R2
a , and the mean absolute error or mean residual (MAE). The

predictive power and robustness of the models developed
were assessed by internal and external validation techniques.

Fivefold cross-validation was employed for model internal
validation. The training set was randomly divided into five
subsets of approximately equal size. Four subsets were used
as the training set and the last one as the test set. This proce-
dure was repeated five times so that every subset is selected as
a test set once. The squared cross-validated correlation coeffi-
cient R2

CV was computed.
In order to check that developed QSARs did not depend on

a particular distribution of solvents and according to a previ-
ous work [26], three strategies have been used to split the
solvent dataset into training and test sets for external valida-
tion purpose. Briefly a random selection (1) of training and
test sets was performed and repeated five times with a four to
one size ratio. A Y-based selection (2) was used to obtain a
good representation of all types of solvents in terms of
ecotoxicity profile. This strategy classified solvents by as-
cending pEC50 and to kept three out of four solvents in the
training set. To select a training set representative of the sol-
vent space studied, a space filling (SF) technique (3) based on
minimax distance criterion was used [41] (cover.design func-
tion, fields package, R software (www.r-project.org/main.
shtml/)). The profile of the candidate solvents was defined
through DFT descriptors as well as LogP well-known to be
the relevant characteristic for ecotoxicity explanation. To re-
duce solvent profile dimensions, principal component analysis
(PCA) was first performed and solvents were described by
their scores on the principal components explaining 90 % of
the dataset variance before to be screened with the SF algo-
rithm. The solution set was determined after 20 runs for con-
vergence and quality purpose.

As reviewed by Chirico and Gramatica [42, 43], several
external validation criteria may be used to assess QSAR
predictivity and robustness: predictive squared correlation co-
efficients such as Q2

F1 [44], Q
2
F2 [45], Q

2
F3 [46, 47] and other

criteria such as r2m [48, 49], the Golbraikh-Tropsha method

Table 1 (continued)
CAS
number

Name Molecular
formula

EC50 Ecotox
class fish

Ecotox
class inv.

Ecotox
class algae

565-80-0 2,4-Dimethyl-3-pentanone C7H14O F 4

616-45-5 2-Pyrrolidone C4H7NO F,A 4 4

628-63-7 n-Pentyl acetate C7H14O2 F,I 3 3

872-50-4 N-Methylpyrrolidone C5H9NO I 4

1119-40-0 Dimethyl glutarate C7H12O4 F,I 3 4

1634-04-4 Methyl tert-butyl ether C5H12O F,I,A 4 4 4

2807-30-9 Ethylene glycol
monopropyl ether

C5H12O2 F,A 4 4

5989-27-5 d-Limonene C10H16 F,I,A 1 1 4

29911-28-2 Di(propylene glycol)butyl
ether

C10H22O3 F 4
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[50] or the concordance correlation coefficient [42, 51]. Here,
the classical squared correlation coefficient Q2

F1 which is ad-
vocated in the OECD guidelines [52] was used and is
expressed as:

Q2
F1 ¼ 1−

X ntest

i¼1
yi−ŷi

� �2

X ntest

i¼1
yi−ytrain

� �2 ð2Þ

where yi and yi are the observed and the predicted log(EC50)
respectively of the test set solvents. ytrain is the mean observed
log(EC50) of the training set solvents. To well-assess the ex-
ternal predictivity of the QSARs developed, a second external
validation criteria was also evaluated, the concordance corre-
lation coefficient (CCC) expressed as:

CCC ¼
2
X ntest

i¼1
yi−y

� �
ŷ−ŷ

� �

X ntest

i¼1
yi−y

� �2
þ
X ntest

i¼1
ŷi−ŷ

� �2

þ ntest y−ŷ
� �2

ð3Þ

where y and ŷ are the mean observed and the mean predicted
log(EC50) respectively of the test set solvents. The CCC
criteria was chosen since Chirico and Gramatica [43] demon-
strated its high reliability (compared to the other validation
criteria) by studying the predictivity of QSARs developed
from simulated data with different levels of bias. As recom-
mended by these authors, the used acceptance values of Q2

F1

and CCC were 0.70 and 0.85, respectively.

Applicability domain

Developed QSARs also require the definition of the corre-
sponding applicability domain (AD) for estimating the reli-
ability in the prediction of a new molecule [53]. Predicted
activity for only those compounds that fall into this domain
may be considered reliable. AD may be determined by using
several approaches [54]. Here, we used a common one based
on the leverage values for each chemical [55] which are cal-
culated as follows:

hi ¼ xTi X TX
� �−1

xi ð4Þ

where xi is the descriptor vector of the chemical i and X the
model matrix derived from the training set descriptor values.

A warning leverage h* is defined and expressed as h* ¼ 3p
ntrain

where p is the number of model parameters [54]. A chemical
belonging to the training set with both hi > h* and small stan-
dardized residuals (smaller than a value of 3 corresponding to
99 % of the normally distributed data) would reinforce the
model; while high leverage compounds with large standard-
ized residuals are expected to badly influence the model. The

representation of the cross-validated standardized residuals vs
the compound leverages is called theWilliams plot and allows
detecting both the response outliers and the structurally influ-
ential chemicals of a model.

ECOSAR

Several QSAR-based programs are available to predict the
ecotoxicological risks associated with chemicals, such as
ECOSAR, TOPKAT, DEREK, MCASE, ADAPT, etc. [56,
57]. ECOSAR is a freely available program which was devel-
oped on experimental data by the United States
Environmental Protection Agency (US EPA). Moreover, due
to its good predictive performances [58, 59], ECOSAR is
widely used for chemicals risk assessment [10, 16, 58–62].
Thus, in this work, the QSARs implemented in ECOSAR
which are only based on LogP value and dedicated to neutral
organics were used to predict invertebrate or algae pEC50.
Neutral organic compounds correspond to alcohols, acetals,
ketones, ethers, alkyl halides, aryl halides, aromatic hydrocar-
bons, halogenated aromatic hydrocarbons, halogenated ali-
phatic hydrocarbons, sulfides, and disulfides.

For invertebrate (Daphnia), the relation between EC50 and
LogP is developed for 115 neutral organics compounds
(R2 = 0.771):

Log 48‐h EC50 Invertebrate mmol=Lð Þ
¼ −0:8157 logP þ 1:2695 ð5Þ

For algae, the relation between EC50 and LogP is devel-
oped for 51 neutral organics compounds (R2 = 0.596):

Log 96‐h EC50 Algae mmol=Lð Þ
¼ −0:6271 log P þ 0:5687 ð6Þ

Results and discussion

Data set characterization

The three Hansen solubility parameters were used to summa-
rize the chemical profile of the solvents for graphic represen-
tation purpose. In order to observe the solvent space studied in
a relatively reliable 2D-representation, a PCAwas performed
by using the Hansen descriptors as initial variables
(Figure 1a). As observed in Fig. 1b, PC1 was related both to
polarity and hydrogen bonding parameters while PC2
reflected the disperse part of the solubility parameter. The
solvent dataset was chemically heterogeneous as also shown
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by the large coverage of Hansen solubility space in Fig. 1a.
Moreover, this representation confirms that the whole dataset
is well-characterized by LC or EC50 for each trophic level:
fish [26], invertebrates, and algae. The chi-square test (with
the significance level 0.05) indicated that the distributions of
both invertebrates and algae EC50 (Fig. 2) conform closely to
the normal distribution: the corresponding p-values were
0.401 and 0.175, respectively. Invertebrate logEC50 (48 h)
ranged from −2.7 to 2.7 while Algae Log EC50 ranged from
−1.7 to 2.9.

Comparisons of toxicity of trophic levels

Figure 3 shows the toxicity correlation between each pair of
trophic levels. As observed by many authors [21, 63, 64], the
highest correlation (R2 = 0.777) was obtained between fish
and Daphnia magna transducing their similar sensitivity to
organic solvents (Fig. 3a). Aniline was highlighted since its
toxicity is much higher toward invertebrates than fish
(pEC50 = −2.67 and −0.33 respectively). Aniline and deriva-
tives are considered to be narcotics for fish and more toxic to

invertebrates [65]. Similar correlations were obtained between
the toxicity values of algae and fish (R2 = 0.580) and algae and

Fig. 1 Representation of the
solvents characterized in the data
set by fish LC50 (●), invertebrate
EC50 ( ), and/or algae EC50 (○)
in the PC1/PC2 score plot
determined by PCA from the
three Hansen solubility
parameters (a) and the
corresponding loading plot (b).
PC1 explains 51.8 % of the
variation and the second
component PC2 34.4 %

Fig. 2 Histograms of both invertebrates and algae pEC50
Fig. 3 Toxicity of invertebrates vs fish (a), algae vs ish (b), and algae vs
invertebrates (c)
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Daphnia magna (R2 = 0.613) (Fig. 3b and c). These results are
in agreement with several studies dedicated to interspecies
toxicity correlations [21, 64, 66, 67]. Amine compounds
(propylamine, t r ibutylamine, n-butylamine, and
ethanolamine) toxicity was much higher toward algae than
fish or invertebrates as observed by Christensen et al. [68] or
Escher et al. [69] while the opposite effect was observed for
the most lipophilic solvent of the dataset d-limonene. For the
solvent classes large enough (halogenated compounds, ether
and orthoesters, acyl compounds and alcohols), we were not
able to highlight species more sensitive or less sensitive than
the others. The toxicity of the ten aromatic hydrocarbons stud-
ied was high toward the three trophic levels.

QSAR development for invertebrate pEC50

Descriptor selection

The descriptors were selected from each training set by mul-
tiple linear regression (ERM) with FIT criterion which allows
a good compromise between the number of descriptors select-
ed in the model and model fitting quality. The maximum
values of FIT corresponded to a 4 or 5-parameter QSAR for
invertebrate pEC50 prediction, depending on the strategy of
training set selection. As expected, LogP was included in all
the models developed and was associated with the surface

tension and the minimal atomic Mulliken charges (qmin).
HOMO energy and/or dielectric constant were also selected.
The space-filling design approach allowed the selection of
training solvents well-representative of the whole dataset with
a good coverage of the solvent space. This strategy led to a 4-
descriptors model involving LogP, ε, γ, and qmin. From the
EC50-based training set, these 4 descriptors were associated
with the HOMO energy.

Validation

QSAR including LogP, ε, γ, and qmin as explanatory variables
(see Table 1 in Supplementary material) led to the best regres-
sion performances. This model was externally validated.
Results were quite similar for all training sets regardless of
the selection strategy: the determination coefficients (R2

train,
R2

A,train) ranged from 0.689 up to 0.752 andMAEtrain between
0.512 and 0.535 (see Table 2). For test sets, regression quality
was satisfactory (Q2

F1 > 0.7 and CCC > 0.85), especially with
SF design (Q2

F1 = 0.864, MAEtest = 0.425 and CCC = 0.907).
The QSAR developed was also internally validated with five-
fold cross-validation and a corresponding determination coef-

ficient R2
CV =0.704 in good agreement with the model.

The best QSAR for invertebrate pEC50 prediction was the
following:

Log 48−h Inv: EC50 mmol=Lð Þ ¼ 1:276 �0:418ð Þ − 0:480 �0:061ð Þ LogP − 0:048 �0:011ð Þγ þ 0:027 �0:007ð Þ ε − 0:951 �0:454ð Þ qmin
ð7Þ

Figure 4a shows the predicted vs experimental invertebrate
pEC50 both for training and test sets. In a previous work [26],
we already highlighted the significance of LogP, ε, and γ to
predict the fish LC50 of organic solvents. Compared to the
QSAR developed for invertebrate pEC50, only the fourth pa-
rameter differed with the LUMO energy selected instead of

qmin. These similar results corroborate that fish and daphnids
have similar sensitivity to chemicals and especially to narcotic
compounds which represented the major part of the solvent
dataset. Polar or non-polar narcosis involves non-specific non-
covalent interactions with membranes leading to their disrup-
tion. This baseline toxicity mechanism is essentially governed

Table 2 Training and test sets characteristics for the three selection strategies used (defined by using (1) random, (2) EC50-based, and (3) space-filling
selections)

Training
selection

Training
solvents

Test
solvents

Inv. QSAR including LogP; ε; γ; qmin Algae QSAR including LogP and LUMO

Inv. Alg. Inv. Alg. R2
train R2

A,train MAEtrain MAEtest Q2
F1 CCC R2

train R2
A,train MAEtrain MAEtest Q2

F1 CCC

Random (1) 92 51 30 20 0.752 0.740 0.522 0.517 0.716 0.852 0.731 0.720 0.473 0.427 0.770 0.874

EC50-based
(2)

92 55 30 16 0.744 0.732 0.512 0.557 0.712 0.863 0.744 0.734 0.457 0.447 0.729 0.887

Space filling
(3)

90 51 32 20 0.703 0.689 0.535 0.425 0.864 0.907 0.718 0.706 0.466 0.513 0.809 0.869

The best QSARs for both invertebrates and algae pEC50 are described by the determination coefficients and the mean absolute errors corresponding to
both the training and test sets. The validation criteria Q2

F1 and CCC are also reported
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by LogP so many QSARs (as in ECOSAR program) solely
used LogP as a single descriptor. As expected and as observed
by many authors [14, 24, 70], the negative coefficient of LogP
shows that lipophilic chemicals will have more toxic effects
than hydrophilic ones since they are more bioavalaible (trans-
membrane passage is promoted) and bioaccumulative. The
dielectric constant (ε) shows the ability of a solvent for charge
separation and provides a rough measure of its polarity. This
parameters appeared to be relevant for daphnids toxicity ex-
planation with a positive coefficient. The negative contribu-
tion of γ indicates that high surface tension would increase
chemicals toxicity which may be explained by a promoted
membrane penetration. The last selected descriptor was the
minimal atomic Mulliken charges (qmin) which translate the
ability of the solvent to function as an electron-pair donor
(Lewis base). Low qmin would promote toxicity. One expla-
nation could be that H2O would strongly solvate Lewis bases
limiting their reactivity and then their ecotoxicity. Faucon
et al. [14] showed that ecotoxicity of 96 heterogeneous
chemicals toward daphnids increase with the decrease of both
LogP and the electronic descriptor hardness (absolute value).
They explained the latter behavior by a less favorable solva-
tion of soft compounds which became more reactive and toxic
than hard basis or oxygen anions.

To visualize the applicability domain of the developed
QSAR, the William’s plot was represented in Fig. 5a. From
this plot, the AD is established inside a squared area within ±3
standard deviations and a leverage threshold h* of 0.13. No
chemical of the test set exceed the warning leverage h* indi-
cating that their predicted activity can be considered as reliable
as those of the training chemicals. The activity of four mole-
cules belonging to the training set was less well predicted but
remained satisfactory (standardized residuals < 3). According
to fish pLC50 prediction [26], the strongest positive residual
was obtained for a glycol solvent (diethylene glycol) which
exhibits very high 48 h Inv. EC50 (48,900 mg/L). As Papa
et al. [71], we expected that the high EC50 values should be
difficult to precisely measure.

The solvents which were the most underestimated by the
QSAR developed were amine compounds: aniline,
diethylenetriamine, and 1,2-diaminoethane. Similar results
have been observed for fish pLC50 prediction of organic sol-
vents [26]. Amine solvents may exhibit toxic action in excess
of narcosis baseline through specific mechanisms called
amine narcosis [65]. Figure 5a also shows that ethylene car-
bonate has a leverage value 0.41 greater than h* with a small
standardized residual. This solvent may stabilize the model
and make it more accurate.

Fig. 4 Predicted vs experimental
p(EC50) of invertebrates (a) and
algae (b) for training (●) and test
(○) solvents

Fig. 5 Williams plot for the
QSAR model of invertebrate (a)
and algae (b) pEC50
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Finally, theQSAR (Eq. 6) implemented in ECOSARprogram
was used to predict Inv. pEC50 of the 85 neutral organic solvents
contained in the dataset. A comparison with the performance of
the developed 4-parameter model (Eq. 7) showed similar results
for these compounds with R2 = 0.745 and MAE = 0.497 for
ECOSAR relation and R2 = 0.758 and MAE= 0.482 for Eq. 5.
However, Eq. 7 was relatively robust since its predictive power
for Inv. pEC50 of the remaining 37 reactive or ionizable solvents
of the dataset led to R2 = 0.639 (MAE = 0.675) against
R2 = 0.135 (MAE= 0.860) for ECOSAR model.

QSAR development for Algae pEC50

As for fish and invertebrate pEC50 prediction, we tried to
develop a QSAR for algae pEC50 modeling regardless of
the mechanism of toxic action involved. No satisfying models
(R2 around 0.5) were obtained essentially due to the presence
of amine solvents in the dataset. Therefore, we chose to re-
move from the initial dataset all the amine solvents namely
ethanolamine, propylamine, n-butylamine, tributylamine, 1,2-
diaminoethane, morpholine, and aniline. Amine solvents are
well-known to be highly toxic toward algae and this behavior
is often related to a pH-dependent toxicity [68, 69].
Neuwoehner and Escher [72] suggest the high toxicity of al-
iphatic amines in algae is due to a toxicokinetic effect induced
by their speciation and not to a specific mechanism of toxic
action. Aliphatic amines speciation would be different in the
external medium compared to the algae cell in which pH re-
mains independent of external pH.

Space-filling and EC50-based selections led on the basis of
FIT criterion to a 2-parameter QSAR for algae EC50 predic-
tion involving LogP and LUMO energy (see Table 1 in
Supplementary material). QSAR models with only these two
descriptors were already found by several authors [20, 73, 74].

The 2-parameter QSAR was externally validated showing
robust results for each selection strategy: the determination
coefficients (R2

train, R
2
A,train) ranged from 0.706 up to 0.744

and MAE from 0.427 up to 0.513 for both training and test
sets (Table 2). Both external validation criteria Q2

F1 and CCC
were greater than the acceptance values (0.7 and 0.85, respec-
tively) as defined by Chirico and Gramatica [43] indicating
that the model may be accepted as externally predictive for
new organic solvent. The fivefold cross-validation method
used for internal validation purpose led to a satisfactory deter-
mination coefficient R2

CV =0.729.
The best QSAR for algae pEC50 prediction was the fol-

lowing:

Log 72−h algae EC50 mmol=Lð Þ
¼ 1:348 �0:139ð Þ − 0:621 �0:059ð Þ LogP

þ 0:249 �0:095ð Þ LUMO ð8Þ

Figure 4b shows the predicted vs experimental algae
pEC50 both for training and test sets.

As expected and according to many authors [11, 13, 18, 20,
21, 73–76], the negative coefficient of LogP in the QSAR
indicates that higher the lipophilicity, higher the toxicity of
organic solvents toward algae. The positive coefficient of
LUMO energy suggests that highly electrophilic compounds
resulted in high toxicity in agreement with many authors and
as observed in the QSAR developed for solvent fish acute
toxicity solvents [26].

The Williams plot of the algae QSAR is presented in
Fig. 5b. As for the developed QSAR for invertebrate pEC50
prediction, it can be clearly seen that the solvents are follow-
ing a well-defined domain of applicability (with h* = 0.12).
Only d-limonene was out of the AD due to its very high
LogP value of 4.83. However, the corresponding predicted
activity remains satisfactory with a corresponding standard-
ized residual below the value 3. Once again, the predicted
activity of the test solvents may be considered reliable.

For comparison, the ECOSAR relation (Eq. 6) was used to
predict algae pEC50 of the 67 neutral organics solvents in-
cluded in our dataset. Although Eq. 6 is based on activities
measured over a test period of 96 h instead of 72 h for Eq. 8,
Eq. 6 led to 0.640 and 0.571 for MAE and R2 respectively
which is in agreement with the determination coefficient
R2 = 0.596 characterizing Eq. 6 (see ECOSAR section).
While the developed QSAR (Eq. 8) allowed reaching 0.766
for R2 and 0.459 for MAE. Moreover, Eq. 8 remained usable
to predict Algae pEC50 of the four esters remaining in the
dataset with MAE = 0.492 against 0.886 for ECOSAR model
(Eq. 6).

Conclusions

The prediction of the ecotoxicity profile of organic solvents by
QSARs is of major relevance, especially to limit in vivo ex-
periments. The description of aquatic toxicity requires the
knowledge of the effects of a substance on organisms living
in the water and represented by three trophic levels, i.e., ver-
tebrates (fish), invertebrates (crustaceans as Daphnia spp.),
and algae. In a previous work, we developed from a large
dataset a reliable 4-parameter QSAR able to predict the fish
LC50 of organic solvents, regardless of the mechanism of
toxic action involved. Here, to complete this study and well-
describe the ecotoxicity profile of organic solvents required by
REACH regulation, we used the same approach to develop
QSARs for the EC50 prediction of two other trophic levels,
namely invertebrates and algae.

From the experimental activity data found in the literature
and according to other studies, organic solvents showed sim-
ilar toxicity toward fish and invertebrates while algae exhibit-
ed a different behavior. The 4-parameter QSAR developed for
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invertebrate pEC50 prediction included LogP, surface tension,
dielectric constant, and the minimal atomic charge. As expect-
ed, this model is very similar to the one developed for fish
LC50 prediction which includes LUMO energy instead of the
minimal atomic charge. A 2-parameter QSAR involving LogP
and LUMO energy allowed well-predicting algae pEC50 for
all solvents other than amines which are well-known to exhibit
specific toxicity behavior toward algae [68, 69]. These models
have been obtained from a large solvent dataset and were
validated by both internal and external validation techniques
as required by the REACH regulation and according to OECD
guidelines [52, 53]. They constitute a major tool for a reliable
assessment of environmental risk related to organic solvents.
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