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Abstract We have reported a number of new metal-free or-
ganic dyes (2–6) that have cyclic asymmetric benzotripyrrole
derivatives as donor groups with peripheral nitrogen atoms in
the ring, fluorine and thiophene groups as π-spacers, and a
cyanoacrylic acid acceptor group. Density functional theory
(DFT) and time-dependent DFT (TD-DFT) calculations were
employed to examine the influence of the position of the do-
nor nitrogen atom and π-conjugation on solar cell perfor-
mance. The calculated electron-injection driving force
(ΔGinject), electron-regeneration driving force (ΔGregen),
light-harvesting efficiency (LHE), dipole moment (μnormal),
and number of electrons transferred (Δq) indicate that dyes
3, 4, and 6 have significantly higher efficiencies than reference
dye 1, which exhibits high efficiency. We also extended our
comparison to some other reported dyes, 7–9, which have a
donor nitrogen atom in the middle of the ring system. The

computed results suggest that dye 6 possesses a higher inci-
dent photon to current conversion efficiency (IPCE) than re-
ported dyes 7–9. Thus, the use of donor groups with periph-
eral nitrogen atoms appears to lead to more efficient dyes than
those in which the nitrogen atom is present in themiddle of the
donor ring system.
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Introduction

Dye-sensitized solar cells (DSSCs) have been actively pur-
sued in the search for new renewable energy sources, as they
have many advantages over silicon-based solar cells, includ-
ing low cost, easy production, and flexibility [1–9]. DSSCs
have been extensively studied since O’Regan and Grätzel
published their seminal work in 1991 [10]. These devices
are generally composed of organic or inorganic dyes adsorbed
on an inorganic n-type semiconductor, a platinized counter
electrode, and a redox electrolyte [11]. The highest power
conversion efficiencies (PCEs) of DSSC devices have been
achieved by using metal-based dyes [12–24]. Among various
DSSCs, those derived from ruthenium(II)–polypyridyl com-
plexes have shown the best photostability as well as photocur-
rent conversion efficiencies [25]. Such dyes possess the
highest PCEs because of their photochemical and electro-
chemical properties. However, it can be difficult to synthesize
and purify the preferred Ru(II)–polypyridyl complexes [26].
Dyes based on heavy-metal ions are not environmentally
friendly, and sources of ruthenium are limited [27]. Thus,
metal-free sensitizers such as organic dyes have been studied
and explored with a view to developing a new class of sensi-
tizer dye molecules [13, 28–31]. In some cases, the utilization
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of organic dye molecules as efficient DSSCs is hindered by
their low stability, difficult syntheses, and the formation of
aggregates on the semiconductor surface [13, 32]. However,
efforts have been made to synthesize efficient organic dye
molecules in order to achieve higher DSSC performance
[13, 32]. Metal-free organic dyes have a D–π–A dipolar ar-
chitecture, where a π-electron-rich moiety (D) is linked to a π-
electron-poor end group (A) through a π-spacer. The choice of
anchoring group also plays a crucial role in the efficiency of
the DSSC [33]. Recent reports have revealed that modifying
metal-free organic dyes structurally as well as electronically
can significantly improve their absorption and overall efficien-
cy, making them more useful for application in DSSCs [26].

A solar energy to electricity conversion efficiency of 6.8 %
was achieved using an organic dye containing diarylamine as
the donor unit, fluorene and thiophene as π-spacers, and
cyanoacrylic acid as the anchoring group [34]. The perfor-
mance of a DSSC is dependent on several different parame-
ters, so the development of an efficient dye is a considerable
challenge to both experimental and theoretical chemists [33].

DFT methods have been used to calculate the structural
properties, electronic bands, optical excitation spectra, and
charge-transport properties of organic/inorganic hybrid mate-
rials [35]. DFT and TDDFT methods have been found to be
reliable tools for designing new dyes with appropriate optical,
electrochemical, and physical properties for application in
DSSCs [36]. Reports have suggested that CAM–B3LYP/6-
31+G* in combination with the conductor-like polarizable
continuum model (CPCM) accurately reproduces the vertical
transition energies of D–π–A organic dyes [37–39]. The na-
ture of the anchoring group as well as the strength of coupling
of the dye molecule to the semiconductor surface significantly
influence the efficiency of the DSSC. Strong dye coupling
reduces the possibility of desorption, enhances the cycle of
use of the solar cell, and faciliates electron injection from the
photoexcited singlet/triplet state(s) of the dye to the conduc-
tion band of the semiconductor. The electron injection rate is
an important influence on the efficiency of a DSSC [40]. This
injection rate can be calculated quantum chemically with rea-
sonable accuracy by a range of methodologies [14, 36,
41–45]. Reports also suggest that the donor group of the dye
molecule has a significant effect on solar cell performance. A
wide variety of organic dyes containing various electron do-
nors, such as dialkylamine groups [46, 47], coumarins
[48–51], carbazole [52, 53], quinoxaline [54, 55],
difluorenylphenylamine [56–62], julolidine [63], an electron-
donating diphenyl amine moiety containing a methoxy group
[64], di(p-tolyl)phenylamine [65], pyrrolidino, and ullazine
[66], have been explored in DSSC design.

In the work reported in the present article, we performed a
computational study to investigate the influence of cyclic
asymmetric benzotripyrrole derivatives (2–6) as donor groups
on DSSC efficiency. Phenyl-substituted derivatives of cyclic

asymmetric benzotripyrrole can be prepared by the
electropolymerization of indole-5-carboxylic acid and 5-
cyanoindole [67] and the reaction of indole with
nitrosobenzene in the presence of an acid [68]. Ruiz et al. have
shown that asymmetric compounds present redshifted absorp-
tion and emission maxima compared to the corresponding
symmetric compounds [69]. Asymmetric compounds also
show improved fluorescence quantum yields [69]. The exper-
imental results for organic dye 1 with diphenylamine as a
donor group were found to be in good agreement with the
corresponding computational results [34, 70, 71]. Therefore,
in the present study, we used 1 as a reference dye to examine
the efficiencies of a series of designed dyes (Fig. 1). The
calculations were performed at the same level of theory as
employed for 1, and they predicted that the designed dyes 3,
4, and 6 possess higher efficiencies than reference dye 1 [70].
The designed dyes were compared with other recently report-
ed donor systems that have a nitrogen atom in the middle of
the ring system [66, 71, 72]. These comparisons highlighted
the importance of the position of the nitrogen atom in the
donor molecule.

Methods

Evaluation of key parameters

The energy conversion efficiency (η) of solar cell device can
be determined using the following equation:

η ¼ FF
VOC JSC
Pinc

; ð1Þ

where Voc is the open-circuit photovoltage, Jsc is the short-
circuit current density, FF is the fill factor, and Pinc is the solar
power incident on the cell.

The short-circuit current density, Jsc, in a DSSC is deter-
mined by the following equation [70]:

J sc ¼ ∫λLHE λð ÞΦinject:ηcollect:ηregenI s λð Þ:dλ; ð2Þ

where LHE(λ) is the light-harvesting efficiency at a given
wavelength, calculated as LHE=1 – 10−f; f is the oscillator
strength. Φinject is the electron-injection efficiency and ηcollect
denotes the charge-collection efficiency. Φinject is closely re-
lated to the driving forceΔGinject (for the injection of electrons
from the excited states of dye molecules to the semiconductor
substrate), which is calculated as the difference between the
oxidation potential of the excited dye (Edye*) and the reduction
potential of the CB of TiO2 (ECB, −4.00 eV) [73]:

ΔGinject ¼ Edye*−ECB: ð3Þ
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Edye* can be expressed as [74]

Edye* ¼ Edye−λmax; ð4Þ

where Edye is the redox potential of the ground state of the dye
and λmax is the vertical transition energy. The regeneration
efficiency (ηregen) of the oxidized dye is associated with the
regeneration driving force (ΔGregen).ΔGregen is the difference
between the oxidation potential of the dye and the redox po-
tential of the electrolyte I−/I3

− (4.58 eV) [75]. Thus, Jsc will
increase with increasing LHE and ΔGinject. The value of Jsc
also increases when the value of ΔGregen is decreased.

The Voc of a DSSC is determined using the following equa-
tion [73]:

V oc ¼ Ec þΔCB

q
þ kT

q
ln

nc
NCB

� �
−
Eredox

q
: ð5Þ

Here, q is a unit of charge, Ec is the conduction band edge
of the semiconductor substrate, k is the Boltzmann constant, T
is the absolute temperature, nc is the number of electrons in the
conduction band, NCB is the density of accessible states in the
conduction band, and Eredox is the reduction–oxidation poten-
tial of the electrolyte. ΔCB is the shift in the edge of the
conduction band of the semiconductor when the dye is
adsorbed at its surface [76].

Computational details

We applied DFT using Becke’s three-parameter hybrid func-
tional and the correlation formula of Lee, Yang, and Parr
(B3LYP) [77, 78] for the gas-phase geometry optimization

of compounds 1−9 before and after they were bound to the
TiO2 surface. The dyes were fully optimized using the 6-31G*
basis set for the atoms C, H, O, N, and S and the effective core
potential (ECP) basis set LANL2DZ for Ti atoms. Positive
vibrational frequencies were obtained, confirming that the op-
timized molecular structures corresponded to energy minima.
An earlier report had shown that this method could provide a
reasonable prediction of the geometry—comparable to that
optimized at the MP2 level of theory, but with a much lower
computational cost [37]. The absorption spectra of the opti-
mized dyes were obtained in the solvent tetrahydrofuran
(THF) [79, 80] at the CPCM–CAM–B3LYP/6-31+G* [81]
level of theory. The long-range corrected functional CAM-
B3LYP showed the best agreement of λmax with the experi-
mentally observed results among all of the DFT functionals
tested (Table S1 of the BElectronic supplementary material,^
ESM). We utilized the CAM-B3LYP functional in this study,
as this method has been extensively employed to calculate the
vertical transition energies of D–π–A dye molecules [38, 39,
82]. The oxidation potentials of the optimized free dyes were
calculated at the CPCM-B3LYP/6-311G** level of theory for
the neutral and the cationic dyes in the ground state [77].
Dipole moments of the TiO2-bound dyes were calculated
a t the CPCM–B3LYP/6 -31G* leve l o f theo ry.
Ti(OH)3H2O was used as a model in earlier reports, and
the results obtained with this model provided a reasonable
explanation for the electronic and physical properties of
TiO2 [70]. This model also showed good agreement (in
terms of electronic and physical properties) with a larger
nanocluster, (TiO2)6 [83, 84]. All quantum chemical cal-
culations carried out in the present work were performed
using Gaussian 09 [85].

Fig. 1 Structures of organic dyes
1–9
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Results and discussion

Molecular design and geometries

The optimized geometries of the studied dyes 1–9 are shown
in Fig. 2. The dye molecules anchored on the semiconductor
TiO2 model system are shown in Fig. S1 in the ESM. The
basic unit of each dye molecule is D–π–A, where D is the
donor group, which was always a cyclic asymmetric
benzotripyrrole derivative. The phenyl-substituted derivative
of cyclic asymmetric benzotripyrrole was prepared by the
electropolymerization of indole-5-carboxylic acid and 5-
cyanoindole [67]. The reaction of indole with nitrosobenzene
in the presence of an acid also gives similar products [68].
Ruiz et al. ascertained that asymmetric compounds showed
redshifted absorption and emission maxima compared to the
maxima of the corresponding symmetric compounds [69].
Cyanoacrylic acid was used as an anchoring as well as an
electron-acceptor group in dye molecules 2–6. Fluorene and

thiophene groups were attached between the chromophore
and the anchoring group as π-spacer units. Such π-spacers
are widely used in DSSCs to shift the absorption band into
the visible region via extendedπ-conjugation [86]. Fluorene is
a well-documented π-spacer that is used in organic dyes due
to its photophysical and electrochemical properties [87]. This
compound also influences DSSC efficiency due to its high
molar extinction coefficient and light-harvesting properties
[88–90]. Thiophene spacers have also been adopted for use
in DSSCs due to their high polarizability, tunable spectrosco-
py, and electrochemical properties [91].

The effect of the choice of donor group on the geometrical
structures of the designed dyes was examined (see Fig. 1 and
Scheme 1). Some of the geometric parameters of the studied
dyes (1–9) are listed in Table 1. The process of transferring an
electron from the donor moiety to the semiconductor surface
is facilitated (and thus solar cell efficiency can be increased)
by D–π–A coplanarity. The calculated dihedral angles (θ) of
1–9 indicate that the constituent units in each of the dyes 2–6

Fig. 2 Optimized geometries of the free dyes 1–9, calculated at the B3LYP/6-31G* level of theory
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and 9 are almost coplanar (Table 1 and Scheme 1). These dye
molecules therefore show stronger π-conjugation effects than
the other dye molecules studied here.

The frontier molecular orbitals of dyes 1–9 in the ground
state are given in Fig. 3. Upon analyzing the frontier molecular
orbitals, it was observed that the highest molecular orbital
(HOMO) was mainly localized on the donor group and the
fluorene spacer unit (Fig. 3) while the lowest unoccupied mo-
lecular orbital (LUMO)was mainly localized on the thiophene
spacer and the acceptor group in the dye molecules (Fig. 3).
The calculated energy levels of dyes 1–9, along with the con-
duction band of the TiO2 surface and the redox couple
triiodide/iodide, are given in Fig. 4. Electron transfer from
the dye molecule to the semiconductor occurs via two differ-
ent mechanisms: type I or indirect injection and type II or
direct injection [92, 93]. The type I process involves two steps:
an excitation from the ground state to the excited state of the
dye molecule that occurs through the absorption of a photon,
and the transfer of an electron to the conduction band of the
semiconductor nanoparticle (NP). The type II process in-
volves a single step, in which the electron is transferred from
the ground state of the dye to the conduction band of the
semiconductor upon photoabsorption. It is known that, for
the indirect mechanism to operate, the LUMO level must be
above the conduction band of TiO2 (ECB, −4.00 eV) to allow
effective electron injection, and the HOMO level should be

lower than the redox potential of I−/I3
− (−4.80 eV) [73, 94].

The studied dyes utilize the indirect mechanism for electron
transfer to the semiconductor nanoparticle (Fig. 4). It is clear
from Fig. 4 that the HOMOs are situated below the redox
potential of the I−/I3

− electrolyte (−4.80 eV), and that the
LUMOs of all dyes lie above the conduction band of the
TiO2 surface [73, 94]. Thus, all of the designed dyes show
favorable electron injection properties. Among the series of
dye molecules, 6 has the lowest HOMO–LUMO energy gap
(HLG), which facilitates electron excitation as well as longer-
wavelength light absorption (Fig. 4).

Absorption spectra

The calculated maximum absorption wavelength (λmax), the
corresponding electronic transition configurations, the oscilla-
tor strengths ( f ), and the light-harvesting efficiencies (LHEs)
of dyes 1–9 are listed in Table 2. The absorption spectrum of
an organic dye is dependent on the conjugation present in the
molecule, the dihedral angle between the donor and spacer
groups, and the HOMO–LUMO energy gap for the probable
transition. The degree of conjugation in the dye molecule in-
fluences the optical properties of the DSSC, and thus its effi-
ciency [66, 71]. We also exploited the effect of π-conjugation
at the appropriate position of the donor group to enhance
DSSC efficiency. The calculated absorption spectrum of dye
2 was found to be 420 nm (Table 2). We attached two pyrrole
groups to the phenyl ring of dye molecule 2 to create dye 3
(Fig. 1), enhancing the absorption wavelength. The absorption
maximum of dye 3 was found to occur at 439 nm, suggesting
increased conjugation in 3 than in 2 (Table 2, Fig. S3 in the
ESM). The calculated dihedral angles for 2 and 3 corroborate
the notion that the constituent units in 3 are more coplanar
than those in 2 (Table 1). The calculated smaller HOMO–
LUMO energy gap of dye 3 (4.17 eV) compared to that of
dye 2 (4.77 eV) also shows the effect of the enhanced conju-
gation in the former case (Fig. 4, Table 1). One phenyl ring
was then attached to the pyrrole unit of dye 3 to give dye 4
(Fig. 1). The calculated results revealed that dye 4 has a com-
parable absorption maximum (λmax=440 nm) to that of dye 3
(Table 2 and Fig. S3 in the ESM). Incorporation of a phenyl
ring into dye 4 to yield dye 5, however, shifted the absorption
maximum to a lower wavelength (434 nm). Geometrical anal-
ysis of the optimized dye 5 suggested that the dihedral angle
between the nitrogen atoms is larger (N1CCN2=−2.6°) than in
dye 4 (N1CCN2=−0.4°) (Fig. 1). This distortion in the ring
plane decreases the conjugation in dye 5 compared to dye 4.
This interrupted conjugation is reflected in the HOMO–
LUMO energy gaps (HLGs) of the dyes. The HLG value of
compound 5 (4.26 eV) is higher than that of 4 (4.13 eV)
(Fig. 4, Table 1). To minimize the geometrical distortion in
dye 5, we changed the position of the phenyl ring attached to
the pyrrole unit of dye 4 to generate dye 6 (Table 2). Dye 6

Table 1 Selected bond lengths (r1, r2, r3, and r4, in Å), dihedral angles
(θ, in degrees), and the HOMO–LUMO energy gaps (HLGs, in eV) of the
designed dyes 1–9

Dye r1 r2 r3 r4 θ HLG

1 1.416 1.461 1.462 1.425 −141.44 4.56

2 1.462 1.462 1.463 1.426 156.49 4.75

3 1.457 1.460 1.462 1.425 159.42 4.17

4 1.458 1.461 1.462 1.425 158.37 4.13

5 1.459 1.461 1.462 1.425 158.17 4.26

6 1.458 1.461 1.462 1.425 158.51 3.96

7 1.481 1.463 1.462 1.426 −143.07 4.29

8 1.486 1.463 1.463 1.426 −140.99 4.34

9 1.482 1.462 1.462 1.426 −160.27 4.30

Scheme 1 D–π–A organic dyes: θ is the dihedral angle between the
donor and spacer units (shown in red); r1, r2, r3, and r4 are bond lengths
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Fig. 3 HOMO–LUMO diagrams
of dyes 1–9 calculated at the
CAM–B3LYP/6-31+G*//
B3LYP/6-31G* level of theory in
the gas phase; surfaces shown in
the diagrams correspond to an
isosurface value of 0.02

121 Page 6 of 12 J Mol Model (2016) 22: 121



showed a longer-wavelength absorption maximum (443 nm)
due to better conjugation, which decreased the HOMO–
LUMO gap. The computed absorption maxima of dyes 7–9
are also given in Table 2. The absorption maxima of dyes 7–9
occurred at smaller wavelengths than those of dye 6 and ref-
erence dye 1.

Photovoltaic performance

Factors influencing Jsc

An important parameter of the dyes in relation to enhancing
the efficiency of a DSSC is Jsc, which is directly related to the
light-harvesting efficiency (LHE) and electron-injection rate
(Φinject) of the dye (Eq. 2). The efficiency of a DSSC increases
with increasing LHE and Φinject of the dye molecule. The

calculated results for LHE, the electron-injection driving force
(ΔGinject), and the electron-regeneration driving force
(ΔGregen) are given in Table 3. The electron-injection driving
force (ΔGinject) can be calculated by relaxing or fixing the
TiO2 surface. An earlier study showed that a fixed surface of
semiconducting TiO2 yields reasonably close results to those
observed experimentally [70]. Therefore, we assumed a fixed
surface for calculations of the electron-injection driving force.
The calculated LHE and oscillator strength values were found
to increase with the degree of conjugation in the system
(Table 2). The designed dyes (2–6) showed higher LHE
values than reference dye 1 (0.98). Such LHE values are sim-
ilar to some of the LHE values obtained for highly efficient
organic dye molecules reported in the literature [95, 96].
These designed dye molecules (2–6) also show better LHE
values than dye 10 (LHE=0.98, η=4.92 %), which is report-
ed to be inferior to dye 1 (LHE=0.99, η=6.78 %) [70]. The
ΔGinject values of compounds 1–9 are given in Table 3. The
calculated ΔGinject value of reference compound 1 is
−1.62 eV. It is known that ΔGinject is related to Jsc and that
the Jsc value of a dye increases with increasing ΔGinject. The
asymmetric benzotripyrrole donor dyes presented higher
ΔGinject values than that of 1 (Table 3). However, there is
another factor, ΔGregen, which also influences Jsc [97]. The
larger the value ofΔGregen, the lower the Jsc of a cell. We also
calculated the ΔGregen values for dyes 1–9, as shown in
Table 3. The calculated values suggest that dyes 3–6 have
lower ΔGregen values than dye 1. Therefore, dyes 3–6 should
have higher Jsc values than dye 1. Furthermore, we compared
the most promising dye, 6, with other recently reported donor
dye molecules (7–9) that have a donor nitrogen atom in the
middle of the ring system. The computed results suggest that
dye 6 should have a larger Jsc than dyes 7–9 due to the differ-
ent positions of the nitrogen atoms in their ring systems; this
difference leads to improved optical and electronic properties
for 6. The location of the nitrogen atom at a peripheral site in
the ring in 6 significantly enhances λmax, ΔGinject, and
ΔGregen compared to the systems where the nitrogen is posi-
tioned in the middle of the ring (7–9). Therefore, it appears

Fig. 4 Energy diagram showing the HOMO–LUMO gaps for dyes 1–9
(plotted along the x-axis), TiO2, and the electrolyte (I3

−/I−)

Table 2 Calculated wavelengths of maximum absorption λmax (in nm
and in eV in parentheses), oscillator strengths f, light-harvesting efficien-
cies (LHEs), and the nature of the transitions for dyes 1–9

Dye State λmax Main configuration f LHE

1 S0 → S1 434 (2.86) H-1→L (0.32)
H→L (0.59)

1.63 0.98

2 S0 → S1 420 (2.96) H-1→L (0. 35)
H→L (0.52)

1.85 0.99

3 S0 → S1 439 (2.83) H→L (0.49)
H→L+1 (0.18)

1.93 0.99

4 S0 → S1 440 (2.82) H-2→L (0.42)
H→L (0.49)

1.96 0.99

5 S0 → S1 434 (2.86) H-2→L (0.44)
H→L (0.47)

2.06 0.99

6 S0 → S1 443 (2.80) H-2→L (0.34)
H→L (0. 46)

2. 01 0.99

7 S0 → S1 420 (2.96) H-1→L (0. 56)
H→L (-0.33)

1.85 0.99

8 S0 → S1 414 (2.84) H-1→L (0. 59)
H-2→L (0.33)

1.78 0.98

9 S0 → S1 428 (2.90) H-1→L (0. 48)
H→L (0.41)

2.03 0.99

Table 3 Calculated
values of the redox
potential (Edye, eV),
driving force for electron
injection (ΔGinject, eV),
and driving force for
electron regeneration
(ΔGregen, eV) for dyes
1–9

Dye Edye ΔGinject ΔGregen

1 5.24 −1.62 −0.66
2 5.59 −1.37 −1.01
3 5.02 −1.81 −0.47
4 4.99 −1.83 −0.41
5 5.10 −1.76 −0.52
6 4.85 −1.95 −0.27
7 5.10 −1.86 −0.52
8 5.24 −1.60 −0.66
9 5.24 −1.66 −0.66
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that the efficiency of organic dye molecules can be tuned by
varying the position of the donor nitrogen atom in the ring
system.

Factors influencing Voc

The overall power conversion efficiency of a solar cell also
depends on the open-circuit photovoltage (Voc) according to
Eq. 1. It is known that the value of Voc for a dye molecule can
depend on the conduction band (CB), which is associated with

the dipole moment of the molecule [98]. Grätzel and co-
workers showed that the large vertical dipole moment
(μnormal) of an adsorbed dye molecule pointing away from
the TiO2 surface can significantly enhance Voc and affect the
efficiency of a dye-sensitized solar cell [99]. A Ti(OH)3H2O
model of the semiconductor surface was employed in a study
and was found to adequately reproduce the properties of the
semiconductor surface [70].We expanded on this model of the
TiO2 surface by using a (TiO2)6 cluster model to examine the
dipole moments, absorption spectra, and the main

Table 4 Computed atomic
charge distributions (in units of e)
on the donor, π-spacer, acceptor,
and TiO2 surface for dyes 1–9
adsorbed on the TiO2 substrate in
the ground state (S0) and excited
state (S1), as calculated at the
CPCM–B3LYP/6-31G* level

Dye S0 S1

D π A Tia μnormal D π A Tia Δq

1 −0.119 0.327 −0.636 0.429 6.94 0.337 0.267 −0.949 0.346 0.083

2 0.026 0.176 −0.631 0.432 −4.38 0.456 0.125 −0.935 0.352 0.071

3 0.072 0.136 −0.637 0.429 12.19 0.730 0.011 −0.974 0.342 0.087

4 0.066 0.140 −0.636 0.431 12.02 0.739 −0.108 −0.974 0.342 0.089

5 0.051 0.152 −0.634 0.430 −10.02 0.714 −0.087 −0.971 0.345 0.085

6 0.144 −0.061 −0.635 0.430 10.36 0.822 −0.178 −0.985 0.338 0.092

7 0.017 0.183 −0.631 0.430 6.99 0.832 −0.173 −0.996 0.337 0.093

8 0.005 0.195 −0.628 0.427 6.21 0.932 −0.261 −1.006 0.337 0.090

9 −0.248 0.193 −0.631 0.432 6.97 0.694 −0.072 −0.971 0.345 0.087

a The TiO2 substrate was modeled using Ti(OH)3H2O

Fig. 5 Vertical dipole moments
of dyes 3, 4, and 6, as calculated
at the CPCM–B3LYP/6-31G*
level of theory. The TiO2 surface
was considered to be parallel to
the yz-plane
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configurations of the spectra for dyes 4 and 6 as representative
cases (Fig. S4, Tables S2–S4). The calculated results revealed
that the trends afforded by the (TiO2)6 cluster model were
similar to those obtained with the simpler Ti(OH)3H2Omodel.
The following equation can be used to calculate the shift in Ec
for the semiconductor upon the adsorption of a dye molecule:

ΔCB ¼ ‐
qμnormalγ

ε0ε
; ð6Þ

where μnormal is the dipole moment of an individual dye mol-
ecule perpendicular to the surface of the semiconductor sub-
strate, γ is the surface concentration of the dye, and ε0 and ε
represent the vacuum permittivity and the dielectric permittiv-
ity, respectively. It is evident from Eqs. 5 and 6 that increasing
the μnormal and nc values of a dye will enhance the Voc. Table 4
presents the values of nc obtained by calculating the difference
in the charge on the TiO2 surface between the ground state
(S0) and excited state (S1) for dyes 1–9. We also calculated the
μnormal values for the studied dyes (Table 4 and Fig. 5). The
calculated μnormal and nc values suggest that dyes 3, 4, and 6
should have much higher Voc values than reference dye 1. The
dyes with donor units (7–9) that have a nitrogen in the middle
of the ring showed lower μnormal and nc values than dye 6.

Conclusions

In this work, we investigated a series of metal-free organic
dyes (2–6) theoretically, and showed that their application in
DSSCs should lead to improved efficiency. Cyclic asymmet-
ric benzotripyrrole derivatives were modeled as the donor
groups in these dye systems. The phenyl derivative of cyclic
asymmetric benzotripyrroles can be obtained synthetically in
the laboratory [67]. The results of our calculations indicate
that dye 2 has lower efficiency than reference dye 1. The role
of conjugation was examined, and the cyclic asymmetric
benzotripyrrole unit was found to yield higher DSSC efficien-
cy. Dyes 3 and 4 were predicted to have superior LHEs,
ΔGinject values, vertical dipole moments, and electron injec-
tion compared to reference dye 1. The Voc values of dyes 3 and
4 were enhanced because of an improved electron-transfer
process and higher vertical dipole moments compared to dye
1. Dyes 3 and 4 also showed higher Jsc values than dye 1. The
designed dye 6 presented the highest λmax (443 nm) among
the studied series of dye molecules due to its increased conju-
gation, which influences the HUMO–LUMO energy gap. The
calculated LHE, ΔGinject, μnormal, and Δq values suggest that
dye 6 should permit the largest improvement in DSSC effi-
ciency among the series of dye molecules 1–6. We also com-
pared the photophysical properties of dye 6with those of other
reported dyes 7–9 that have a donor nitrogen atom is in the
middle of the ring system. The computed results predicted that

designed dye 6 should possess a higher incident photon to
current conversion efficiency (IPCE) than the reported dyes
7–9. The locations of the nitrogen atoms in the donor groups
in the designed dye molecules were found to be an important
influence on DSSC efficiency, with peripheral locations of the
nitrogen atoms leading to enhanced efficiency. Such results
may contribute towards the development of more efficient
dyes for solar cell applications.
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