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Abstract Ammonia N–H bond cleavage at metal-free sub-
strates has attracted great attention because of its industrial
importance. Here, we investigate the dissociative adsorption
of ammonia onto the surface of a B36 borophene sheet by
means of density functional theory calculations. We show that
the N–H bondmay be broken at the edges of B36 even at room
temperature, regarding the small energy barrier of 14.1–
19.3 kcal mol−1 at different levels of theory, andmore negative
Gibbs free energy change. Unlike basis set size, the kind of
exchange correlation functional significantly affects the elec-
tronic properties of the studied systems. Also, by increasing
the percentage of Hartree Fock (HF) exchange of density
functionals, the activation and adsorption energies are
lowered. A linear relationship between the highest occupied
molecular orbital or lowest unoccupied molecular orbital of
B36 borophene and the %HF exchange of functionals is pre-
dicted. Our work reveals that pure whole boron nanosheets
may be promising metal-free materials in N–H bond cleavage,
which would raise the potential application of these sheets.

Keywords Graphene-like . Nanostructure . Self-interaction
error . Boron compound

Introduction

Ammonia N–H bond cleavage is a first rung, not only in the
transformation of abundant ammonia into a valuable amino
compound, but also in the start of numerous catalytic reactions
[1, 2]. Conventional N–H bond cleavage methods depend
mainly on the different transition metal centers [2]. But toxic-
ity problems, high cost and simple Lewis acid–base adducts
formation with transition metals impose great limitations on
the possible applications as an NH3 splitter [3]. Therefore,
researchers have attempted to find metal-free ammonia split-
ters. Recently, nanostructured materials have invoked exten-
sive interest as substrates due to their unique properties, such
as high surface to volume ratio, and exclusive electronic prop-
erties [4–10]. Using density functional theory (DFT) calcula-
tions, Ding et al. [3] demonstrated that pristine SiC nanotubes
can break the ammonia N–H bond by molecular chemisorp-
tion, releasing energy of ~1.370 eV. The latter authors used the
Perdew Burke Ernzerhof (PBE) exchange correlation density
functional with double numerical basis sets plus polarization
functional (DNP) [3]. Using the B3LYP/6-31G (d) method, it
has been revealed that open-ended BN nanotubes can cleave
the N–H bond of ammonia via a two-step mechanism [11].

Numerous studies to date have focused on graphene-like
boron nanosheets because they are of similar interest as
graphene [12–14]. It has been shown that the B atoms cannot
form a honeycomb hexagonal nanosheet because of electron
deficiency [15]. In 2004, Piazza et al. [15] reported the syn-
thesis of a quasiplanar whole boron sheet with a central hex-
agonal hole. They found that this neutral B36 sheet is a highly
stable sheet with C6v symmetry, extension of which would
afford larger planar boron nanosheets with hexagonal vacan-
cies. Following this report, B36 borophene has attracted con-
siderable attention from the scientific community [16–18]. For
example, based on the DFT calculations, Liu et al. [17] have
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shown that metallized B36 borophene can serve as reversible
hydrogen storage. At the B3LYP level, the adsorption of CO,
N2, H2O, O2, H2 and NO molecules on B36 borophene has
been explored [18]. In this work, by performing DFT calcula-
tions at different levels and with different basis sets, we ex-
amine the potential application of B36 borophene as a metal
free NH3 splitter

Computational details

Energy predictions, transition state calculations and geometry
optimizations on a B36 and different NH2–B36–H complexes
were performed using B97D level [19] of theory with 6-31G
(d) basis set as implemented in the GAMESS suite of program
[20]. Vibrational frequency analysis was performed at the
same level of theory to confirm that all structures were in true
local minimum, and also to obtain thermodynamic data.
Molecular electrostatic potential (MEP) [21, 22], nuclear mag-
netic resonance (NMR), and natural bond orbital (NBO) anal-
yses were done at B97D level with the 6-311++G (d, p) basis
set. Also, the effect of different exchange correlation density
functionals and basis sets were explored.

We defined adsorption energy as:

Ead ¼ E NH2‐B36‐Hð Þ – E B36ð Þ – E NH3ð Þ ð1Þ

where E (NH2–B36–H) corresponds to the electronic energy of
the NH2–B36–H complex, E (B36) is the energy of the isolated
fullerene, and E (NH3) is the energy of a single NH3. The
HOMO–LUMO energy gap is defined as

Eg ¼ ELUMO‐EHOMO ð2Þ

where ELUMO and EHOMO are the energy of the lowest unoc-
cupied molecular orbital (LUMO and highest occupied mo-
lecular orbital (HOMO), respectively. The change in the
HOMO–LUMO gap, as an index of the electronic sensitivity

of the B36 toward the dissociative adsorption of ammonia, is
obtained by:

ΔEg ¼ Eg2‐ Eg1

� �.
Eg1

h i
* 100 ð3Þ

where Eg1 and Eg2 are, respectively, the value of Eg in the
initial and the final state.

Results and discussion

In Fig. 1, the optimized geometry of the B36 sheet indicates
that it is not completely planar and has a curvature that was
first synthesized and reported by Piazza and co-workers [15].
Five kinds of boron atoms can be detected on a trapezoid
shape (Fig. 1) based on B-11 NMR analysis. The calculated
NMR chemical shifts for B1, B2, B3, B4, and B5 atoms
(Fig. 1) are about 121.5, 120.9, 57.8, 91.4, and 86.1 ppm,
respectively. The structure includes a central hexagon with
C6v symmetry. This symmetry degenerates the energy levels
so that the HOMO and LUMO are two-fold degenerated
levels (Fig. 2), which lie at −5.12 and −4.01 eV, respectively.
Thus, the calculated HOMO–LUMO gap is about 1.11 eV at
B97D level of theory. The MEP maps (Fig. 1) show that inner
side of the sheet is much more negatively charged in compar-
ison to the outer side, hence the outer site will be more appro-
priate for a nucleophilic NH3 molecule attack. Different bonds
in the range of 1.59 to 1.75 Å exist, with B3–B4 and B4–B3
(Fig. 1) being the largest and shortest bonds, respectively.
Using PBE0/6-31G(d) level of theory, Piazza et al. [15]
showed that neutral B36 has perfect hexagonal symmetry
©6v), and is overwhelmingly stable relative to the closest-
lying isomers. They indicated that the shortest bond length
occurs between the six apex B atoms and their neighbors
(1.58 Å), while the remaining six peripheral B–B bonds are
slightly longer (1.67 Å). Based on our results, the vibrational
frequency modes are in the range of 108–1282 cm−1, indicat-
ing that B36 is in a true local minimum on the potential energy
surface.

Fig. 1 Optimized structure of B36 borophene and its inner and outer
molecular electrostatic potential maps. The surface is defined by the
0.0004 electrons b−3 contour of the electronic density. Color ranges (in

a.u.): blue more positive than 0.010, green between 0.010 and 0, yellow
between 0 and −0.010, red more negative than −0.010
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To explore N–H bond cleavage on the surface of
borophene, we investigated the feasibility of different cleav-
age from the standpoint of thermodynamics and kinetics.
Towards this aim, we first assumed that an NH3 molecule
dissociates into two fragments, –H and –NH2, attacking dif-
ferent B–B bonds. Figure 3 illustrates the four most stable
predicted complexes with positive frequencies. Among these
complexes, the most stable complex (A) is that in which the
ammonia molecule attacks the B3–B4 bond, and hydroge-
nates the B4 atom, retaining the –NH2 group on the B3 atom.
The adsorpt ion energy for this process is about
−42.7 kcal mol−1, demonstrating a favorable reaction. In the
second most stable complex (B), in contrast to complexA, the
B3 atom is hydrogenated and the NH2 group is attached to the
B4 atom with adsorption energy of −24.5 kcal mol−1. The
higher stability of complex A compared to B shows that the
nucleophilic –NH2 group tends to attach to the B3 atom be-
cause it is three-fold coordinated while the B4 atom is four-
fold coordinated. In the next most stable structure (C), the B1
atom is hydrogenated and the –NH2 group shifts on the B2–
B3 bond and forms a bridge with adsorption energy of about
−17.38 kcal mol−1. Upon the adsorption process, a strong
structure deformation occurs and the B1–B2–B3 fragment is
projected out. For complex (D) the adsorption energy is pos-
itive (+13.91 kcal mol−1), indicating that the complex forma-
tion is energetically unfavorable. In this complex, the ammo-
nia dissociates on the B atoms of central hexagon so that –
NH2 attaches to a B atom and –H shifts to the adjacent B–B
bond. Generally, complexes (C and D) in which the central
hexagon participates in the reaction are less favorable.

Here, we will focus on the energetically most stable com-
plex (A). In this complex, two new bonds including B–H and
B–NH2, are formed with bond lengths of 1.21 and 1.40 Å, and
Wiberg bonds index (WBI) [23] of 0.878 and 1.193, respec-
tively, showing a covalent nature of the bonds formed. After
the dissociative adsorption of ammonia, the B3–B4 bond was
broken, so the bond length increased from 1.59 to 1.94 and the
WBI from 1.137 to 0.534. The reaction yielding this complex
was accompanied by a decrease in entropy, so the ΔS is about
−0.034 kcal mol−1 K at room temperature and 1 Atm. Under
these conditions, the change in Gibbs free energy (ΔG) is
about −31.9 kcal mol−1, indicating a thermodynamically fa-
vorable reaction. The vibrational frequency modes were cal-
culated to be in the range of 46–3589 cm−1. The B–H and B–
N stretching modes appeared at 2579 and 1391 cm−1, respec-
tively, and the maximum vibrational mode belongs to the
asymmetric stretch of H–N–H. The dissociative adsorption
of ammonia significantly influences the electronic properties
of the B36 borophene, especially the HOMO level. After the
adsorption process, the LUMO does not change significantly
but the HOMO jumps sharply to higher energies by about
0.35 eV. This narrows the HOMO–LUMO gap by about
37 %, reducing from 1.11 to 0.69 eV. The HOMO–LUMO
gap is an important index in determining the electrical con-
ductivity and kinetic stability of semiconductors [24–30].

It is well known that several properties depend on the den-
sity functional used, and there is no universal exchange-
correlation density functional for all properties. Therefore,
we inspected the effect of different density functionals on
the energetic and electronic properties of B36 and complex
A. For this purpose, the calculations were repeated with four
Minnesota 06 functionals, including M06-L [31], M06 [32],

Fig. 2 The two-fold degenerated highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO) profiles of
B36 borophene

Fig. 3 Optimized structures of different H–B36–NH2 complexes
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M06-2X [32], and M06-HF [33], with 0, 27, 54, and 100 %
Hartree Fock (HF) exchange, respectively. The results in
Table 1 show that the HOMO, LUMO, and HOMO–LUMO
gap depend strongly on the type of density functional used. In
all systems, the HOMO and LUMO stabilized and
destabilized, respectively, upon increasing the %HF ex-
change, thereby increasing the HOMO–LUMO gap. For in-
stance, the HOMO, and LUMO of B36 against the %HF ex-
change of the functionals was plotted in Fig. 4, illustrating a
linear relationship.

Also, by growing the %HF exchange, the ΔEg value de-
creases (Table 1, Fig. 4). The ΔEg is a key value in the calcu-
lation of sensitivity of an adsorbent toward a chemical and in
estimating the semiconductor electrical transport [34–37].
Non-hybrid functionals (B97D and M06-L) predicts higher
HOMO and lower LUMO, thereby giving a smaller
HOMO–LUMO gap. The %HF exchange has quite a large
effect on the adsorption energy, so that by increasing the
%HF the adsorption energy becomes more negative. The dif-
ferent results are due to the charge delocalization error and
many self-interaction errors of approximate density func-
tionals [38]. Based on the adsorption energy dependency on
the %HF, it seems that the charge delocalization and self-

interaction errors are more stabilized than two separate NH3,
and B36 borophene more than the complex.

We also probed the effect of different basis sets, including
split-valence 6-31 + G(d), and 6-311++G(d,p), and
correlation-consistent cc-pVDZ, and cc-pVTZ at the same
B97D level of theory. The results in Table 2 show that enlarg-
ing the basis set by adding polarization or diffuse functions on
hydrogen or heavy atoms slightly influences the adsorption
energies, HOMO and LUMO levels, but it has no significant
effect on the HOMO–LUMO gap and its change upon the
adsorption process. The results of the correlation-consistent
basis sets are in good agreement with those of split-valence.
Generally, the results depend much more on the exchange
correlation functional than on the basis set.

In the next step, we have explored the kinetic possibility of
NH3 dissociation on the B36 borophene. With this aim, we
calculated the transition state structure using the synchronous
transit-guided quasi-Newton (STQN) method [39]. Our calcu-
lations show that the NH3 molecule moving toward the tube
has to overcome an energy barrier of 17.4 kcal mol−1 before
entirely breaking the N–H bond at the B36 edge. When the
reaction reaches the TS structure (Fig. 5), the H–NH2 bond is
lengthened from 1.028 Å (in single NH3) to 1.381 Å, and the
corresponding WBI decreased to 0.352, representing a

Table 1 The results of different
density functionals with 6-31G
(d) basis set for dissociation of
NH3 on B36 borophene.
Activation (Eact) and adsorption
(Ead) are in kcal mol−1, and the
unit of electronic properties is eV.
The Eg is HOMO–LUMO gap
and ΔEg is its change after the
adsorption of NH3

System Functional Ead Eact EHOMO ELUMO Eg ΔEg(%)

B36 M06-L (0)* − − −5.41 −4.16 1.25 −
M06 (27) − − −5.75 −3.49 2.26 −
M06-2X (54) − − −6.56 −3.23 3.34 −
M06-HF (100) − − −7.70 −2.48 5.22 −

H-B36-NH2 M06-L(0) −37.9 19.3 −5.05 −4.24 0.80 −35.6
M06 (27) −40.2 17.9 −5.39 −3.66 1.73 −23.5
M06-2X (54) −42.0 17.5 −6.16 −3.38 2.78 −16.7
M06-HF (100) −48.2 14.4 −7.25 −2.66 4.59 −12.2

*Numbers in parenthesis indicates the HF exchange percentage of density functional

Fig. 4 The HOMO, and LUMO of B36 against the %HF exchange of the
different functionals

Table 2 Results of different basis sets at B97D level for dissociation of
NH3 on the B36 borophene. Adsorption energy (Ead) is in kcal mol−1, and
the unit of electronic properties are eV. The Eg is HOMO–LUMOgap and
ΔEg is its change after the adsorption of NH3

System Basis set Ead EHOMO ELUMO Eg ΔEg(%)

B36 6-31+G(d) − −5.35 −4.25 1.10 −
6-311++G(d,p) − −5.39 −4.30 1.09 −
cc-pVDZ − −5.33 −4.23 1.09 −
cc-pVTZ − −5.37 −4.29 1.09 −

H-B36–NH2 6-31+G(d) −39.7 −5.02 −4.34 0.68 −38
6-311++G(d,p) −37.2 −5.06 −4.38 0.68 −38
cc-pVDZ −43.5 −4.97 −4.29 0.68 −38
cc-pVTZ −38.5 −5.04 −4.36 0.68 −38
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tendency for bond breaking. We predicted a strong negative
vibrational mode at −1598 cm−1, which corresponds to the
coordination of detaching the –H atom from the NH3 and
attaching to the B atom of B36. An animation of this mode is
provided in the Supplementary material, which can be viewed
with internet browser software.

The activation energy was calculated once again at the
M06-L, M06, M06-2X, and M06-HF levels. Figure 6 shows
a scheme of the reaction pathway for the dissociative adsorp-
tion of NH3 on the B36 borophene at these levels. The zero
energy level relates to the two reactants (NH3 and B36) being

infinitely far from each other. The results indicate that, similar
to the adsorption energy, the activation energy is lowered as
the %HF increases. This is attributed to a reduction in the
charge delocalization error in the separated species. It can be
expected that the dissociative adsorption of NH3 may be car-
ried out even at room temperature, according to the small
energy barrier and large adsorption energy.

Conclusions

Using DFTcalculations at B97D, M06-L, M06, M06-2X, and
M06-HF levels of theory, the dissociative adsorption of NH3

on the surface of a B36 borophene was investigated. It was
shown that this reaction may be carried out at room tempera-
ture, considering the small energy barrier of 14.1 kcal mol−1

and ΔG of −31.9 at B97D level of theory. The results reveal
that the adsorption and activation energies are decreased and
the HOMO–LUMO gap sharply increased by increasing the
%HF exchange. Also, we predicted a linear relationship be-
tween the HOMO or LUMO of B36 borophene and the % HF
exchange of functionals.
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