ORIGINAL PAPER

Charge transfer and first hyperpolarizability: cage-like radicals C₅₉X and lithium encapsulated Li@C₅₉X (X=B, N)

Feng-Wei Gao $^1 \cdot$ Rong-Lin Zhong $^1 \cdot$ Shi-Ling Sun $^1 \cdot$ Hong-Liang Xu $^1 \cdot$ Liang Zhao $^1 \cdot$ Zhong-Min Su 1

Received: 9 June 2015 / Accepted: 30 August 2015 / Published online: 14 September 2015 © Springer-Verlag Berlin Heidelberg 2015

Abstract Very recently, two new cage-like radicals ($C_{59}B$) and $C_{59}N$) formed by a boron or nitrogen atom substituting one carbon atom of C₆₀ were synthesized and characterized. In order to explore the structure-property relationships of combination the cage-like radical and alkali metal, the endohedral Li@C₅₉B and Li@C₅₉N are designed by lithium (Li) atom encapsulated into the cage-like radicals C₅₉B and C₅₉N. Further, the structures, natural bond orbital (NBO) charges, and nonlinear optical (NLO) responses of C59B, C59N, Li@C59B, and Li@C₅₉N were investigated by quantum chemical method. Three density functional methods (BHandHLYP, CAM-B3LYP, and M05-2X) were employed to estimate their first hyperpolarizabilities (β_{tot}) and obtained the same trend in the $\beta_{\rm tot}$ value. The $\beta_{\rm tot}$ values by BHandHLYP functional of the pure cage-like radicals $C_{59}B$ (1.30×10³ au) and $C_{59}N$ (1.70× 10^3 au) are close to each other. Interestingly, when one Li atom encapsulated into the electron-rich radical $C_{59}N$, the β_{tot} value of the Li@C₅₉N increases to 2.46×10^3 au. However, when one Li atom encapsulated into the electron-deficient radical C₅₉B, the β_{tot} value of the Li@C₅₉B sharply decreases to 1.54×10^2 au. The natural bond orbital analysis indicates that the encapsulated Li atom leads to an obvious charge transfer and valence electrons distribution plays a significant role in the β_{tot} value. Further, frontier molecular orbital explains that the interesting charge transfer between the encapsulated Li atom and cage-like radicals ($C_{59}B$ and $C_{59}N$) leads to

Hong-Liang Xu hlxu@nenu.edu.cn

Zhong-Min Su zmsu@nenu.edu.cn differences in the β_{tot} value. It is our expectation that this work will provide useful information for the design of high-performance NLO materials.

Keywords Alkali metal · Cage-like radical · Charge transfer · First hyperpolarizability · NLO

Introduction

Nonlinear optical (NLO) materials have developed quickly in the past several decades, because of their wide applications in optoelectronics and photonics field [1–7]. Much effort has been devoted to find important factors to enhance the NLO response for designing some new high-performance NLO materials. These strategies include extending π -electron systems [2], twisting π -electron systems [8, 9], changing the relative position of donor and acceptor [10–12], increasing push–pull effects [5], doping alkali metal into organic compounds [13–18] etc. So far, alkali metal endohedral fullerenes show remarkable NLO response owing to extensive π -electron conjugation along with charge delocalization. Recently, workers have reported the NLO response of Li@C₆₀Cl₈ [19] and Na@C₆₀C₆₀@F [20], which may be beneficial for further designing and synthesizing NLO molecular materials.

Research has made clear that all-carbon fullerene (C₆₀) strictly obey the isolated pentagon rule (IPR) [21], which avoids pentagon–pentagon contacts by surrounding each pentagon with five hexagons. So it is relatively stable and synthesizable. Recently, a large number of endohedral fullerenes have been reported, for example, C₆₀ endohedral complexes with ions F^- , Na⁺, Mg²⁺, Al³⁺ [22], atom Li [23–25], and Gd [26], or molecules LiF [27, 28], and NH₄Cl [29] etc. In addition, the cage-like radicals (C₅₉B and C₅₉N) have been achieved and reported, which have attracted wide attention in

¹ Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China

fullerene science [30–33]. An interesting question arises: how does the endohedral effect of cage-like radical fullerenes influence their nonlinear optical properties?

In order to answer this question, we have paid attention to the cage-like radicals ($C_{59}B$ and $C_{59}N$) and a new type of endohedral fullerene derivatives (Li@ $C_{59}B$ and Li@ $C_{59}N$) formed by encapsulating one Li atom into the cage-like radicals ($C_{59}B$ and $C_{59}N$). In the present work, the structures, natural bond orbital (NBO) charges, first hyperpolarizabilities, and frontier molecular orbitals of the four molecules are explored by using quantum chemical calculation. We hope the present work can provide new ideas for the design of new optical and photoelectric devices with high performances.

Computational details

The density functional theory (DFT) [34, 35] has been widely used to optimize the geometries of radicals and fullerene systems. In the present work, the optimized geometry structures of C₅₉B, C₅₉N, Li@C₅₉B, and Li@C₅₉N with all real frequencies have been carried out using the B3LYP functional combined with the 6-31G* basis set. On the other hand, considering relatively good accuracy and moderate computational costs, we have optimized the geometric structures of C₅₉B and Li@C₅₉B using the M05-class functional (M05-2X). It was found that the structure parameters calculated by the B3LYP functional are close to that calculated by the M05-2X functional (for more details see Table 1). Besides, NBO charges were also calculated at the B3LYP/6–31+G* level of theory.

In this work, to correct the basis-set superposition error in the bond energy calculation, the counterpoise (CP) correction was used. The interaction energy (E_{int}) [36, 37] was calculated at the B3LYP/6-31G* level according to Eq. (1),

$$E_{\text{int}}(AB) = E(AB)_{AB} - [E(A)_{AB} + E(B)_{AB}]$$
(1)

Table 1 The corresponding bond length (Å), bond angle(°) of $C_{59}B$,
Li@ $C_{59}B$ by two methods

	B3LYP		M05-2X	
	C ₅₉ B	Li@C ₅₉ B	C ₅₉ B	Li@C59B
B-C1	1.549	1.558	1.548	1.559
B-C2	1.525	1.505	1.527	1.449
B-C8	1.549	1.558	1.548	1.559
B-Li		2.221		2.189
C1-B-C2	118.6	117.0	118.7	117.0
C1-B-C8	106.3	104.4	106.3	104.1
С2-В-С8	118.6	116.8	118.7	116.9

where E_{int} is the difference between the energies of the Li atom (A) and C₅₉X (B) and the sum of the energies of the Li@C₅₉X(X=B, N) (AB).

Further, it is very necessary to choose a suitable method for evaluating their nonlinear optical properties. For a medium-size system, Champagne and Nakano pointed out that the BHandHLYP functional can reproduce the hyperpolarizability values provided by the more sophisticated single, double, and perturbative triple excitation coupled-cluster [CCSD(T)] method [38, 39]. In this work, the first hyperpolarizabilities were calculated at the BHandHLYP/6-31+G* level. In order to confirm the reliability and accuracy of this method, we also use the CAM-B3LYP [40] and M05-2X [41] methods to calculate the first hyperpolarizabilities. The results show that the β_{tot} values obtained by the CAM-B3LYP and M05-2X functionals are close to that obtained by the BHandHLYP functional. Therefore, the BHandHLYP functional is satisfactory for calculating the first hyperpolarizabilities of the four molecules.

The polarizability (α_0) is determined by:

$$\alpha_0 = \frac{1}{3} \left(\alpha_{xx} + \alpha_{yy} + \alpha_{zz} \right) \tag{2}$$

The first hyperpolarizability (β_{tot}) is determined by:

$$\beta_{tot} = \left(\beta_x^2 + \beta_y^2 + \beta_z^2\right)^{1/2} \tag{3}$$

In which

$$\beta_i = \beta_{iii} + \beta_{ijj} + \beta_{ikk}(i, j, k = x, y, z)$$
(4)

All calculations were performed by using the Gaussian 09 program package [42].

Results and discussion

Optimized geometries and interaction energies (E_{int})

The optimized geometric structures of the four molecules at the B3LYP level are presented in Fig. 1. When a boron or nitrogen atom substitutes one carbon atom of the pristine buckminsterfullerene, $C_{60}(I_h)$ cage, the models of cage-like radicals ($C_{59}B$ and $C_{59}N$) are formed. Further, the structures of Li@C₅₉B and Li@C₅₉N are obtained by encapsulating a Li atom into the cage-like radicals ($C_{59}B$ and $C_{59}N$). The corresponding geometric parameters are given in Fig. 2. The C-B-C bond angle of the cage-like radical $C_{59}B$ are in the range of 106.3–118.6°, which is close to the C-N-C bond angle of the cage-like radical $C_{59}N$ (107.2–118.8°). Significantly, after encapsulating one Li atom, the C-N-C bond angles of Li@C₅₉N

Fig. 1 The optimized structures of $C_{60,}$ $C_{59}B,$ $C_{59}N,$ $Li@C_{59}B,$ and $Li@C_{59}N$

(106.8–118.5°) are slightly larger than that of the Li@C₅₉B (104.4–117.0°). The bond lengths of the four molecules are clearly shown in Fig. 2. We can find that the C-B bond lengths of the C₅₉B and Li@C₅₉B are slightly larger than the C-N bond lengths of the C₅₉N and Li@C₅₉N. In addition, the Li-N distance of Li@C₅₉N is about 3.980 Å, which is larger than the Li-B distance of the Li@C₅₉B (2.221 Å).

To further evaluate the stabilities of the two molecules $(Li@C_{59}B \text{ and } Li@C_{59}N)$, we calculated the interaction energy (E_{int}) at the B3LYP/6-31G* level of theory with a counterpoise correction. The results are listed in Table 2, the E_{int} values of $Li@C_{59}B$ and $Li@C_{59}N$ are $-35.21 \text{ kcal mol}^{-1}$ and $-63.66 \text{ kcal mol}^{-1}$. This shows that the encapsulating one Li atom and the cages have strong attraction in the two molecules. Furthermore, the E_{int} value of $Li@C_{59}N$ is larger than that of the $Li@C_{59}B$, which demonstrates that $Li@C_{59}N$ is more stable. Numerous studies illustrate that the DFT method often underestimates the diffusion interaction [43, 44], which means that the actual E_{int} values of the two molecules should be larger

Fig. 2 The corresponding bond length (Å), bond angle(°) of $C_{59}B$, $C_{59}N$, $Li@C_{59}B$, $Li@C_{59}N$ at B3LYP/6-31G* level

Table 2 The natural bond orbitals (NBO) of important atoms and the interaction energies (E_{int} kcal mol⁻¹) of C₅₉B, C₅₉N, Li@C₅₉B, Li@C₅₉N

	C ₅₉ B	C ₅₉ N	Li@C59B	Li@C ₅₉ N
$q_{\rm B}$	0.702		0.527	
$q_{\rm N}$		-0.362		-0.369
$q_{\rm C1}$	-0.279	0.194	-0.269	0.223
q_{C2}	-0.250	0.200	-0.354	0.142
q_{C8}	-0.288	0.231	-0.287	0.237
$q_{ m Li}$			0.555	0.535
$E_{\rm int}$			-35.21	-63.66

than the calculated values. Thus, the corresponding stability is also better than the calculated results.

Natural bond orbital (NBO) analysis

The NBO charges were calculated at the B3LYP/6-31+G* level and the results are shown in Table 2. As we know, the $C_{60}(I_{\rm h})$ has no charge transfer due to its centrosymmetric structure. However, for the cage-like radicals C₅₉B, the charge of B atom is 0.702 and the negative charge mainly distributes three carbon atoms (C1, C2, C8) directly connected to the boron atom. Similarly, the charge of N atom is -0.362 and the positive charge mainly distributes three carbon atoms (C1, C2, C8) directly connected to the nitrogen atom in the cage-like radicals C₅₉N. Further, encapsulating one Li atom into the cage-like radicals (C₅₉B and C₅₉N), the charges of Li atom of Li@C₅₉B/Li@C₅₉N are 0.555/0.535, which indicates that the degree of ionization of lithium atom is almost equal in the two cages. Compared to the molecules without one Li doping, the charge of B atom becomes 0.527 in the Li@C₅₉B, while for $Li@C_{59}N$, the charge of N atom (-0.369) is almost no change. The results show that the transferred electron of the Li atom partially distributes to the boron atom in the $Li@C_{59}B$. For the $Li@C_{59}N$, the transferred electron of the Li atom almost distributes to the carbon fragments. According to the above analysis, the encapsulated Li atom is an important factor causing the variation in charge transfer.

Furthermore, how does electron distribution influence the nonlinear optical properties? For the pure cage-like radicals C₅₉B and C₅₉N, the singlet electrons mainly distribute to three carbon atoms (C1, C2, C8) directly connected to the boron or nitrogen atom. The β_{tot} values of the pure cage-like radicals C₅₉B (1.30×10^3 au) and C₅₉N (1.70×10^3 au) are close to each other. When one Li atom encapsulated into the cage-like radicals (C₅₉B and C₅₉N), the valence electrons of the Li atom almost distribute to the cage-like radical. The β_{tot} value of Li@ C₅₉N increases to 2.46×10^3 au. However, the β_{tot} value of Li@C₅₉B sharply decreases to 1.54×10^2 au.

Linear and nonlinear optical property

The polarizabilities (α_0) and the first hyperpolarizabilities (β_{tot}) of the four molecules (C₅₉B, C₅₉N, Li@C₅₉B, and Li@C₅₉N) were calculated by BHandHLYP, CAM-B3LYP, and M05-2X functionals and the results are listed in Table 3. It is clear that each method obtained the close α_0 values. In addition, the α_0 values of C₅₉B ($5.40 \times 10^2 - 5.44 \times 10^2$ au), C₅₉N ($5.45 \times 10^2 - 5.41 \times 10^2$ au), Li@C₅₉B ($5.35 \times 10^2 - 5.41 \times 10^2$ au), and Li@C₅₉N ($5.62 \times 10^2 - 5.68 \times 10^2$ au) are very close, which shows that the encapsulated Li atom has little effect on the polarizabilities.

According to Table 3 and Fig. 3, different methods obtained the same trend in the β_{tot} value, so we chose the results of the BHandHLYP for further discussion. The first hyperpolarizabilities of the cage-like radicals C₅₉B and C₅₉N are 1.30×10^3 and 1.70×10^3 au, respectively. At the same time, the β_{tot} values of the pure cage-like radicals C₅₉B (1.30×10^3 au) and C₅₉N (1.70×10^3 au) are close to each other. Further, when one Li atom encapsulated into electron-rich radical C₅₉N, the β_{tot} value of Li@C₅₉N increases to 2.46×10^3 au. However, when one Li atom encapsulated into electron-deficient radical C₅₉B, the β_{tot} value of Li@C₅₉B sharply decreases to 1.54×10^2 au. The results show that the encapsulated Li atom influences the static first hyperpolarizabilities sensitively.

Table 3 The polarizability (α_0 , au) and the first hyperpolarizability (β_{tot} , au) with BHandHLYP, CAM-B3LYP, and M05-2X methods, the difference of dipole moments ($\Delta\mu$, au) between the ground and excited

Fig. 3 The β_{tot} values of C_{59}B, C_{59}N, Li@C_{59}B, and Li@C_{59}N by three methods

The following two-level expression is employed to further understand the origin of the β_{tot} values [45, 46].

$$\beta_{tot} \propto \frac{\Delta \mu \cdot f_0}{\Delta E^3} \tag{5}$$

The β_{tot} value is proportional to the difference between the dipole moments of the ground state and the crucial excited state ($\Delta \mu$), the oscillator strength (f_0), and the inverse of the third power of the transition energy (ΔE). According to the

state, the oscillator strength f_0 , the transition energies (ΔE , eV), and the $(f_0 \cdot \Delta \mu)/\Delta E^3$ (au) values at the B3LYP/6-31G(d) level

		C ₅₉ B	C ₅₉ N	Li@C ₅₉ B	Li@C ₅₉ N
BHandHLYP	α_0	5.44×10^{2}	5.44×10^{2}	5.41×10^{2}	5.68×10 ²
	$\beta_{\mathbf{x}}$	1.75×10^{2}	-2.84×10^{2}	1.43×10^{2}	4.86×10^{2}
	$\beta_{\rm v}$	1.29×10^{3}	-39.53	18.74	1.09×10^{3}
	β_z	0.54	1.68×10^{3}	-52.43	2.15×10^{3}
	$\beta_{ m tot}$	1.30×10^{3}	1.70×10^{3}	1.54×10^{2}	2.46×10^{3}
M05-2X	α_0	5.40×10^{2}	5.41×10^{2}	5.35×10^{2}	5.62×10^{2}
	$\beta_{\mathbf{x}}$	1.96×10^{2}	-3.44×10^{2}	1.51×10^{2}	4.57×10^{2}
	$\beta_{\rm y}$	1.39×10^{3}	-43.03	28.03	1.15×10^{3}
	β_z	0.31	1.83×10^{3}	-45.28	2.03×10^{3}
	β_{tot}	1.40×10^{3}	1.87×10^{3}	1.60×10^{2}	2.38×10^{3}
CAM-B3HLYP	$lpha_{0}$	5.44×10^{2}	5.45×10^{2}	5.41×10^{2}	5.67×10^{2}
	$\beta_{\mathbf{x}}$	1.81×10^{2}	-3.13×10^{2}	1.57×10^{2}	5.27×10^{2}
	$\beta_{\rm y}$	1.23×10^{3}	-40.66	16.68	1.22×10^{3}
	β_z	0.30	1.74×10^{3}	-45.27	2.27×10^{3}
	$\beta_{ m tot}$	1.25×10^{3}	1.77×10^{3}	1.65×10^{2}	2.63×10^{3}
	f_0	0.0084	0.0136	0.0118	0.0357
B3LYP	ΔE	1.7294	1.7252	2.9530	1.5815
	$\Delta \mu$	0.58	0.48	0.34	0.56
	$(f_0 \cdot \Delta \mu) / \Delta E^3$	19.07	25.59	3.50	1.03×10^{2}

two-level model expression, the transition energy is the main factor in the first hyperpolarizability. The f_0 , ΔE , and $\Delta \mu$ for the four molecules are obtained by B3LYP/6-31G* level of theory. Firstly, as shown in Table 3 and Fig. 4, the β_{tot} value of the cage-like radical C₅₉B (1.30×10^3 au) is close to the β_{tot} value of the cage-like radical $C_{59}N$ (1.70×10³ au), the ΔE values of the two molecules are nearly 1.73 eV. Secondly, the β_{tot} value of Li@C₅₉N (2.46×10³ au) is obviously larger than that of the Li@C₅₉B (1.54×10^2 au), which is inverse to the ΔE values (1.5815 eV for Li@C₅₉N<2.9530 eV for Li@C₅₉B). Furthermore, the $(f_0 \cdot \Delta \mu)/\Delta E^3$ values of four molecules are shown in Table 3. As one can see, the order of the $(f_0 \cdot \Delta \mu) / \Delta E^3$ values is Li@C₅₉N (1.03×10²)>C₅₉N (25.59) \approx $C_{59}B$ (19.07)>Li@C_{59}B (3.50 au). The calculated results show that the interesting encapsulated Li atom effect on the first hyperpolarizability is well explained by the three main factors ΔE , f_0 and $\Delta \mu$.

Frontier molecular orbital analysis

Furthermore, the molecular orbitals of the considered transitions are shown in Fig. 5. Firstly, compared with the pure cage-like radicals $C_{59}B$ and $Li@C_{59}B$, the considered transition of radical $C_{59}B$ is the SOMO \rightarrow LUMO and the considered transition of $Li@C_{59}B$ is HOMO \rightarrow LUMO+3. For the pure cage-like radicals $C_{59}B$, the electron density of SOMO almost distributes to the $C_{59}B$ cage atoms excluding the boron atom. At the same time, the electron density mainly covers the boron atom and the neighboring carbon atoms in LUMO. On the contrary, for the $Li@C_{59}B$, the electron density of HOMO mainly covers the boron atom and the neighboring carbon atom. At the same time, the electron density almost distributes to the $C_{59}B$ cage atoms excluding the boron atom in LUMO+ 3. Secondly, compared with the pure cage-like radical $C_{59}N$ and $Li@C_{59}N$, the considered transition of the cage-like

Fig. 4 The relationship between first hyperpolarizabilities (β_{tot}) and the transition energy (ΔE) of C₅₉B, C₅₉N, Li@C₅₉B, and Li@C₅₉N

Fig. 5 The considered transitions and corresponding orbital energy (eV) for the four molecules

radicals $C_{59}N$ is the SOMO \rightarrow LUMO+3 transition and the considered transition of Li@C₅₉N is HOMO \rightarrow LUMO+2 transition. For the pure cage-like radicals $C_{59}N$, the electron density of SOMO mainly covers the nitrogen atom and the neighboring carbon atom, at the same time, the electron density almost distributes to the C₅₉N cage atoms excluding the nitrogen atom in LOMO+3. However, for the Li@C₅₉N, the electron density of HOMO almost distributes to the C₅₉N cage atoms and the electron density mainly covers the carbon atoms which are distant from the nitrogen atom in LUMO+2. As mentioned above, the interesting charge transfer between the encapsulated Li atom and cage-like radicals (C₅₉B and C₅₉N) explain that the first hyperpolarizabilities show differences.

Conclusions

In the present paper, we focus on exploring the structures, stabilities, NBO charges, frontier molecular orbitals, linear, and nonlinear optical properties of the four molecules. The above investigations show that the E_{int} values of Li@C₅₉B and Li@C59N are negative, which shows that the encapsulating one Li atom and cages have strong attraction in the two molecules. The natural bond orbital analysis indicates that the encapsulated Li atom leads to an obvious charge transfer and the valence electrons distribution plays a significant role in the β_{tot} value. Furthermore, frontier molecular orbital confirms that differences of the β_{tot} values can mainly be attributed to charge transfer between the encapsulated Li atom and cagelike radicals ($C_{59}B$ and $C_{59}N$). We used three DFT methods (BHandHLYP, CAM-B3LYP, and M05-2X) to calculate their first hyperpolarizabilities, and the three methods obtained the same order of the $\beta_{\rm tot}$ value. Firstly, the α_0 values of the four molecules are close. Secondly, the β_{tot} values of the pure cagelike radicals C₅₉B and C₅₉N are close to each other. Interestingly, when one Li atom encapsulated into the cage-like radicals C₅₉B and C₅₉N, the β_{tot} value of Li@C₅₉N increases. However, the β_{tot} value of Li@C₅₉B sharply decreases. It is clear that the encapsulated Li atom has a large contribution to the β_{tot} value. We hope the present work can provide a novel strategy for enhancing the first hyperpolarizability by altering the molecular structure, which may be beneficial to experimentalists for designing high-performance nonlinear optical materials.

Acknowledgments The authors gratefully acknowledge financial support from National Science Foundation of China (NSFC)(21473026), the Science and Technology Development Planning of Jilin Province (201201062 and 20140101046JC), the Computing Center of Jilin Province provided essential support and H.-L.X. acknowledges support from the Hong Kong Scholars Program (XJ2013007). And Project funded by China Postdoctoral Science Foundation 2014M560227).

References

- 1. Eaton DF (1991) Science 253:281-287
- Marder SR, Gorman CB, Meyers F, Perry JW, Bourhill G, Brédas J-L, Pierce BM (1994) Science 265:632–635
- Zhong R-L, Zhang J, Muhammad S, Hu Y-Y, Xu H-L, Su Z-M (2011) Chem Eur J 17:11773–11779
- 4. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195-242
- Coe BJ, Jones LA, Harris JA, Brunschwig BS, Asselberghs I, Clays K, Persoons A (2003) J Am Chem Soc 125:862–863
- Pavanello M, Jalbout AF, Trzaskowski B, Adamowicz L (2007) Chem Phys Lett 442:339–343
- Plaquet A, Champagne B, Castet F, Ducasse L, Bogdan E, Rodriguez V, Pozzo J-L (2009) New J Chem 33:1349–1356
- 8. Xu H-L, Li Z-R, Wu D, Ma F, Li Z-J, Gu FL (2009) J Phys Chem C 113:4984–4986
- 9. Xu H-L, Li Z-R, Wang F-F, Wu D, Harigaya K, Gu FL (2008) Chem Phys Lett 454:323–326
- Hrobárik P, Hrobáriková V, Sigmundová I, Zahradník P, Fakis M, Polyzos I, Persephonis P (2011) J Org Chem 76:8726–8736
- 11. Hrobárik P, Sigmundová I, Zahradník P, Kasák P, Arion V, Franz E, Clays K (2010) J Phys Chem C 114:22289–22302
- 12. Hrobarik P, Zahradnik P, Fabian WMF (2004) Phys Chem Chem Phys 6:495–502
- 13. Chen W, Li Z-R, Wu D, Li Y, Sun C-C, Gu FL (2005) J Am Chem Soc 127:10977–10981
- Xu H-L, Li Z-R, Wu D, Wang B-Q, Li Y, Gu FL, Aoki Y (2007) J Am Chem Soc 129:2967–2970
- Liu Z-B, Zhou Z-J, Li Y, Li Z-R, Wang R, Li Q-Z, Li Y, Jia F-Y, Wang Y-F, Li Z-J, Cheng J-B, Sun C-C (2010) Phys Chem Chem Phys 12:10562–10568
- Li Z-J, Wang F-F, Li Z-R, Xu H-L, Huang X-R, Wu D, Chen W, Yu G-T, Gu FL, Aoki Y (2009) Phys Chem Chem Phys 11:402–408
- Wu H-Q, Sun S-L, Zhong R-L, Xu H-L, Su Z-M (2012) J Mol Model 18:4901–4907
- 18. Gao Y, Wu H-Q, Sun S-L, Xu H-L, Su Z-M (2015) J Mol Model 21: 1–7
- 19. Wang L-J, Sun S-L, Zhong R-L, Liu Y, Wang D-L, Wu H-Q, Xu H-L, Pan X-M, Su Z-M (2013) RSC Adv 3:13348–13352
- Ma F, Li Z-R, Zhou Z-J, Wu D, Li Y, Wang Y-F, Li Z-S (2010) J Phys Chem C 114:11242–11247
- 21. Kroto HW (1987) Nature 329:529-531
- 22. Cioslowski J, Fleischmann ED (1991) J Chem Phys 94:3730-3734

- 23. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) Nat Chem 2:678–683
- Aoyagi S, Sado Y, Nishibori E, Sawa H, Okada H, Tobita H, Kasama Y, Kitaura R, Shinohara H (2012) Angew Chem Int Ed 51:3377–3381
- Fukuzumi S, Ohkubo K, Kawashima Y, Kim DS, Park JS, Jana A, Lynch VM, Kim D, Sessler JL (2011) J Am Chem Soc 133:15938– 15941
- Bolskar RD, Benedetto AF, Husebo LO, Price RE, Jackson EF, Wallace S, Wilson LJ, Alford JM (2003) J Am Chem Soc 125: 5471–5478
- 27. Hu YH, Ruckenstein E (2005) J Am Chem Soc 127:11277-11282
- 28. Cioslowski J (1991) J Am Chem Soc 113:4139-4141
- 29. Ma F, Li Z-R, Xu H-L, Li Z-J, Wu D, Li Z-S, Gu FL (2009) ChemPhysChem 10:1112–1116
- 30. Guo T, Jin C, Smalley RE (1991) J Phys Chem 95:4948-4950
- Pradeep T, Vijayakrishnan V, Santra AK, Rao CNR (1991) J Phys Chem 95:10564–10565
- 32. Chen F, Singh D, Jansen SA (1993) J Phys Chem 97:10958-10963
- 33. Muhr HJ, Nesper R, Schnyder B, Kötz R (1996) Chem Phys Lett 249:399–405
- 34. Hermosilla L, Calle P, García de la Vega JM, Sieiro C (2005) J Phys Chem A 109:1114–1124
- 35. Hermosilla L, Calle P, García de la Vega JM, Sieiro C (2005) J Phys Chem A 109:7626–7635
- 36. Alkorta I, Elguero J (1999) J Phys Chem A 103:272-279
- 37. Boys SF, Bernardi F (1970) Mol Phys 19:553–566
- Nakano M, Kishi R, Nitta T, Kubo T, Nakasuji K, Kamada K, Ohta K, Champagne B, Botek E, Yamaguchi K (2005) J Phys Chem A 109:885–891
- Champagne B, Botek E, Nakano M, Nitta T, Yamaguchi K (2005) J Chem Phys 122:114315
- Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425–8433
- 41. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2: 364–382
- Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, 42. Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant KN, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui O, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Ailaham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, revision A.02. Gaussian Inc, Wallingford
- 43. Shields AE, van Mourik T (2007) J Phys Chem A 111:13272– 13277
- 44. van Mourik T, Karamertzanis PG, Price SL (2006) J Phys Chem A 110:8–12
- 45. Oudar JL (1977) J Chem Phys 67:446-457
- 46. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668