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Abstract Protein folding is a fundamental topic in molecular
biology. Conventional experimental techniques for protein
structure identification or protein folding recognition require
strict laboratory requirements and heavy operating burdens,
which have largely limited their applications. Alternatively,
computer-aided techniques have been developed to optimize
protein structures or to predict the protein folding process. In
this paper, we utilize a 3D off-lattice model to describe the
original protein folding scheme as a simplified energy-optimal
numerical problem, where all types of amino acid residues are
binarized into hydrophobic and hydrophilic ones. We apply a
balance-evolution artificial bee colony (BE-ABC) algorithm
as the minimization solver, which is featured by the adaptive
adjustment of search intensity to cater for the varying needs
during the entire optimization process. In this work, we es-
tablish a benchmark case set with 13 real protein sequences
from the Protein Data Bank database and evaluate the

convergence performance of BE-ABC algorithm through
strict comparisons with several state-of-the-art ABC variants
in short-term numerical experiments. Besides that, our ob-
tained best-so-far protein structures are compared to the ones
in comprehensive previous literature. This study also pro-
vides preliminary insights into how artificial intelligence
techniques can be applied to reveal the dynamics of protein
folding.

Keywords Artificial bee colony . Numerical optimization .
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Introduction

Proteins are large biological molecules or macromolecules
consisting of amino acid residues that are connected by pep-
tide bonds [1]. Understanding the functional mechanism of
proteins, known as the building blocks of life, is essential in
biological sciences and presents an enormous impact on en-
zyme engineering pathology, medicine, and pharmaceutics
[2]. The folded structures of proteins in a cell provide the
information necessary for studying the functions of proteins
at the molecular level [3, 4].

Various experimental techniques have been developed to
identify protein structures [5]. Up to February 25, 2013, ap-
proximately 81,700 protein structures had been deposited in
the Protein Data Bank (PDB) database; most of these struc-
tures were determined using X-ray diffraction (88.8 %) and
nuclear magnetic resonance spectroscopy (10.5 %) [6]. How-
ever, strict laboratory requirements and heavy operating bur-
dens have limited the applications of the experimental tech-
niques, making it difficult to keep track of deposited structures
in the same pace of primary structures (i.e., amino-acid
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sequences) recovery [2, 3, 7]. In 2011, the number of experi-
mentally determined secondary/tertiary structures was two-
fold lower than the number of undetermined protein structures
[8]. Hence, computation-based techniques have been used to
optimize protein structures or to simulate protein folding
processes.

Protein folding in computational biology involves calculat-
ing protein conformation by arranging a sequence of basic
structural elements. Christian Anfinsen’s theory, which states
that all information needed to predict the native structure of a
protein is encoded in its primary sequence, has largely con-
tributed to the development in this research area [9, 10]. Re-
searchers [11, 12] have used this theory as a basis to analyze
native structures with minimal free energy. However, solving
such a problem remains challenging for complicated protein
models [13]. A key issue here is to what extent the trivial
mechanisms in protein folding should be omitted [14]. There-
fore, models with reduced complexity (e.g., [15–18]) have
been developed by utilizing parts of the protein properties to
avoid the large computational cost associated with an all-atom
model.

In the present study, an off-lattice model introduced by
Stillinger et al. [18] is utilized to simplify the protein folding
scheme. All the amino acid residues in a sequence can be
classified as hydrophobic or hydrophilic on the basis of the
K-D method [19]. These Bbinarized^ residues are connected
by unbendable but free-to-rotate chemical bonds. Considering
potentials among particles, we utilize a predefined criterion to
calculate the free energy of a given conformation. Assuming
that the native conformation of a protein is the most stable
structure with minimal free energy, we can simulate the pro-
tein folding process through minimizing the free energy
criterion.

The original protein folding scheme can be transformed
into a numerical optimization problem by using the off-
lattice model. Considering the NP-hard property of such opti-
mization problems [20], researchers have developed various
optimization techniques. For example, Kim et al. [13] pro-
posed a conformational space annealing optimizer, Zhang
et al. [21] a genetic tabu search algorithm, Chen and Huang
[22] a heuristic algorithm, Wang et al. [23] a chaotic artificial
bee colony algorithm, and Liang an annealing contour Monte
Carlo algorithm, among many others [24–44]. However, pre-
vious research studies have focused overly on developing op-
timization algorithms, leaving the original protein structure
folding mission ignored. In fact, large numbers of new
optimization methods are being proposed every day,
which outperform the relatively old ones. Therefore,
the impact of an optimizer is commonly not anticipated
to increase with time in the long run. In this sense, we
believe that research efforts should be exerted on the
concerned biological problem so as to make long-
lasting contributions.

Previous publications in this broad research area suffer
from three typical drawbacks from the authors’ viewpoint.
First is the lack of algorithm validation. Only the best-so-far
protein structure solutions were reported without sufficient
numerical experiments or theoretical analyses to support the
proposed optimization algorithm. Second is that artificial pro-
tein sequences (e.g., Fibonacci sequences) or real sequences
that are relatively short are considered in simulations. At this
point, ref. [27] indicated that real sequence formations are far
more realistic than those artificial ones, thus simulations on
the Fibonacci sequences cannot fully verify the efficacy of the
utilized optimization algorithm. Third is the lack of insights
into the biological problem: the protein folding mission is
regarded as a general numerical optimization problem and
few in-depth analysis or discussions about the obtained results
are attached. For the assistance of understanding, a list of the
aforementioned references is shown in Fig. 1. In addition to
the three common drawbacks mentioned above, the obtained
solution vectors were seldommade public among the previous
publications, rendering their calculated solutions impossible
to validate.

The present study aims to overcome the typical limitations
mentioned above. A balance-evolution artificial bee colony
(BE-ABC) algorithm [31, 45] is applied for protein structure
optimization. Compared with the conventional ABC algo-
rithm and other state-of-the-art variants, BE-ABC algorithm
utilizes parameters/variables in the algorithm framework as
guidelines to adaptively adjust search intensity. Moreover,
an overall degradation procedure is used to avoid premature
convergence. A benchmark case set for protein structure opti-
mization that focuses only on real protein sequences is sys-
tematically formulated. In addition to reporting the best-so-far
optimization results, we also strictly compare the short-term
convergence performance of BE-ABC algorithm to those of
some state-of-the-art ABC variants. Also, innovative insights

Fig. 1 Comprehensive review on the common drawbacks of
publications regarding protein structure optimization using off-lattice
models

261 Page 2 of 15 J Mol Model (2015) 21: 261



into the protein folding problem are presented. The details of
our optimized best-so-far structures are released for the con-
venience of validation.

The remainder of this paper is organized as follows: the
next section introduces the 3D off-lattice protein model, then
the principle of BE-ABC algorithm is briefly presented. Re-
sults are presented next followed by further discussions and
conclusions.

Three-dimensional off-lattice protein model

The off-lattice protein model was initially developed to con-
sider 2D folding problems and was extended to deal with 3D
scenarios where additional torsional energy contributions of
each bond are taken into account [14]. In the present study, a
3D off-lattice model is used to fold proteins in a relatively
flexible but nontrivial extent.

The remainder of this section concerns how a structural
protein can be uniquely determined by a set of bond/
torsional angle parameters and how the corresponding free-
energy value can be calculated.

Structure formulation

The off-lattice model is a coarse-grained one which holds the
viewpoint that the main driving forces to form protein struc-
tures are the hydrophobic interactions among amino acid res-
idues [18]. Thus, all 20 types of amino acid residues are clas-
sified as hydrophobic residues (amino acids I, V, L, P, C, M,
A, and G represented by letter BA^) and hydrophilic residues
(amino acids D, E, F, H, K, N, Q, R, S, T, W, and Y repre-
sented by letter BB^) [19, 25, 27]. All the AB-binarized amino
acid residues are sequentially connected by unit-length chem-
ical bonds to form a structural chain in the 3D space. This
subsection introduces how the unique structure of a chain with
N residues can be specified by (2N−5) angle parameters [θ1,
…,θN−2,β1,…,βN−3]1×(2N−5), which include (N−2) bond an-
gles and (N−3) torsional angles.

Locations of amino acid residues in the space are deter-
mined as follows [23]:

xi; yi; zið Þ ¼

0; 0; 0ð Þ i ¼ 1
0; 1; 0ð Þ i ¼ 2
cos θ1ð Þ; sin θ1ð Þ þ 1; 0ð Þ i ¼ 3

xi−1 þ cos θi−2ð Þ⋅cos βi−2ð Þ;
yi−1 þ sin θi−2ð Þ⋅cos βi−2ð Þ;
zi−1 þ sin βi−2ð Þ

0
@

1
A 4≤ i≤N

8>>>>>><
>>>>>>:

: ð1Þ

For normalization, the first three amino acid particles are
defined in the plane z=0. The locations of subsequent particles
(i.e., when i≥4) can then be calculated recursively. Specifical-
ly, the location of the ith particle is based on that of the (i−1)th

particle (i≥4). Figure 2 shows how the location of a protein
sequence AABA is determined by the angle vector [θ1,θ2,β1].

Free energy computation

Once a unique structure can be specified by a set of angular
parameters, the corresponding free energy of the protein struc-
ture can be calculated.

In the 3D off-lattice model, the free energy function Energy
can be defined as:

Energy θ1;…; θN−2; β1;…; βN−3½ �ð Þ ¼
XN−2

i¼1

1−cos θið Þ
4

þ 4
XN−2

i¼1

XN
j¼iþ2

ri j
−12−C ξi; ξ j

� �
ri j

−6� �
;

ð2Þ

where ξi reflects the binary property of the ith particle in the
sequence, rij denotes the distance between residues i and j in
the 3D space, and C(ξi,ξj) represents the interaction between
these two particles. If particle i is hydrophilic, then ξi=1; oth-
erwise, ξi=−1. rij and C(ξi,ξj) can be defined as follows:

ri j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x j
� �2 þ yi−y j

� �2
þ zi−z j
� �2r

: ð3Þ

C ξi; ξ j
� � ¼ 1

8
1þ ξi þ ξ j þ 5ξiξ j
� �

: ð4Þ

The free energy in Eq. (2) consists of two items that respec-
tively represent intermolecular interactions among residues
and intermolecular interactions between the peptide chain
and surrounding solvent molecules. The first sum in Eq. (2)
runs over the (N−2) angles θi∈(−180∘,180∘] of successive
bond vectors. This item represents the bending energy and
the coupling is ferromagnetic, i.e., it penalizes energy to bend
the chain [31]. The second item partially competes with the
bending barrier depending on the distance between nonadja-
cent particles along the chain [14].

One angle vector [θ1,…,θN−2,β1,…,βN−3] represents one
candidate structure and Energy([θ1,…,θN−2,β1,…,βN−3]) is
the corresponding free energy value, with θi,βj∈ (−180∘,
180∘] for any 1≤i≤N−2, 1≤j≤N−3.

In this way, an protein folding mission is transformed into a
constrained numerical optimization problem. Given a protein
sequence, we aim to find the optimal angle vector associated
with the minimal free energy value, i.e.,

θ1;…; θN−2;β1;…;βN−3½ �*

¼ arg min
−180∘< θi;β j<180∘

Energy θ1;…; θN−2; β1;…; βN−3½ �ð Þð Þ
	 


;

1≤ i≤N−2; 1≤ j≤N−3:
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The following section introduces BE-ABC algorithm to
search for that optimal solution.

BE-ABC algorithm

Consistent with Anfinsen’s theories of protein structure stabil-
ity when free energies of native protein structures are at their
lowest, this section focuses on how BE-ABC algorithm
searches for the solution with minimum free energy.

Motivations

The conventional ABC algorithm is a well-known swarm in-
telligence optimization method inspired by the foraging be-
havior of bees [46]. ABC algorithm is featured by the imple-
mentation of both local exploitation and global exploration
procedures during the optimization process [47]. However,
local search accuracy of the ABC algorithm is not satisfactory
[48], causing large numbers of remedies proposed for that
imperfection. Most of the proposed ABC variants have con-
sidered adjusting the local exploitation equations to achieve
good search intensity. To that end, three ways have been
prevailingly utilized: (i) to adopt a new principle from the
outside world (e.g., [23, 49, 50]), (ii) to integrate ABC with
other metaheuristics and (iii) to adjust the local search inten-
sity in a self-adaptive manner (e.g., [7, 45, 51]). Commonly it
is difficult to intuitively judge whether one ABC variant out-
performs another unless statistically significant results based
on comparative numerical experiments are available. Gener-
ally speaking, the absence of in-depth mathematical analyses
may have made this research area as prosperous as it is. In
contrast with the first two ways of modification, self-adaptive
ABC variants (i.e., methods based on the third way) are intu-
itively understandable (because no complicated outside-world
principles are involved) and remain the original framework of
the conventional ABC algorithm. On the other hand, one may Fig. 3 Flowchart of BE-ABC algorithm

Fig. 2 Schematic of 3D off-
lattice protein model for sequence
AABA (N=4): a Illustration of
how [θ1,θ2] affects protein
structure with β1=0; b Illustration
of how β1 effects protein structure
while [θ1,θ2] is temporarily fixed
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notice that the effect to execute a local/global search may be
different during different periods of the entire optimization
process, making it sensible to strike an intensity balance be-
tween a global search and a local one.

Adjusting the search intensity adaptively is considered in
BE-ABC algorithm. Specifically, when evolutions are made
with ease around one employed bee, the subsequent search
accuracy is intensified to expect further evolutions there. On
the contrary, when the search efficiency is bad there, the sub-
sequent search should be executed in a relatively wide scale.
Through this, it is possible that a global search appears local
and a local exploitation appears global. Then there is no longer
any clear gap between the global and local searches during the
evolutions. Since a balance between the global and local
searches is ideally expected, we name this proposal Bbalance
evolution^.

In more detail, BE-ABC algorithm is different from the
conventional ABC algorithm in two aspects. First, adaptively
changed multipliers are added in the global and global search
equations to manipulate the search intensity. Those multipliers
are determined on the basis of the optimization efficiency in a
current iteration. Second, the conventional re-initialization
procedure is improved by an overall degradation strategy,
which aims to re-initialize employed bees simultaneously dur-
ing one iteration (instead of re-initializing only one in each
iteration). In BE-ABC algorithm, the optimization efficiency
is evaluated through the unsuccessful trail attempts. In the
next subsection, the principle of BE-ABC algorithm is
presented.

Algorithm principle

BE-ABC algorithm involves three types of bees: unem-
ployed, employed, and onlooker. Unemployed bees
search in a fully random manner in space while
employed bees form a cooperative group to search in
a global manner. Onlooker bees follow Bqualified^
employed bees to exploit locally. A qualified employed
bee is one that finds a high-quality nectar source [31].
The location of a nectar source resembles a candidate
solution to the concerned free energy minimization
problem and the nectar quantity is evaluated by the
function Energy(⋅). Considering that the search space
(wherein all nectar sources exist) is not infinite, we
impose bounds on the solution vectors: let X=[θ1,…,
θN−2,β1,…,βN−3]1×(2N−5) represent a general candidate
solution, then Lb≤X≤Ub, where Ub and Lb denote
the upper/lower bound. In this current study, we have
Ub= (180∘,…, 180∘)1 × (2N − 5) and Lb= (−180∘ ,… ,−
180∘)1×(2N−5). To simplify the presentation, in the re-
maining of this paper, we refer to X as (X1,X2,⋯,XDim),
Ub as (U1,U2,⋯,UDim) and Lb as (L1,L2,⋯,LDim)
when Dim=2N−5. T
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A bee colony consists of SN bees, one half of which are
unemployed bees and the other half onlooker bees. Before the
optimization starts, those SN=2 unemployed bees are randomly
initialized in the search space. The following equation shows
how the jth element of the ith employed bee’s location Xi is
generated:

X j
i←Lj þ rand 0; 1ð Þ⋅ U j−Lj

� �
;

i ¼ 1; 2;…; SN=2; j ¼ 1; 2;…;Dim;
ð5Þ

where rand(0,1) denotes a random number (range of 0 to 1)
obeying uniform distribution. After the initialization
procedure, these unemployed bees directly become
employed bees. Then an iterative optimization process
gets started.

In each cycle of iteration, SN=2 employed bees try
new positions within the search space. The new posi-
tions are generated by sharing locations with each other.
For instance, the ith employed bee Xi is assumed at
(Xi

1,Xi
2,⋯,Xi

Dim) and the to-be-computed search location
Xi
∗ is denoted by (Xi

∗ 1,Xi
∗ 2,⋯,Xi

∗Dim). First, as many as
trial(i) out of all Dim dimensions in Xi are randomly
selected. trial(i) is an integral scalar (range of 1 to Dim)
associated with the ith employed bee, which is formally
introduced below. Second, the element of each selected
dimension is mutated through a crossover procedure.
The following equation shows how the ith employed
bee takes usage of the randomly chosen kth employed
bee’s location to update the jth dimension:

X * j
i←X j

i þ rand −1; 1ð Þ⋅ X j
k−X

j
i

� �
⋅

trial ið Þ
trial ið Þ þ trial kð Þ ;

k∈ 1; 2;…; SN=2
�
; k≠i:

� ð6Þ

When Xi
∗ is available, Energy(Xi

∗) is immediately com-
pared with Energy(Xi). When Energy(Xi

∗)<Energy(Xi), the
ith employed bee flies to the new location X∗, i.e., Xi is

updated as Xi
∗. In addition, trial(i) should be reset to 1. When

Energy(Xi
∗)≥Energy(Xi), the ith employed bee remains at Xi

but trial(i) adds one. Based on the principle by which the
principle trial(i) is calculated, it is notable that trial(i)
records the consecutive unsuccessful trial attempts of
the ith employed bee.

When all the employed bees have updated their locations,
onlooker bees act accordingly. A roulette selection procedure
guides those SN=2 onlooker bees to choose qualified employed
bees to search around. A probability index P is calculated
according to Eqs. (7) and (8) to reflect the search quality of
the employed bees [46].

P ið Þ ¼ fitness ið ÞX SN=2fitness jð Þ; i¼1;2;…;
SN=2;

j¼1

ð7Þ

fitness ið Þ ¼
1

1þ Energy Xið Þ if Energy Xið Þ ≥ 0

1−Energy Xið Þ if Energy Xið Þ < 0
:

8<
: ð8Þ

Let’s take the ith onlooker bee for example to see how its
search location can be generated. In order to find an employed
bee to follow around, a comparison is made between rand(0,
1) and P(1) first. When P(1)≥rand(0,1), the ith onlooker bee
will search around the first employed bee; otherwise, an addi-
tional comparison between rand(0,1) (another random num-
ber this time) and P(2) is performed. If all the P(j)
j ¼ 1; 2;…; SN=2Þð happen to be smaller than rand(0,1), the
process is repeated from the beginning P(1) again until one
P(j) that satisfies P(j)≥rand(0,1) is finally found. That finally
found jth employed bee is chosen by the ith onlooker bee to
search around.

Contrary to the employed-bee phase, the crossover and
mutation process involves only one (randomly chosen) di-
mension of the onlooker bee’s solution vector. The following
equation shows how the ith onlooker bee utilizes the mth

Fig. 4 Convergence curves of
BE-ABC and other ABC variants
when tested on case 1CB3 (Dim=
21, SN=40, andMCN=5000)
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employed bee to generate a new search location around the jth
in the kth dimension:

Yk
j←X k

j þ rand −1; 1ð Þ⋅ X k
m−X

k
j

� �
⋅

trial jð Þ
trial jð Þ þ trial mð Þ ;

m∈ 1; 2;…; SN=2
�
; m≠ j:

� ð9Þ

When the location of the onlooker beeYi=(Xj
1,…,Xj

k− 1,Yj
k,

Xj
k+1,…,Xj

Dim) is determined, Energy(Xj) and Energy(Yi) are
compared. When Energy(Yi)<Energy(Xj), the jth employed bee
updates its current location Xj as Yi. Also, trial(j) is reset to 1.
When Energy(Xj)<Energy(Yi), trial(j) adds one. When all the
onlooker bees have tried around their chosen employed bees, a
re-initialization phase at the end of each iteration is followed.

Two things should be accomplished in the re-initialization
phase. First, any trial(i) that exceeds Dim is set to Dim. Sec-
ond, a criterion (i.e., 2

SN ∑
SN=2trial ið Þ
i¼1 ) is proposed to reflect the

overall optimization efficiency and is compared with αodr⋅
Dim, where αodr∈(0,1) is a user-specified threshold. When
αodr⋅Dim < 2

SN ∑
SN=2trial ið Þ
i¼1 , the entire employed bee swarm is consid-

ered not working efficiently to a degree of αodr. Then, (100α-

odr)% randomly chosen employed bees directly become

unemployed bees, which will turn to employed bees at the
beginning of the next iteration. The corresponding trial indi-
ces are reset to 1. When αodr⋅Dim≥ 2

SN ∑
SN=2trial
i¼1 ið Þ, the current iter-

ation cycle is directly terminated.
When the iteration number reaches a user-specified thresh-

old MCN, the entire optimization process is accomplished. A
flowchart of BE-ABC algorithm is depicted in Fig. 3.

Results

We systematically design a series of simulations on real pro-
tein sequences (Table 1) that originated from the PDB data-
base. All simulations involved in this section were carried out
in a Matlab R2011b environment and executed on an Intel
Core 2 Duo CPU with 2 GB RAM running at 2.53 GHz under
Windows XP. In this work, αodr is set to 0.9.

In this section, first, the convergence performance of BE-
ABC algorithm is evaluated by comparing it to several ABC
variants in short-term numerical experiments. Second, our
best-so-far solutions optimized by BE-ABC algorithm are

Fig. 6 Convergence curves of
BE-ABC and other ABC variants
when tested on case 2EWH
(Dim=191, SN=40, and MCN=
20000)

Fig. 5 Convergence curves of
BE-ABC and other ABC variants
when tested on case 1TZ5 (Dim=
69, SN=40, andMCN=5000)
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compared to the ones published in previous works. Third, the
dynamic process of protein folding is preliminarily investigat-
ed through case studies.

Comparison of optimization performance among ABC
variants

The convergence performance of BE-ABC algorithm is evalu-
ated on all 13 real sequences. In order to show its advantage, BE-
ABC algorithm was compared to the conventional ABC algo-
rithm and its state-of-the-art variants, namely an improved ABC
(I-ABC) [51], Gbest-guided ABC (Gbest-ABC) [48], chaotic
ABC (C-ABC) [23], and internal feedback ABC (IF-ABC)
[7]. In each of the 13 cases, the mentioned algorithms were
tested repeatedly for 30 times under the condition that SN=40.
MCN was set to 5000 for relatively short sequences and 20,000
for sequences withmore than 85 amino acids. Figures 4, 5, and 6
depict the evolutionary curves in three representative cases
(which represent short, medium and long sequences respective-
ly). Results of all these cases are collected in Table 2.

Comparison of structures optimized by BE-ABC
algorithm with previous literature

This subsection compares the best-so-far structures optimized
by BE-ABC algorithmwith the structures reported in previous
publications. Table 3 lists the lowest free energy values for the
concerned 13 sequences obtained using different optimization
techniques. Figure 7 illustrates the structures obtained using
our BE-ABC algorithm. Details of the optimized structures
are provided in Table 4.

Folding process investigation

During the optimization process wherein BE-ABC searches
for the lowest free energy, lower and lower values are sequen-
tially obtained. Therefore, how the protein structure
Bmigrates^ during the optimization process can be observed,
which may reveal critical insights into the protein folding
process that occurs in nature.

Simulations were conducted on sequences 1BXL and
1AGT as examples. The results are depicted in Figs. 8 and 9.

Discussion

In this section, the simulation results shown in the preceding
section are further analyzed.

Performance of BE-ABC algorithm

Through a comprehensive set of short-term numerical exper-
iments, the optimization performance of BE-ABC algorithm T
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is compared to other state-of-the-art ABC variants. The col-
lected data in Table 2 indicate that BE-ABC algorithm outper-
forms the other ABC variants.

As depicted in Figures 4, 5, and 6, the evolution processes
of BE-ABC algorithm do not remain the best among all six
ABC variants in some early iterations. The origin of the

Table 3 Comparative results of the lowest free energy values for 13
sequences achieved by an improved particle swarm optimization (I-PSO)
algorithm [25], a hybrid optimization that combines PSO, genetic

algorithm (GA), and Tabu search (TS) named PGATS [35], a multiple-
populations GA-PSO (MPGPSO) algorithm [37], ABC algorithm [36],
GA-based TS (GATS) algorithm [21, 27], and our BE-ABC algorithm.

PDB ID BE-ABC I-PSO [25] PGATS [35] MPGPSO [37] ABC [36] GATS [27] GATS [21]

1CB3 −8.4580 – – – – −8.2515 –

1BXL −15.9261 – – – – – −15.8246
1EDP −13.9276 – – – – – −13.7769
2H3S −18.3299 – – – – −18.1640 –

2KGU −28.1423 −20.9633 −32.2599 – −31.9480 – –

1TZ4 −39.4901 – – – – −39.3444 –

1TZ5 −45.3233 – – – – −45.3019 –

1AGT −51.8019 – – – – – −46.0842
1CRN −54.7253 −28.7591 −49.6487 −43.9339 −52.3249 – –

1HVV −47.4484 – – – – – –

1GK4 −49.4871 – – – – – –

1PCH −91.3508 −46.4964 −49.5729 −38.2766 −63.4272 – –

2EWH −146.8231 – – – – – –

The bold values denote the best results (lowest free-energy value) for each case

Fig. 7 Best-so-far conformation produced by BE-ABC algorithm for a 1CB3; b 1BXL; c 1EDP; d 2H3S; e 2KGU; f 1TZ4; g 1TZ5; h 1AGT; i 1CRN; j
1HVV; k 1GK4; (l) 1PCH and (m) 2EWH

J Mol Model (2015) 21: 261 Page 9 of 15 261



problem might come from the following aspects of the algo-
rithm. First, intuitively speaking, global search should be en-
hanced in the early iterations when evolutions are easy to
make. During that period, elements in the trial vector are
relatively small, yielding the global search scale of BE-ABC
algorithm generally smaller than that of the conventional ABC
algorithm under the same circumstance. In a simple instance
with trial(i)=trial(k)=1 regarding Eq. (6), the search scale
determined by BE-ABC algorithm shrinks to half of that de-
termined by the conventional ABC algorithm.When trial(k) is
larger, the shrink becomes severer, which is not good for a
global search. Thus the evolution processes based on BE-
ABC algorithm commonly lag at the very beginning. Due to
the same reason, when making an evolution is not that easy,
the benefit of utilizing gradually emerges and that is why BE-
ABC algorithm usually catches up with its competitors in the
later iterations. The second aspect concerns the overall degra-
dation strategy. Unlike that in the conventional ABC algo-
rithm, BE-ABC algorithm requires that part of the employed
bees re-initialized all at once, which happens under some cer-
tain circumstance, which is not likely to happen in the early

iterations. In contrast, ABC algorithm re-initializes the
employed bees one after another when they are judged as
inefficient. In other words, the re-initialization procedure in
BE-ABC algorithm seldom works during the early iterations.
This may cause differences among the evolution curves. How-
ever, re-initializing the employed bees one after another (in the
conventional ABC algorithm) is not efficacious when evolu-
tions are difficult to make or when SN is set large. The long-
lasting convergence performance (based on efficient re-
initialization ability) of BE-ABC algorithm is clearly illustrat-
ed, especially in Fig. 6.

Moreover, Table 2 shows that BE-ABC algorithm usually
consumes less time than IF-ABC and C-ABC algorithms do.
This is because BE-ABC algorithm neither adds complicated
outside-world strategy nor changes the conventional algo-
rithm framework.

Performance of the optimized best-so-far structures

The best solutions obtained through BE-ABC are compared
with those presented in previous literature. The blanks in

Fig. 8 Folding simulation on case 1BXL

Fig. 9 Folding simulation on case 1AGT
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Table 3 indicate that more cases than those in previous studies
have been considered in this present study. In fact, the compar-
ative studies listed in Table 3 constitute all the relevant studies
that can be found, to the best of our ability. In nearly all of the
cases, BE-ABC algorithm clearly outperforms its competitors.

Here, curious readers may ask how the best solutions were
computed. It is a Bmystery^ how the best solutions in most of
the previous publications were computed. In fact, there is not a
unified standard that all the publications had followed to gen-
erate the best solutions. In our work, we terminated the opti-
mization process when there had been no evolution for up to
5,000,000 consecutive iterations.

Although in some cases our obtained free-energy values
are slightly lower than previously published ones, the opti-
mized structures are completely different. The best-so-far
structures reported in refs. [21] and [27] for cases 1CB3,
1BXL, and 1EDP are depicted in Fig. 10. Also in that figure,
an index ΔE is utilized to reflect the error between their re-
ported free energy and ours; another root of mean square error
index RMSE (defined in Eq. (10)) measures the difference
between two concerned solution vectors.

RMSE X;Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dim

X Dim

i¼1
X i−Y ið Þ2

	 
s
; ð10Þ

where X=[X1,X2,…,XDim] and Y=[Y1,Y2,…,YDim].
Commonly in a natural protein structure, the hydrophobic

residues tend to form a core with a minimum surface area that
encounters water molecules. Thus such a hydrophobic core
tends to be surrounded by hydrophilic residues so as to pre-
vent encountering water molecules outside. In Fig. 7 (where
the light-colored particles reflect hydrophobic residues while
those dark-colored ones reflect hydrophilic residues), that
characteristic appearing in nature can be reflected in nearly
all of the simulated cases.

Performance of off-lattice model

In this research study, we have also investigated the
protein folding process which is expressed on the basis

of the off-lattice model. Assuming that the structure
optimization process is the natural process for a protein
structure to be folded, we observe that all the hydro-
phobic residues gradually assemble to become one cen-
tral core surrounded by hydrophilic residues in cases
1BXL and 1AGT.

Although the off-lattice model roughly classifies
all the amino acids in a sequence into two groups,
some critical characteristics during the natural folding
process can be observed in our artificial optimization
process, possibly providing an initial guess for pro-
tein folding simulat ion with more complicated
models.

Conclusions

In this paper, we have investigated protein folding opti-
mization on the basis of a coarse-grained mode (i.e., the
3D off-lattice model) and an improved ABC algorithm.
The underlying contributions of this paper are summa-
rized as follows.

First, this work presents an application of a relatively
new metaheuristic optimization technique. The optimiza-
tion performance of BE-ABC algorithm is comprehen-
sively evaluated by comparing it with several state-of-
the-art ABC variants.

Second, 13 real protein sequences, rather than ar-
tificial sequences, are chosen for optimization. To the
best of our knowledge, none of the previous works
have conducted simulations in such a comprehensive
manner. The simulated protein sequences and obtain-
ed optimization results form a benchmark case set,
which can be used as a standard set by future
researchers.

Last, the protein folding process is investigated on
the basis of the off-lattice model through a viewpoint
of evolution. Previous studies used their concerned
optimization techniques to solve a numerical problem
but quite few of those studies further investigated the

Fig. 10 Best-so-far structures
optimized by GATS algorithm: a
for case 1CB3; b for case 1BXL;
c for case 1EDP. In each case,ΔE
denotes the error between free
energies obtained by GATS and
BE-ABC. The RMSE index
reflects how close two structures
optimized by BE-ABC andGATS
are
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efficiency of the off-lattice model. Simulation results
in this study indicate that the off-lattice model pro-
vides a rough estimation of the folding process of
proteins.

Investigations about how the optimized results benefit the
area of molecular biology should be made through future
studies. Effects are also needed to measure how close the
optimized structures are to the existing ones in the PDB data-
base and to reveal more details about the protein folding
process.
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Appendix

Table 4 Best-so-far solution optimized by BE-ABC algorithm

PDB ID Solution vector

1CB3 −14.0618, 24.7751, −37.4574, −10.2442, 20.8918, 14.3826, 0.0344, 22.7245, 71.7223, −26.6440, −4.9327,
−21.2546, −149.5309, 171.7070, 176.4815, 176.4340, 89.9305, 3.0125, −32.8040, 28.5409, 2.4127

1BXL −23.9894, −102.7314, −3.2272, −5.4584, 0.0727, 28.2955, 45.9967, −2.5259, 60.9520, 67.4231, 161.0594,
67.5692, 0.0288, 27.4589, −53.3614, −60.4171, 26.3909, 113.2205, 152.2952, 37.0642, 167.7646, −169.6191,
136.4026, 177.8383, −17.0115, 87.2334, 155.4952

1EDP −22.9111, 18.2597, 79.1534, 35.3602, −8.2222, −8.6311, 22.0229, 25.7423, −0.2752, 0.1581, 39.3589, −26.6495,
36.4065, −80.1681, 89.5273, 38.9650, 145.9329, −141.4454, −84.7010, −76.9813, −126.1700, 136.2198, 88.6941,
95.9751, 145.3596, 35.9802, −27.0676, −29.0454, −37.9873

2H3S 56.3676, −27.8037, 62.0377, 0.5187, 1.0712, 94.4369, 63.5028, 13.0689, −82.9610, −24.1770, −74.1721, −8.2340,
46.0441, −54.2720, −33.8035, −34.7444, 36.7134, −62.5235, −24.3748, 18.6261, 41.7080, −81.0016, −25.0891,
5.0992, 171.9440, 133.3680, 84.1103, 140.9098, 133.4524, −134.8044, −133.4496, −66.8584, 32.2283, 50.2538,
−39.0348, −121.7507, −25.4591, −139.5654, 158.7352, 26.0329, 57.6732, 48.8666, −51.6648, −8.2943, −124.7090

2KGU −21.8634, −82.1474, −20.4767, −31.8675, 19.7468, 45.8982, −13.9909, 83.0446, 96.7560, −7.8566, −25.2354,
103.6728, −101.1429, 80.5692, −101.6640, 5.5789, −85.8154, −62.8431, 12.2646, −46.3197, 94.6380, −7.0008,
−27.7652, −65.9529, 56.7320, −14.0602, 85.2909, −27.0873, 0.1473, −30.9119, −42.7890, 35.0373, 13.1556,
28.7092, 52.1369, 34.4259, −32.7349, −151.3791, 70.2779, −35.3470, −45.5690, 28.6629, 28.1801, 33.9151,
153.1775, 118.6225, −36.0729, −65.1601, −24.4103, 156.0928, 33.2109, 22.1670, −6.4856, 107.0941, −1.5942,
48.9682, −26.7827, 36.6497, 161.8515, −87.2386, −55.3366, −14.6302, −176.6925

1TZ4 −14.7019, 64.8802, −16.5290, −29.9987, 22.4011, −1.1015, 21.1064, 79.4800, −117.8403, −112.5468, 73.6780, −3.6188,
−31.2753, 20.4495, 6.9570, 25.9656, 9.6939, −79.9026, 12.0103, −37.0138, −9.7200, 81.3474, 162.9115, 116.2320,
11.2949, −29.7690, 109.2367, −1.2398, 0.9434, −31.3814, 16.1091, 30.7287, −87.6773, −10.3117, 17.4046, −30.3043,
−170.3973, −66.1578, −161.4577, 113.4954, 130.5740, 148.5034, 120.3430, −154.0686, −60.0036, −141.5332,
−109.0243, −15.0149, 69.8330, 55.6446, 8.9491, 40.5354, −177.8266, 171.7074, 155.2177, −130.3283, 11.2923,
−23.7099, −2.7977, −20.9224, −41.0206, 11.3730, 91.8050, 150.6533, 121.9906, −158.9056, −148.1879, −101.5477,
2.9887

1TZ5 −21.5509, −50.6901, −19.9966, 78.0566, −53.4513, −106.9051, −174.9670, −133.1228, −27.9993, 38.3999, −54.8007,
−141.8863, 4.5882, −47.9745, 33.4699, −115.0175, 48.8074, 20.5984, −6.3313, 33.0176, 65.4813, 34.2962, 178.3703,
38.0308, −25.9016, −17.7960, 61.1886, −3.8905, −64.6424, 11.4757, −1.1819, 11.9522, 35.3380, 1.5420, −43.5413,
55.2521, 173.3674, 48.4508, 173.2151, −58.1362, −160.4915, −174.3564, −82.2771, −174.7100, −57.7204, 26.4959,
−107.9280, 175.4451, 70.0877, −173.8045, 10.4306, 43.0849, 110.4102, −154.1437, −161.6427, 178.4970, 21.7039,
115.1081, 30.5950, −11.2696, 171.0239, −53.3141, −154.9870, 176.5773, −93.0401, −10.8202, −116.9664, −83.6263,
172.1319

1AGT −2.3116, −132.9355, −152.9745, 116.2728, −167.8692, 36.3193, −62.0157, 5.2481, 117.0098, −69.7927, 44.8072,
−44.9432, −94.6170, 62.4969, −40.0646, −86.2814, −6.3002, −1.2781, −9.5921, 140.6445, −79.9387, −80.5554,
−3.9163, −78.2688, 89.3200, −21.3175, −0.9789, 7.4211, 5.1962, 135.7684, 2.8577, 48.7351, 28.6067, −67.0007,
58.9994, −42.7972, −53.5891, −47.1174, 30.9531, −2.6463, 69.1991, −163.3194, 2.2289, 45.7841, 20.5006, 22.4734,
−58.3811, −72.5963, −23.9633, 46.2442, −33.4880, −30.9297, 57.2125, 142.8207, 42.3729, 13.2871, −5.9342,
29.4574, 158.4325, 50.0175, −133.9704, −47.8558, −14.5316, −66.0909, −5.3917, 151.4913, 35.8287, 152.2362,
−173.6238, −138.2699, 172.5047

1CRN 74.6273, 2.8197, 159.4046, 91.7786, −14.3079, −7.4513, 4.3412, 142.2140, 166.4528, 30.6291, 71.2766, −19.6545,
−28.1067, −1.9392, 29.1772, 59.4027, −96.1102, −44.7633, −47.9253, 61.3879, −19.8284, −51.2245, −21.6517,
−41.5195, 54.1117, −100.4569, −66.7062, −4.0724, 31.3876, 51.7816, −13.2873, 55.6203, −31.8552, 18.6697,
−100.6095, 50.6588, −12.4137, −3.7499, −106.7324, 15.1948, −29.6233, 14.9463, 10.0778, −22.7216, −87.1945,
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Table 4 (continued)

PDB ID Solution vector

18.8110, −23.0831, 27.3022, 68.4818, −178.3041, −6.3629, −13.3074, −55.6663, 42.4080, −14.7205, 23.9507,
31.3978, −47.5298, −166.6089, 2.0765, 39.2503, −14.3898, 10.3680, −94.5755, 152.5378, 123.2597, 36.1458,
−32.3986, −171.6447, 175.2720, −78.1063, −68.8631, −8.0533, −170.4521, −157.7137, −70.8431, 35.3547,
−177.0941, −117.2142, −160.2187, 84.3092, 148.4590, −66.2448, −130.8496, −168.2827, −100.1141, 6.0774

1HVV 80.6908, −50.5238, 30.4070, −51.0668, 25.2822, 6.1210, −50.8016, 0.4894, 68.6584, 14.2372, −59.3433, −172.4218,
15.0704, 65.2936, 159.7749, 26.0839, −100.6799, 28.5089, −1.6451, −6.8137, 22.8042, −90.4714, 15.4533, 57.6816,
−9.7989, −49.6702, 35.6463, −76.7221, 25.5995, −51.9401, −26.5090, 62.4642, 33.4776, 161.0594, −117.9189,
−154.3733, −39.2689, 36.3216, −68.0224, 11.1980, 17.5177, −30.3917, 35.7225, 12.9786, 19.5005, 3.5806, 20.7122,
−132.8711, 7.2817, −167.2517, 18.8807, −78.0814, −14.4544, −34.9323, 11.7969, −57.2538, 21.1423, 54.0009,
3.5195, −54.4489, 2.1415, 38.4551, −8.4623, 144.5103, 24.5351, 33.2396, −6.4086, −78.8046, 174.9484, 1.5930,
28.1424, 9.5056, −54.1250, 170.7820, −174.8209, −33.8289, 177.1698, 97.0941, 166.9026, 55.7014, 175.9118,
67.7849, 58.1494, 174.5629, −83.8023, 162.5864, −58.8373, −73.0339, 155.9237, −29.3007, 67.6176, −16.2332,
−107.3964, 23.8396, 110.4114, 162.7966, −97.6016, 14.6544, 4.8662, −1.1012, −123.5701, −36.9214, 74.8656,
−24.7145, −3.4225, −162.2034, 12.4995, −9.8740, −26.4676, 152.7539, 117.5263, 74.2509, 162.1538, −117.3443,
154.0370, −137.8483, −117.6415, −104.3963, −1.0420, 121.8787, 9.0743, −114.3532, −133.1037, −54.1915,
−41.0200, 61.4201, 128.1850, 111.7726, 83.7646, 129.3614, 85.8994, −12.5094, 8.1339, −24.0536, −94.8778,
−2.5177, 108.1601, 53.6906, 149.2220, 5.0216, 23.1824, 88.4716, −15.7221, −30.1273, −36.9809

1GK4 −21.6894, −14.3276, 48.8168, −45.4543, −1.0648, −124.2028, 37.9826, 66.3801, 22.9687, 5.5179, −27.2564,
65.3296, −153.3232, −16.5857, −8.6788, −91.1073, 16.0011, 12.8929, 30.0995, 2.2852, −63.3065, 39.8721,
9.3686, 27.5157, −0.3128, −20.2697, −45.9781, 6.7297, 4.4989, −6.0233, −96.5715, 13.9484, −90.3138,
−62.4654, 44.0272, 102.3733, −66.8061, −23.1234, 6.7663, 30.5414, 3.7864, 3.2423, 0.5144, 12.4356, 6.1785,
−12.1507, −7.4363, −29.1272, −7.1087, 87.1612, −10.9189, −6.6633, 11.7076, −55.8428, 24.0808, −27.1981,
0.4037, −72.7388, 111.1732, 72.3373, −53.7392, −19.2691, 2.6709, 81.1208, −40.6180, −133.2265, −42.1346,
7.5862, −58.8290, 8.9371, 22.2074, −33.3028, 13.8379, −13.5482, −86.2635, −13.8697, 43.4693, 55.3598,
121.5120, 16.8944, −10.9632, 36.8455, −54.7074, 172.6659, 74.5327, 0.8122, −48.8131, −27.8977, 30.2474,
−24.9637, 77.6013, 19.3923, −115.1565, −13.5718, 102.2621, 44.3140, −30.3100, −139.5109, −158.2457,
−49.1128, −124.6835, 1.2227, −19.8960, −75.0098, 5.8541, 89.1655, −23.1566, 57.9790, 152.2665, 178.7988,
73.1711, −163.6388, 44.4483, 122.8186, 138.2718, 112.6628, −142.4871, 66.0475, 143.8586, 76.5748, 17.5478,
−86.2162, −56.7060, −91.1800, 13.2051, 72.4476, 124.0226, 105.3506, 146.2343, 103.7664, 174.8075, −54.8102,
50.7264, 109.2054, 170.0172, −30.8748, 59.1876, 36.3606, 58.2695, 61.7742, −47.1014, −155.1102, −32.8831,
43.3692, −161.7924, −59.2082, 26.8005, −28.3700, 80.4676, 143.4945, 102.1201, 156.2368, 171.1537, 76.1097,
78.0965, 4.7715, −70.8766, 34.2546, −69.5999, −25.6245, 0.0602, 103.6680, 124.5616

1PCH 43.5603, −0.5581, 51.0269, 71.5241, −22.8763, −165.5940, 69.4043, −40.8120, −144.3618, 6.0212, 4.9260, 141.2707,
29.9156, −45.9807, −76.6985, 13.2083, 11.0730, −46.6472, −169.2636, 109.4209, −80.6196, −21.3525, 56.0178,
2.7469, −24.9770, 18.8028, −92.8137, −167.1236, −33.6219, 43.3143, 89.5431, 18.6533, −56.8690, 51.3334, 8.6419,
−0.3859, −61.6817, 61.0599, −18.0811, 37.7962, −136.6101, 16.2508, 31.1677, 30.5831, 27.6785, 83.5453,
−127.2399, −48.2667, −70.0013, 58.6984, −62.6201, −81.5554, −44.2539, −50.3361, 20.6317, 4.2708, −112.4258,
−30.9974, 23.5624, 42.3764, 42.1948, 13.3415, 2.5809, −74.9152, −164.8953, −0.8178, 21.5609, 22.5203, 8.5765,
109.2869, 29.3634, 2.1225, 12.4136, −120.3413, −6.1064, 14.6941, 50.0448, 28.3427, −54.4405, 38.3312, −117.3602,
56.3906, 9.8377, −109.8487, −99.7961, −135.9576, −120.7264, 28.1106, 160.7656, 31.9478, −134.0017, −39.1912,
−124.0489, −12.1312, −120.0252, 167.0531, −79.3470, 29.8425, 108.8634, 34.5249, 175.9989, −22.5645, 132.2016,
2.7658, −30.3842, −66.1483, 29.3910, 31.0837, 145.7338, 172.0597, 21.1105, 148.7510, −178.3366, 54.9076,
125.5836, −14.3095, −133.9550, −100.7464, −72.4418, −159.6307, −27.8017, 179.2643, 52.3683, 21.1497, 66.1417,
−11.4370, 47.2959, 26.2722, 170.4601, 39.8690, −52.3557, 60.4005, −3.9348, 154.2336, 171.8271, 156.5632, 145.9230,
2.8887, −2.3310, −53.9904, 33.5704, 154.8804, 39.9316, 34.0064, −77.7366, 25.3800, −19.0780, −0.2700, 73.7883,
14.3260, 11.3731, −52.1158, −23.9903, 83.6962, 141.4928, −166.4798, 23.4281, 36.1021, −4.6947, −10.3817, 2.6026,
−47.5569, −179.6645, 23.5649, 46.0917, 0.9257, −41.4373

2EWH 31.0281, −83.1940, −73.7166, 73.6313, 79.8774, −162.3809, −85.0653, 23.5845, −152.6138, −52.6713, −54.7878,
113.9021, 59.4182, 74.2415, −90.7065, −30.0839, −71.6468, −10.2363, −59.7657, −109.0952, −47.0266, −23.4636,
93.7763, −120.4693, 63.9653, −94.9731, 58.5368, 73.2819, −15.1595, −85.8182, 39.1232, 30.5319, 40.5315,
−7.9589, −129.9194, −104.0965, −142.5123, −18.3873, −9.3663, 14.6949, 45.0905, −92.2574, 6.3949, 33.4429,
−81.4748, 84.4697, 118.1556, 1.5611, 41.7624, 162.2825, −1.3615, −21.1779, 53.7514, 127.2352, −107.9389,
39.6852, 4.1324, −101.6262, 121.7615, 108.6972, −9.2238, −70.4706, −29.4339, −101.0204, 161.7725, 149.1204,
−106.1018, 19.9872, 75.5759, 118.9055, 101.8863, −12.5656, 27.2378, −94.5046, −81.4401, −30.0655, 42.8940,
158.0247, 158.9893, 42.4068, −6.7307, 110.7461, 7.9615, −44.3511, −142.4752, 177.3489, 63.5718, 55.8396,
−159.4334, −0.0666, 51.8864, 57.5426, −106.9189, −103.3725, −73.2516, 11.2726, −15.2303, −65.1614, 134.1459,
75.7639, −159.2708, −25.4270, 97.6577, −27.4364, −70.8047, −3.5138, 131.0074, 14.2295, 2.0808, −157.3447,
−10.6784, 109.1077, 161.5699, 174.5464, −143.9630, 0.5748, −39.6871, −60.6532, −3.2241, 172.6112, −20.8339,
−73.3347, 15.3115, 40.8376, 6.7255, 40.9140, −36.2423, 77.4473, 148.0497, 4.7864, −18.5122, −46.9985, −72.7250,
−38.1795, −65.8628, 43.1726, 66.3916, 130.9052, 17.1987, 22.3094, 45.3919, −13.2915, −11.7787, 45.2203, 0.1654,
75.9715, 45.0252, 42.7999, 7.7206, 126.6125, 47.8645, −57.7001, −25.2384, −26.3449, −23.4756, −4.9972, 11.5920,
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