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Abstract The repulsion term in conventional force fields
constitutes a major source of error. Assuming that this
could originate from a too simple analytical functional form,
we analyzed various analytical functions using ab initio
exchange component values as a reference and obtained
(α + βR−1) exp(−γR) as the optimal form to represent
the repulsion term. Universal exchange, delocalization, and
electrostatic penetration potentials approximating the cor-
responding interaction energy components defined within
hybrid variation-perturbation theory (HVPT) were derived
using as a reference a training set of 660 biomolecular
complexes. The electrostatic multipole term was calcu-
lated using cumulative atomic multipole moments, whereas
correlation contribution including dispersion term and first-
order correlation correction was estimated from nonempiri-
cal Das functions derived by Pernal et al. The resulting non-
empirical atom–atom potentials (NEAAP) were tested for
several urokinase–inhibitor complexes yielding improved
docking results.
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Introduction

Precise knowledge of intermolecular interactions between
proteins and their ligands is of critical importance in rational
drug or biocatalyst design. Experimental studies yield still
very limited information in this respect, while rigorous
ab initio calculations are prohibitively expensive, due to
their steep scaling with basis set size. Therefore, simula-
tions of large biomolecular systems are usually based on
empirical force fields (FF), which exhibit limited transfer-
ability between molecular systems mainly due to the elec-
trostatic term [1–3] and do not preserve any clear physical
meaning of its particular non-bonded contributions. Histor-
ically, first conventional non-bonded force field parameters
have been fitted to reproduce experimentally available data
such as enthalpies of vaporization or sublimation, how-
ever they usually differ considerably between themselves.
Alternative and more reliable source of data for FF fitting
constitute accurate quantum chemical interaction energies,
which may cover much wider range of intermolecular dis-
tances. Therefore, such FF could be called non-empirical.
To our knowledge, only a few attempts have been made to
derive universal [1, 4] FF nonbonded energy terms directly
by fitting interaction energy components as defined by
perturbation theory. Corresponding system-specific poten-
tial functions were much more frequent [5–8]. In this con-
tribution, we focus on improving the functional form for the
exchange repulsion term, which has been noted as a major
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Table 1 Root mean square errors (RMSE) for various functional forms approximating the exchange interaction energy E
(10)
EX (in [kcal/mol])

R/Req 0.70 0.90 0.95 1.00 1.05 1.10 1.25 TOT

αR−12 24.51 7.87 5.84 4.30 3.15 2.32 0.90 11.13

α exp(−γR) 9.01 2.36 1.92 1.57 1.32 1.15 0.70 3.93

(α + βR) exp(−γR) 7.85 2.34 1.91 1.53 1.21 0.58 0.42 3.55

(α + βR−1) exp(−γR) 7.73 2.12 1.62 1.26 0.98 0.46 0.34 3.46

(α + βR−2) exp(−γR) 7.03 2.29 1.76 1.36 1.05 0.60 0.37 3.27

(α + βR−1 + δR) exp(−γR) 7.18 2.18 1.70 1.35 1.09 0.66 0.47 3.28

(α + βR−1 + δR−2) exp(−γR) 6.80 2.23 1.74 1.39 1.13 0.74 0.49 3.19

(α + βR−1 + δR−2 + κR−3) exp(−γR) 6.59 2.29 1.84 1.50 1.22 0.76 0.48 3.13

(α + βR−1 + δR + κR−2) exp(−γR) 6.85 2.21 1.72 1.39 1.14 0.77 0.55 3.20

(α + βR−1 + δR + κR2) exp(−γR) 6.91 2.27 1.82 1.49 1.21 0.81 0.56 3.19

(α + βR−1 + δR + κR2 + ωR−2) exp(−γR) 6.59 2.28 1.86 1.55 1.29 0.93 0.63 3.10

Bold entries indicate minimal error values for particular distances illustrating the range of validity of the main conclusion i.e. choice of (a+b/R)
exp(-gR) expression

source of error in conventional force fields [9]. We have
already encountered this issue when studying inhibitors
docked into urokinase, where some inhibitors were docked
by a force field 0.5 Å too deep into the active site compared
to ab initio results [10]. One of the reasons for this could
be an inappropriate functional form for the repulsion term,
usually represented by αR−12 or α exp(−βR), whereas the
analytical formula for the first order exchange term involves
squared overlap integrals, composed in turn as products of
complex polynomials and exponential functions [11, 12].

With this in mind, we here explore in a systematic
way the various possible analytical formulas for reproduc-
ing the first-order exchange component for large number
of biomolecular complexes and determine their optimal
parameters. To facilitate applications in conventional soft-
ware, we limit ourselves to products of polynomial and

exponential functions resembling the above mentioned,
since they can be easily incorporated into typical force fields.

This work is an extension of our earlier report [1],
in which perhaps one of the first universal non-empirical
atom–atom potentials were derived for main interaction
energy components. These were calculated in a minimal
valence basis set for 336 hydrogen-bonded dimers and
tested on the packing of N2, CO2, and nitromethane crys-
tals [13]. The present contribution is based on an extended
aug-cc-pVDZ basis set and a much wider collection of
660 biomolecular complexes, including various types of
interactions besides hydrogen bonds. We tested the result-
ing nonempirical atom–atom potentials on the mentioned
urokinase–inhibitor complexes, which exhibited artefact
structures when optimized with a standard Tripos 5.2 force
field [10].

Table 2 Mean unsigned error (MUE) for various analytic functions approximating exchange interaction energies E
(10)
EX (in [kcal/mol])

R/Req 0.70 0.90 0.95 1.00 1.05 1.10 1.25 TOT

αR−12 17.91 7.25 5.32 3.79 2.66 1.85 0.60 7.15

α exp(−γR) 6.89 1.85 1.52 1.24 1.02 0.85 0.46 2.39

(α + βR) exp(−γR) 6.22 1.55 1.18 0.91 0.70 0.44 0.22 2.04

(α + βR−1) exp(−γR) 6.02 1.50 1.09 0.80 0.58 0.36 0.16 1.96

(α + βR−2) exp(−γR) 5.55 1.60 1.16 0.84 0.63 0.45 0.22 1.96

(α + βR−1 + δR) exp(−γR) 5.65 1.52 1.13 0.89 0.72 0.53 0.33 1.96

(α + βR−1 + δR−2) exp(−γR) 5.31 1.56 1.18 0.94 0.76 0.59 0.36 1.96

(α + βR−1 + δR−2 + κR−3) exp(−γR) 5.19 1.51 1.16 0.95 0.80 0.60 0.33 1.91

(α + βR−1 + δR + κR−2) exp(−γR) 5.38 1.52 1.15 0.93 0.78 0.62 0.43 1.97

(α + βR−1 + δR + κR2) exp(−γR) 5.46 1.60 1.28 1.04 0.83 0.63 0.40 1.97

(α + βR−1 + δR + κR2 + ωR−2) exp(−γR) 5.27 1.60 1.29 1.07 0.90 0.73 0.48 1.97

Bold entries indicate minimal error values for particular distances illustrating the range of validity of the main conclusion i.e. choice of (a+b/R)
exp(-gR) expression
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Table 3 Mean unsigned relative error (MURE) for various analytic functions approximating exchange interaction energies E
(10)
EX (in [%])

R/Req 0.70 0.90 0.95 1.00 1.05 1.10 1.25 TOT

αR−12 24.3 47.9 52.0 54.6 56.1 56.6 53.5 44.6

α exp(−γR) 9.4 12.8 15.3 18.3 21.8 26.3 44.2 17.9

(α + βR) exp(−γR) 8.9 10.8 12.2 13.7 15.5 16.9 23.8 12.9

(α + βR−1) exp(−γR) 8.7 10.1 11.1 12.1 13.1 13.7 17.7 11.3

(α + βR−2) exp(−γR) 8.2 10.8 11.6 12.5 13.9 15.3 22.2 12.2

(α + βR−1 + δR) exp(−γR) 8.2 10.1 11.3 13.7 17.5 22.6 55.5 16.6

(α + βR−1 + δR−2) exp(−γR) 7.8 10.3 11.7 14.4 18.4 23.7 55.9 16.9

(α + βR−1 + δR−2 + κR−3) exp(−γR) 7.7 10.0 11.7 14.5 18.4 22.8 43.8 15.5

(α + βR−1 + δR + κR−2) exp(−γR) 7.9 10.0 11.3 14.3 18.8 25.8 70.9 18.6

(α + βR−1 + δR + κR2) exp(−γR) 7.9 10.6 13.1 16.5 21.0 27.4 59.7 18.2

(α + βR−1 + δR + κR2 + ωR−2) exp(−γR) 7.7 10.5 13.1 16.7 21.9 28.7 62.0 18.6

Bold entries indicate minimal error values for particular distances illustrating the range of validity of the main conclusion i.e. choice of (a+b/R)
exp(-gR) expression

Interaction energy components

The only rational way to determine non-empirical atom–
atom potentials (NEAAP) is to partition the intermolecular
interaction energy �E into some well-defined components,
which can separate system-specific terms (for example,
first-order electrostatic) from other more transferable con-
tributions with different distance dependence requiring dif-
ferent analytical representation. There are many possible
interaction energy partitioning methods, mostly related to
variational Morokuma scheme [14] or symmetry adapted
perturbation theory (SAPT) [15]. On the other hand, non-
bonded interactions can be explained in an elegant way

using Hellmann–Feynman theorem [16]. Unfortunately,
the Hellmann–Feynman theorem has not been practically
demonstrated to provide simple potential functions yet. In
this study, we have applied the hybrid variation-perturbation
theory (HVPT) [17, 18], in which the total interaction
energy for systems containing over 1800 AOs [19] can be
partitioned into the following contributions:

�E = E
(10)
EL,MT P + E

(10)
EL,PEN + E

(10)
EX + E

(R0)
DEL + ECORR,

The first-order multipole electrostatic term E
(10)
EL,MT P is

obtained using SCF monomer cumulative atomic multipole

Fig. 1 Optimal analytic
function for exchange energy at
equilibrium geometry
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Fig. 2 The distance dependence
of the ratio of various functions
approximating the repulsion
term and exact reference
exchange term E

(10)
EX , for the

methanol dimer
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moments (CAMMs) M
(ka)
A and M

(kb)
B for all atom pairs of

A and B molecules [20]:

E
(10)
EL,MT P =

A∑

a

B∑

b

∑

ka

∑

kb

M
(ka)
A [ka]T (ka+kb)[kb]M(kb)

B

ka + kb ≤ L

where M(k) is a rank k multipole and T ka+kb is the Carte-
sian interaction tensor containing all the partial derivatives
of |Rab|−1 of rank ka + kb. In this contribution, the
CAMM expansion was truncated at the R−5 term (rank 5)
yielding best convergence [21] and calculated using the
GAMESS-US ab initio package (activated by adding
$ELMOM IAMM=n $END to the input file, where n is

Fig. 3 The distance dependence
of the ratio of various functions
approximating repulsion term
and exact reference exchange
term E

(10)
EX values for

acetate-methanol complex
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Fig. 4 The distance dependence
of the ratio of various functions
approximating repulsion term
and exact reference exchange
term E

(10)
EX values for

methylamine-methanol complex
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the desired highest rank) [22]. Higher atomic multipole
moments can easily be transformed into alternative point
charge models [23, 24].

The complete first-order electrostatic term E
(10)
EL is calcu-

lated in the dimer basis set as the first-order perturbational
correction within the polarization approximation [17] and is
equivalent to the analogous term defined within Symmetry
Adapted Perturbation Theory (SAPT) [15].

E
(10)
EL = < 	A	B | ĤAB − ĤA − ĤB | 	A	B > / < 	A	B | 	A	B >

=
A∑

a

B∑

b

ZaZbR
−1
ab +

AB∑

r

AB∑

s

AB∑

t

AB∑

u

DA
rs(D)DB

tu(D) < rs | tu >

+
AB∑

r

AB∑

s

B∑

b

DA
rs(D) < r | ZbR

−1
1b | s >

+
AB∑

t

AB∑

u

A∑

a

DB
tu(D) < t | ZaR

−1
1a | u >

where monomer electron densities DA
rs(D), DB

tu(D) have
been obtained in dimer basis set D = A+B, whereas Za , Zb

denote nuclear charges, < rs | tu >, < r | ZbR
−1
1b | s >,

two-electron repulsion and one-electron nuclear attraction
integrals, respectively.

The electrostatic penetration term E
(10)
EL,PEN is defined as

the difference between the entire electrostatic energy E
(10)
EL

and its multipole component E
(10)
EL,MT P :

E
(10)
EL,PEN = E

(10)
EL − E

(10)
EL,MT P

Taking mutually orthogonalized monomer wavefunc-
tions obtained in the dimer basis set as a starting point,
the first-order Heitler–London interaction energy E(10) is
calculated as the difference between the AB dimer energy
EAB(D) at iteration zero and the monomer energies EA(D)

and EB(D)obtained in the dimer basis set:

E(10) = EAB(D) − EA(D) − EB(D)

Neglecting small Murrell delta term, the exchange repul-
sion component E

(10)
EX is then defined as the difference

Table 4 Root mean square
errors (RMSE) for short-range
interaction energy components
(in [kcal/mol]) approximated
by (α + βR−1) exp(−γR)

function; R/Req values given
in parenthesis

RMSE(0.85) RMSE(1.00) RMSE(1.25)

E
(10)
EL,PEN 7.34 3.09 0.98

E
(10)
EX 2.79 1.26 0.34

E
(R0)
DEL 1.69 1.22 0.72

E
(10)
EX + E

(R0)
DEL 2.03 0.91 0.41

E
(10)
EL,PEN + E

(10)
EX + E

(R0)
DEL 8.68 3.24 0.94
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Table 5 α, β and γ NEAAP
parameters for exchange term
E

(10)
EX (a.u.)

contact α β γ

H–H 8.07574773e+01 −1.87842011e+02 2.60272196e+00

C–H 1.08945456e+01 1.17274724e+00 1.82765379e+00

H–N 2.10150271e+01 −3.19179556e+01 1.87159307e+00

H–O 1.84654540e+01 −3.06952584e+01 1.95116187e+00

C–C 7.15660935e+02 −2.39375435e+03 1.92479648e+00

C–N 1.97976749e+01 3.85610972e+03 2.25503526e+00

C–O 6.18252120e+04 −2.82918123e+05 2.86485235e+00

N–N 2.01300373e+03 −7.55988423e+03 2.04260802e+00

N–O 3.39661651e+03 −4.91074360e+03 2.39791080e+00

O–O 2.98401193e+03 6.37198459e+02 2.49335288e+00

between the Heitler–London E(10) term defined above and
the electrostatic component E

(10)
EL :

E
(10)
EX = E(10) − E

(10)
EL

Another component E
(R0)
DEL, called the delocalization

term, covers higher-order (R) induction and exchange-
deformation interactions [25] and is obtained as the differ-
ence between the converged SCF interaction energy �ESCF

and the Heitler–London term E(10):

E
(R0)
DEL = �ESCF − E(10)

It has to be noted that further partitioning E
(R0)
DEL yields

strongly basis set-dependent induction and charge transfer
terms whereas their sum, i.e., delocalization term does not
display such dependency [26]. Dispersion and exchange dis-
persion terms obtained within SAPT approach (E(2)

DISP +
E

(2)
EX−DISP ) as well as first-order correlation correction

ε(1) can be closely approximated by atom–atom potentials
that include damping functions Das [27] which represents
inter- and intra-molecular correlation term ECORR .

High quality of Das functions allows to supplement SCF
interaction energy [27] by correlation effects avoiding

well-known deficiencies of DFT or MP2 methods to repre-
sent dispersion interactions.

Thus, the total interaction energy used in this study can
be expressed as the sum of the following terms:

�E = E
(10)
EL,MT P + E

(10)
EL,PEN + E

(10)
EX + E

(R0)
DEL + Das,

where both long-range E
(10)
EL,MT P and Das terms scale with

the number of atoms squared O(A2) and will be supple-
mented by similarly scaling atom–atom potentials derived
in this work to approximate the short-range E

(10)
EL,PEN , E(10)

EX

and E
(R0)
DEL terms yielding complete nonempirical estimate

of major nonbonded interactions applicable in any force
field.

Results and discussion

Selection of the optimal functional form
for the exchange repulsion term

Due to the critical importance of the repulsion term in
empirical force fields [9], we extensively tested various pos-
sible functions starting with the most popular ones such as

Table 6 α, β and γ NEAAP
parameters for delocalization
component E

(R0)
DEL (a.u.)

contact α β γ

H–H 1.43313295e+03 1.43347328e+03 1.45137051e+03

C–H −3.34374591e+01 8.27529346e+00 2.46669101e+00

H–N −6.03027868e+00 6.19782453e+00 1.93834270e+00

H–O −4.43751171e+00 2.71105734e+00 2.04151238e+00

C–C −3.57124523e+01 −1.42264717e+02 2.04559232e+00

C–N 2.14345865e+03 5.17142579e+04 3.54918875e+00

C–O −3.94230327e+00 1.81948699e+01 1.38730014e+00

N–N −1.39410649e+02 5.56285349e+02 1.75555911e+00

N–O −5.83250170e+02 1.55276368e+03 2.10644431e+00

O–O −2.33891971e+03 4.71728778e+03 2.47343097e+00
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Table 7 α, β and γ NEAAP
parameters for penetration term
E

(10)
EL,PEN (a.u.)

contact α β γ

H–H 1.62871696e+00 2.26905873e+04 4.54951049e+00

C–H −3.38110031e-01 −3.33076551e+00 1.38327627e+00

H–N −2.69691770e+00 3.36751606e+00 1.86353492e+00

H–O −1.03106690e+01 5.92067460e+00 2.13247195e+00

C–C 1.57165940e-01 −1.02424207e+00 6.74948316e-01

C–N 1.63595055e+03 −9.80531178e+03 2.19443829e+00

C–O −2.22799682e+04 1.05606596e+05 2.60365699e+00

N–N −8.39021449e+03 3.78601968e+04 2.56001028e+00

N–O −1.81525054e+00 9.74306338e+00 9.13237912e-01

O–O 7.06756222e+05 −2.01116758e+06 3.67775467e+00

αR−12, α exp(−γR) and ending with (α + βR−1 + δR +
κR2 + ωR−3) exp(−γR), as well as simpler intermediate
versions. As reference data, we assumed values of the first-
order exchange term obtained for 660 dimers of biomolec-
ular complexes using the aug-cc-pVDZ basis set, gener-
ated from the S66 training set [28]. This set included 23
hydrogen-bonded, 23 dispersion-dominated, and 20 mixed
molecular complexes composed of hydrogen, carbon, nitro-
gen, and oxygen only. Additional inclusion of sulphur, phos-
phorus, as well as halogen complexes involved in sigma-
hole bonding is planned in future. Besides six shortest
original distances defined by the ratio R/Req , we generated
an additional S66x4 set to cover shorter distances critical
for repulsion interactions. The parameters α, β, γ , δ, κ , and
ω that appear in the longest functional form given above
approximating the nonempirical exchange energy, were
optimized by nonlinear least-squares fitting with all weights
equal 1 using Powell’s conjugate direction method [29].
The corresponding total root mean square errors (RMSE)
as well as for distances close to equilibrium structures (eq)
are given in Table 1, together with mean unsigned error
(MUE) (Table 2) and mean unsigned relative error (MURE)
values (Table 3). The results presented in Tables 1–3
indicate that the αR−12 function fails completely, whereas
among all functions considered (α + βR−1) exp(−γR)

seems to provide an optimal representation of the
exchange repulsion interaction around equilibrium dis-
tances as illustrated in Fig. 1. The distance dependence
of the ratio of various approximations and exact reference

E
(10)
EX values is shown in Fig. 2 for the methanol dimer. Anal-

ogous plots for acetate–methanol, methylamine–methanol,
and methylammonium–methanol complexes are shown as
Figs. 3, 4, and 5. Again, the αR−12 function from the Amber
force field or NEAAP seem to yield considerably underes-
timated repulsion over the entire distance range. Very poor
performance of Amber repulsive FF term could be due to
direct coupling it to R−6 van der Waals component via
imprecisely defined well depth and equilibrium distance.
Since the optimal function (α + βR−1) exp(−γR) resem-
bles the conventional force field expression, it could be
easily incorporated into existing molecular mechanics or
dynamics packages. Computationally costly contribution of
the three-body interactions dominated by induction term
seems to be negligible and has only small influence on final
geometries.

Atom–atom representation of the remaining interaction
energy terms

Due to the presumably critical role of the exchange repul-
sion term in determining equilibrium geometries, the (α +
βR−1) exp(−γR) function has also been applied to approx-
imate the remaining short-range components, namely delo-
calization E

(R0)
DEL and electrostatic penetration E

(10)
EL,PEN , in

order to compare them on an equal footing. The values of
root mean square errors around equilibrium presented in
Table 4 indicate that the delocalization term E

(R0)
DEL could

be also reasonably represented by (α + βR−1) exp(−γR).

Table 8 Equilibrium distances
[Å] between inhibitors and
residues at the active site of
urokinase determined by force
field [10], NEAAP potential
functions and ab initio
calculations [10]. Values in
parentheses indicate deviation
from MP2 equilibrium short
contacts

inhibitor# SER 190 GLY219

Tripos FF NEAAP MP2 Tripos FF NEAAP MP2

1 2.88 (−0.20) 2.88 (−0.20) 3.08 1.56 (−0.50) 1.96 (−0.10) 2.06

2 1.84 (−0.56) 2.55 (0.15) 2.40 1.62 (−0.40) 2.02 (−0.0) 2.02

3 3.19 (−0.50) 3.69 (0.0) 3.69 2.02 (−0.30) 2.22 (−0.10) 2.32

4 3.11 (+0.41) 2.50 (−0.20) 2.70 2.08 (+0.10) 1.88 (−0.10) 1.98
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Fig. 5 The distance dependence
of the ratio of various
approximations of the exchange
repulsion term and exact
reference E

(10)
EX values for

methylammonium-methanol
complex

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

−0.2 −0.1  0  0.1  0.2  0.3  0.4  0.5

N
E

A
A

P
 / 

E
(1

0)
E

X
 

r−R0 [Å]

αR−12

αe−γR

(α+βR−1)e−γR

(α+βR−1+δR−2)e−γR

FF

On the other hand, the electrostatic penetration component
E

(10)
EL,PEN seems to require a more complex functional form,

for example like the one recently proposed by Tafipolsky
and Engels [30]. Due to the relatively small contribution
of electrostatic penetration effects (on average, electrostatic
penetration at equilibrium in the S66 test set is 14.8 times
smaller than exchange repulsion), we kept its functional

Fig. 6 Equilibrium separations predicted based on nonempirical
atom–atom potentials (NEAAP) or the Tripos force field, compared to
corresponding ab initio MP2 results for urokinase and its inhibitors

form the same as for the exchange and delocalization terms
for the sake of simplicity. The corresponding α, β, and γ

parameters are given in Tables 5–7. Combining E
(R0)
DEL and

E
(10)
EX , or E

(R0)
DEL, E

(10)
EX and E

(10)
EL,PEN terms leads to some

RMSE reduction (Table 4) due to error compensation, but
we did not resort to this in order to keep a clear meaning for
all interaction energy components.

Testing nonempirical atom–atom potentials
for inhibitor–active site complexes

The NEAAP potentials derived for S66 model biomolecular
complexes have been tested for several urokinase–inhibitor
complexes [10], where a force field docking resulted in
several short contacts shown in Table 8. Equilibrium dis-
tances for active site amino acid-inhibitor contacts obtained
using the standard Tripos 5.2 force field and our atom–
atom potentials are compared in Fig. 6 alongside MP2
results. Clearly, the application of nonempirical atom–atom
potentials results in considerable improvement, yielding a
correlation coefficient R2 = 0.92 between NEAAP contact
distances and MP2 data, in contrast to the force field value
of R2 = 0.64. This feature can be very useful in improving
the quality of structural predictions, which can be of prac-
tical importance in drug design and scoring. It is possible
that the occurrence of artefact short contacts in simulations
based on conventional force fields is underreported in the
literature as locating it requires significant computational
effort and incorrect data are overshadowed by other results
while calculating statistical averages.
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Conclusions

Derivation of universal nonempirical atom–atom poten-
tials NEAAP from interaction energy components defined
within hybrid variation-perturbation theory HVPT opens the
possibility for systematic improvements to force field non-
bonded terms that are critical for more accurate modeling
of molecular materials. This study indicates that the ana-
lytical functions αR−12 or α exp(−βR) commonly used to
represent repulsive interactions are not adequate. By using
the more appropriate but still relatively simple form (α +
βR−1) exp(−γR) it is possible to obtain a better descrip-
tion of exchange repulsion over a wide range of distances,
especially around equilibrium. The application of derived
NEAAPs resulted in a considerable improvement of the
structural characteristics for an enzyme–inhibitor complex
that exhibited artefact short contacts when a conventional
force field was applied in the past [10].
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Large-scale compensation of errors in pairwise-additive empir-
ical force fields: comparison of AMBER intermolecular terms
with rigorous DFT-SAPT calculations. Phys Chem Chem Phys
12:10476–10493

10. Grzywa R, Dyguda-Kazimierowicz E, Sieńczyk M, Feliks M,
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25. Chałasiński G, Szczęśniak MM (1994) Origins of structure and
energetics of van der Waals clusters from ab initio calculations.
Chem Rev 94:1723–1765

26. Sokalski WA, Roszak S (1991) Efficient techniques for the decom-
position of intermolecular interaction energy at SCF level and
beyond. J Mol Struct(THEOCHEM) 234:387–400

27. Podeszwa R, Pernal K, Patkowski K, Szalewicz K (2010) Exten-
sion of the Hartree–Fock plus dispersion method by first-order
correlation effects. J Phys Chem Lett 1:550–555
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