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Abstract The Hellmann-Feynman theorem provides a
straightforward interpretation of noncovalent bonding in
terms of Coulombic interactions, which encompass polariza-
tion (and accordingly include dispersion). Exchange, Pauli
repulsion, orbitals, etc., are part of the mathematics of
obtaining the system’s wave function and subsequently its
electronic density. They do not correspond to physical forces.
Charge transfer, in the context of noncovalent interactions, is
equivalent to polarization. The key point is that mathematical
models must not be confused with physical reality.
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Hydrogen bonding

Noncovalent interactions and electrostatic potentials

In 2009, Schneider suggested that the chemistry of the twenty-
first century is B…likely to be the chemistry of noncovalent
bonding^ [1]. The evidence so far certainly bears out this
prediction. For example, during the three years 2006–2008,
an average of 28.3 papers per day referred to the term
Bhydrogen bond^ [2]. In the last 10 years, there has been a
veritable deluge of papers dealing with halogen bonding
and its analogues involving Groups IV–VI, all of which
(including hydrogen bonding) come under the heading
of σ-hole interactions. (There have been several recent
reviews of hydrogen bonding [2–4] and of σ-hole inter-
actions in general [5–7].)

A continuing subject of intense study has been the nature of
these interactions—even though they are rather easily
explained in terms of the electrostatic potentials V(r)
of the molecules involved, as will be shown. V(r) refers
to the potential that the nuclei and electrons of a mol-
ecule create at any point r in the surrounding space. It
is given rigorously by Eq. (1), which is simply a form
of Coulomb’s law:

V rð Þ ¼
X
A

ZA

RA−rj j−
Z

ρ r
0� �
dr

0

r0−rj j ð1Þ

ZA is the charge on nucleus A, located atRA, and ρ(r) is the
molecule’s electronic density. Atomic units are used through-
out this discussion.

V(r) is a real physical property, an observable, which can be
obtained experimentally both by diffraction methods [8–10]
and computationally. When computed on a molecular surface
—e.g., the 0.001 au contour of the electronic density, as pro-
posed by Bader et al. [11]—V(r) has proven to be an effective
guide to noncovalent interactions [12–14], since it is how the
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molecule is initially Bseen^ or Bfelt^ by another, approaching
molecule.

Figure 1 presents the computed electrostatic potentials on
the 0.001 au surfaces of (a) acetylene, H–C≡C–H, (b)
bromobenzene, C6H5Br, (c) sulfur dichloride, SCl2, (d) phos-
phorus hydrogen difluoride, PHF2, and (e) silane, SiH4. In
each molecule, at least one atom has one or more regions of
significantly positive electrostatic potential centered on the
extension(s) of one or more of the covalent bonds to that atom.
These regions are called positive σ-holes; they are due to the
anisotropy of the atom’s charge distribution that results from
the formation of the covalent bond or bonds [5–7]. A positive
σ-hole is often (not always) neighbored by negative regions
on the same atom.

Table 1 lists the values of the most positive potentials in the
σ-hole regions of the molecules in Fig. 1; the covalent bond
responsible for eachσ-hole is identified. Note that the sulfur in
SCl2, the phosphorus in PHF2 and the silicon in SiH4 have
two, three and four positive σ-holes, respectively. (Note that,

Fig. 1 a–e Computed
electrostatic potentials showing
σ-holes on 0.001 au molecular
surfaces. a Acetylene, H–C≡C–
H; hydrogens are at left and right
ends. b Bromobenzene, C6H5Br;
bromine is at right, two hydrogens
at left. c Sulfur dichloride, SCl2;
sulfur is in center foreground. d
Phosphorus hydrogen difluoride,
PHF2; phosphorus is in upper
foreground, hydrogen in lower
foreground. e Silane, SiH4; silicon
is in center foreground. Color
ranges (kcal mol−1): a, b, c, e red
> 20, yellow 20–10, green 10–0
blue negative; d red > 30, yellow
30–15, green 15–0, blue negative.
Visible σ-holes: a, c, d red; b
yellow (hydrogens) and green
(bromine); e yellow. Values of
most positive σ-hole potentials
are in Table 1. Computational
level: M06-2X/6-31+G(d,p)

Table 1 Most positive electrostatic potentials of σ-holes in the mole-
cules shown in Figure 1, in kcal mol−1. Computational level: M06-2X/6-
31+G(d,p)

Molecule Atom with
σ-hole(s)

Bond producing
σ-hole

Most positive
σ-hole potentiala

HC≡CH H C-H 32.3

C6H5Br Hmeta C-Hmeta 19.8

Hpara C-Hpara 19.7

Hortho C-Hortho 17.9

Br C-Br 10.2

SCl2 S Cl-S 26.9 (2)

Cl S-Cl 13.8

PF2H P F-P 38.8 (2)

P H-P 22.6

H P-H 12.5

SiH4 Si H-Si 15.4 (4)

H Si-H 0.2

a If an atom has more than one σ-hole with the same maximum potential,
the number of σ-holes is given in parentheses
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in SiH4, the σ-holes of the hydrogens are essentially neutral and
are surrounded by negative potentials; this can be attributed to
the hydrogens being more electronegative than silicon.)

Through such positive σ-holes, molecules can interact at-
tractively with negative sites to form noncovalent complexes.
Three examples of negative sites are in Fig. 2: (a) the nitrogens

in 1,4-diazine, NC4H4N; (b) the π region in ethylene, H2C=
CH2; and (c) the oxygen in acetone, O=C(CH3)2. Since pos-
itive σ-holes are centered on the extensions of the bonds that
produce them, the σ-hole⋯negative site interactions are
usually highly directional, as is shown in Fig. 3 for
complexes 1–4:

CH C H N N

1

Br O=C(CH3)2

2

SCl

Cl

O=C(CH3)2

3

PF

F

N

4

H

N

Table 2 presents some computed properties of 1–4. The C–
H⋯N angle in 1, the C–Br⋯O in 2 and the Cl–S⋯O in 3 are
all close to 180°; the F–P⋯N angle in 4 deviates somewhat
from near-linearity due to a secondary F⋯H attraction, as can
be seen in Fig. 3d. The separations of the interacting atoms are
all less than the sums of the respective van der Waals radii.
The interaction energies are all negative, indicating that the
complexes are more stable than the separated molecules.

Hydrogen bonding (as in 1), halogen bonding (as in 2) and
other σ-hole interactions (as in 3 and 4) can all be understood
readily as Coulombic attractions between positive σ-holes and
negative sites [5–7]. This will of course be accompanied by
some mutual polarization; the electric field of each participant
will have some polarizing effect upon the charge distribution
of the other. This further stabilizes the interaction.

This Coulombic interpretation of hydrogen bonding and
other σ-hole interactions is simple and straightforward—and
therefore unacceptable to many theoreticians. For instance, it
ignores the beloved decades-old debate over the relative de-
grees of electrostatics and covalence in hydrogen bonds [2].
Since covalence is purely conceptual and any attempt to quan-
tify it is necessarily arbitrary, this is an ideal academic debate:
it cannot be resolved, and can (and will) continue indefinitely.

Relentless theoretical scrutiny has led to the following de-
scription of hydrogen bonding, as stated by Arunan et al. [2]:
BToday, it is well accepted that hydrogen bonding has contri-
butions from electrostatic interactions between permanent

multipoles, polarization, or induction interactions between
permanent and induced multipoles, dispersion arising from
instantaneous multipoles-induced multipoles, charge-
transfer-induced covalency, and exchange correlation effects
from short-range repulsion due to overlap of the electron
distribution.^ The poor hydrogen bond cringes before this
assault! But is it really necessary to invoke such a barrage of
factors to explain an interaction that is usually just a few
kcal mol−1? William of Occam (1287–1347) would say: cer-
tainly not! (Occam’s Razor: Lex parsimoniae: Pluralitas non
est ponenda sine necessitate. Plurality is not to be posited
without necessity.)

Analogous Bclarification^ of halogen bonding and other σ-
hole interactions is being pursued mercilessly. A frequently
used analytical technique is Binteraction energy decomposi-
tion,^ whereby the interaction (stabilization) energy of a
noncovalent complex is somehow separated into a set of sup-
posedly fundamental contributions. There is no general con-
sensus as to what these fundamental contributions are; differ-
ent researchers invoke different subsets of a group that in-
cludes electrostatics, charge transfer, polarization, correlation,
dispersion, exchange, Pauli repulsion, orbital interaction, dis-
tortion, etc. There is no physically meaningful way to separate
these, since they are not independent of each other. This has
the advantage that everyone can invent his/her own procedure,
and none can be shown to bemore incorrect than any other. So
far, at least 16 decomposition schemes have been proposed
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[15]. Inevitably, they sometimes disagree significantly or even
directly contradict each other. A notable example are two
studies of complexes formed by methyl halides and
trifluoromethyl halides with formaldehyde. One study found
the stabilizing effects to be primarily electrostatics and disper-
sion [16]; the other concluded, for exactly the same molecules,
that charge transfer and polarization dominate, with electro-
statics contributing only Bslightly^ [17]. Despite such annoy-
ances, interaction energy decomposition continues to be used
to Bclarify^ noncovalent bonding.

Fortunately for those who seek simplicity, the straightfor-
ward Coulombic interpretation of noncovalent interactions
does have one powerful ally. It is the Hellmann-Feynman
theorem.

The Hellmann-Feynman theorem

The first point of interest about the Hellmann-Feynman theo-
rem is that it was initially derived neither by Hellmann nor by
Feynman. It has been traced back to Schrödinger in 1926 [18],

Table 2 Computed properties of complexes 1–4. Computational level:
M06-2X/6-31+G(d,p)

Complex Interaction
angle (°)

Separation
(Å)a

Interaction energy
ΔE (kcal mol−1)b

1 C–H⋯N (180) H⋯N: 2.25 (2.7) −3.5
2 C–Br⋯O (180) Br⋯O: 2.94 (3.4) −3.1
3 Cl–S⋯O (177) S⋯O: 2.76 (3.3) −5.8
4 F–P⋯N (166) P⋯N: 2.64 (3.4) −7.4

a Sums of van der Waals radii are in parentheses [59, 60]
b For a complex X⋯Y, ΔE=E(X⋯Y) – [E(X)+E(Y)]

Fig. 2 a–c Computed electrostatic potentials, on 0.001 au molecular
surfaces, of some molecules having possible negative sites. a Acetone,
O=C(CH3)2; oxygen is in bottom foreground. b 1,4-Diazine, NC4H4N;
nitrogens are at top and bottom. c Ethylene, H2C=CH2; view from above,
double bond is in the center. Color ranges (kcal mol−1): red > 15, yellow
15 to 0, green 0 to −15, bluemore negative than −15. The most negative
sites are in blue; their most negative values (kcal mol−1) are: a −37.5, b
−30.5, c −16.0. Computational level: M06-2X/6-31+G(d,p)

Fig. 3 Computed structures of complexes a 1, b 2, c 3, d 4. Some
properties are in Table 2. Colors: white hydrogens, gray carbons, blue
nitrogens, red oxygens, light blue fluorines, orange phosphorus, yellow
sulfur, green chlorines, maroon bromine. Computational level: M06-2X/
6-31+G(d,p)
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Güttinger in 1932 [19], Pauli [20] and Hellmann [21] in 1933
and finally Feynman in 1939 [22]. The theorem shows that for
a system with energy E, time-independent HamiltonianH and
normalized wave functionΨ, the derivative of the energy with
respect to any parameter λ that appears explicitly in the Ham-
iltonian is given by,

∂E
∂λ

¼ Ψ*
∂H
∂λ

����
����Ψ

� �
ð2Þ

This seemingly simple (perhaps almost trivial [23])
result leads to a very significant conclusion when ap-
plied to a system of nuclei and electrons within the
Born-Oppenheimer approximation and λ is taken to be
a coordinate of nucleus A, which has a charge ZA and
is located at RA. Since the kinetic energy portion of H
does not depend explicitly upon the nuclear coordinates,
Eq. (2) becomes,

∂E
∂λ

¼ Ψ*
∂V
∂λ

����
����Ψ

� �
ð3Þ

in which V is the potential energy operator. Writing
Eq. (3) in turn for each coordinate of nucleus A and
noting that the negative gradient of a potential energy is
a force leads finally to an expression for the force
exerted upon nucleus A by the electrons and the other
nuclei of the system [22, 24, 25]:

F RAð Þ ¼ −ZA

X
B≠A

ZB RB−RAð Þ
RB−RAj j3 þ ZA

Z
ρ rð Þ r−RAð Þdr

r−RAj j3
ð4Þ

In Eq. (4),RB–RA and r −RA are vectors from nucleus A to
nucleus B and to point r, respectively, and ρ(r) is the electronic
density.

To demonstrate the significance of Eq. (4), we turn to the
expression for the electrostatic potential V(r) at any point r
within the system; by Coulomb’s Law, this is Eq. (1), given
earlier and repeated below:

V rð Þ ¼
X
A

ZA

RA−rj j−
Z

ρ r
0� �
dr

0

r0−rj j ð1Þ

Now let r be RA, the position of nucleus A. Then,

V RAð Þ ¼
X
B≠A

ZB

RB−RAj j−
Z

ρ r
0� �
dr

0

r0−RAj j ð5Þ

Eq. (5) gives the potential at nucleus A that is created by the
electrons and other nuclei. Then ZAV(RA) is the potential en-
ergy of nucleus A and its negative gradient is the force felt by
nucleus A:

F RAð Þ ¼ −∇ZAV RAð Þ ð6Þ

Carrying out the operations indicated in Eq. (6) leads to,

F RAð Þ ¼ −ZA

X
B≠A

ZB RB−RAð Þ
RB−RAj j3 þ ZA

Z
ρ r

0� �
r
0−RA

� �
dr

0

r0−RAj j3

ð7Þ

Equation (7) is exactly equivalent to Eq. (4)! The
same equation for the force on nucleus A has therefore
been reached classically, using Coulomb’s Law, as
quantum mechanically, starting from the Schrödinger
equation. Equation (4) is often referred to as the
Belectrostatic theorem,^ to distinguish it from the more gen-
eral Eq. (2). However we shall refer to both as the Hellmann-
Feynman theorem.

The theorem shows that the forces that are felt by a
nucleus in a molecule, complex, etc., are due to purely
classical Coulombic interactions with the electrons and
the other nuclei. They can be determined from just the
electronic density, the nuclear positions and Coulomb’s
Law. These conclusions should not really be surprising,
if it is considered that all of the potential terms in the
Hamiltonian of a system of nuclei and electrons are
Coulombic. Quoting Levine, B…there are no ‘mysteri-
ous quantum-mechanical forces’ acting in molecules^
[24].

But what about all of the factors that delight quan-
tum chemists: antisymmetry, exchange, Pauli repulsion,
correlation, etc.? These are certainly important but, as
has been pointed out [24, 26–29], their role is in
obtaining the wave function from which the electronic
density can be calculated. Once it and the nuclear posi-
tions are known—whether computationally or experi-
mentally—only Coulomb’s Law is needed.

Conceptually, the Hellmann-Feynman theorem is ex-
tremely significant, especially Eq. (4). Slater described it
as one of the Bmost powerful^ in the areas of molecules
and solids [28]. Nevertheless, the theorem seems not to
have received the recognition that it merits. Fernandez
Rico et al. [25] observed that B…the possibilities that it
opens up have been scarcely exploited, and today the
theorem is mostly regarded as a scientific curiosity.^ In
the past, one reason for this has been that quantitative
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applications of it require electronic densities of a rela-
tively high level of accuracy [28, 30, 31]. However the
advances in computational methodology in recent years
make this less of an obstacle [32]. It was suggested by
Deb [33] that a second reason might be that B…the
apparent simplicity of the H-F theorem had evoked
some skepticism and suspicion…^. It must indeed be
upsetting for some theoreticians, imbued with the exotic
mysteries of quantum mechanics, to be informed that
the chemical bond can be explained rigorously in terms
of classical physics (Coulomb’s Law). What does this
do, for example, to the electrostatics vs. covalence
debate?

Reconciliation

Current theory views noncovalent bonding as involving an
imposing array of contributions: electrostatics, charge transfer,
polarization, correlation, dispersion, exchange, Pauli repul-
sion, orbital interaction, etc. Can this be reconciled with the
Hellmann-Feynman theorem, which shows that the forces
holding together a molecule or complex are the Coulombic
attractions between the nuclei and the electrons? Yes, if the
distinction betweenmathematics and physical reality is kept in
mind. We will consider individually the supposed contribu-
tions listed above.

Exchange, Pauli repulsion, orbitals and correlation

As has been discussed on several occasions [24, 26–29],
exchange and Pauli repulsion reflect mathematical re-
quirements that the wave function of a molecule or
complex must satisfy. Exchange is introduced as a
means of accounting for the fact that electrons are in-
distinguishable. The Pauli exclusion principle (i.e., BPauli
repulsion^) is the result of the need for the wave function to
be antisymmetric. Neither exchange nor Pauli repulsion cor-
responds to a physical force.

Orbitals are simply mathematical constructs that are
used to obtain an approximate solution of the multi-
electron Schrödinger equation. They have no physical
reality [34], nor accordingly does orbital overlap. Finally, the
wave function should be designed in such a manner as
not to neglect the instantaneous correlation between the
electrons’ movements in response to their mutual elec-
trostatic repulsions.

Exchange, Pauli repulsion, orbitals and correlation are
all very important components of the mathematics of
arriving at a satisfactory wave function and the resulting
electronic density. However they do not contribute di-
rectly to the physical forces (Coulombic attractions) that
hold the system together.

Electrostatics, polarization

In theoretical analyses of noncovalent interactions, it is unfor-
tunately quite common to find the term Belectrostatics^ used
in a misleading manner, as referring to a hypothetical Cou-
lombic interaction between the molecules in their isolated,
unperturbed states but at the separation that they have in the
complex. Thus for a complex X⋯Y, formed between the mol-
ecules X and Y, the Belectrostatic^ interaction energy is incor-
rectly written as:

ΔE}electrostatic} ¼
X
B

ZX
BV

Y RX
B

� �
−
Z

ρX rð ÞVY
�
r
�
dr ð8Þ

In Eq. (8), ZB
X and RB

X are the charge and position of
nucleus B in the unperturbed molecule X and ρX(r) is
its electronic density; VY(r) is the electrostatic potential
of unperturbed molecule Y, as given in Eq. (1). X and
Y are assumed to occupy the same relative positions as
in the complex.

Equation (8) is physically unrealistic. It ignores the
fact that as soon as the molecules begin to interact (and
certainly by the time they have formed the complex),
they are no longer isolated and unperturbed. The charge
distribution of each has been polarized by the electric
field of the other. Such polarization is an intrinsic part
of any Coulombic interaction (unless both participants
are point charges). It influences both ρ(r) and V(r) of
each molecule that is involved. Accordingly, the electro-
static potentials displayed in Figs. 1 and 2, which are
for the isolated molecules, may be altered significantly
when the molecules begin to interact.

The role that polarization can play was demonstrated by
Hennemann et al. [35], by putting a point charge Q at a dis-
tance of 1.9 Å from one of the hydrogens of the water mole-
cule, as in 5. Figure 4 shows how the molecular surface elec-
trostatic potential of the water is changed as Q is made increas-
ingly negative. (In this study, the surface was taken to be the
0.002 au contour of the electronic density; this does not affect
the key point that is being illustrated.)

O
H H

Q

5

In Fig. 4a, Q is zero; the potential is accordingly that of the
unperturbed H2O molecule. The positive σ-holes of the
hydrogens, on the extensions of the O–H bonds, are
clearly visible. In proceeding to parts (b), (c) and (d)
of Fig. 4, Q is made incrementally more negative: −0.2,
−0.4 and −0.6 au. This polarizes the electronic density
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of the H2O away from the hydrogen that is close to Q
(at the left) and toward the farther hydrogen (at the right). The
σ-hole of the closer hydrogen becomes increasingly positive
and larger, the σ-hole of the farther hydrogen becomes less
positive and smaller.

Figure 5, also taken from Hennemann et al. [35],
shows how the σ-hole potential of the closer hydrogen
is changed when Q is allowed to be positive as well as
negative. As Q becomes increasingly positive, the elec-
tronic density of the H2O is polarized toward the hy-
drogen that is closer to Q, making its σ-hole less pos-
itive. Whereas the σ-hole of the hydrogen in the unper-
turbed H2O molecule (Q=0) has a maximum potential
(VS,max) of 57 kcal mol−1, this diminishes to 38 kcal mol−1

when Q=0.4 (Fig. 5). In contrast, this σ-hole potential in-
creases to 75 kcal mol−1 when Q=−0.4. Thus, positive σ-
holes can be strengthened, weakened or even induced (see
below) by polarization.

In σ-hole complexes, such as 1–4, the primary polar-
izing electric fields are likely to be those due to the
positive σ-hole and the negative site. Accordingly, it
can be anticipated that the electronic densities in the
molecules having the σ-holes will be shifted away
somewhat from the negative sites, while the electronic

densities in the molecules with the negative sites will be
shifted toward the positive σ-holes, as shown schemat-
ically in 1A–4A. This is exactly what is observed in

Fig. 4a–d Computed
electrostatic potential on 0.002 au
molecular surface of H2O.
Hydrogens are at left and right in
foreground. Color scaleValues of
the potential (kcal mol−1). A point
charge Q is 1.9 Å from the
hydrogen at left, along extension
of the O–H bond as in structure 5
(see text). Values of the point
charge (au): a 0.0, b −0.2, c −0.4,
d −0.6. Themost positive value of
the σ-hole potential of the
hydrogen at the left
correspondingly increases from a
57 to b 66 to c 75 to d
83 kcal mol−1. Computational
level: MP2/aug-cc-pVTZ.
Figure taken from Hennemann
et al. [35] with permission from
Springer

Fig. 5 Magnitude of the most positive value of the σ-hole potential of the
hydrogen at the left in Fig. 4 plotted against the value in au of the polar-
izing charge Q, placed 1.9 Å from the hydrogen (structure 5, see text).
Computational level: MP2/aug-cc-pVTZ. Figure taken from Hennemann
et al. [35] with permission from Springer
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plots showing the difference between the electronic density of
a complex and the sum of the electronic densities of the un-

perturbed component molecules, placed in the same relative
positions as in the complex [36–39].

CH C H N N

1A

Br O=C(CH3)2

2A

SCl

Cl

O=C(CH3)2

3A

PF

F

N

4A

H

N

Neglecting polarization can lead to incorrect conclusions,
as has been emphasized recently [40]. For instance, the σ-
holes of the chlorine in H3C–Cl [6] and the phosphorus in
H3P [41] have negative or near-neutral electrostatic potentials.
It may accordingly be claimed that the computationally pre-
dicted complexes 6 [16] and 7 [42] do not represent Coulom-
bic σ-hole interactions, and that some other stabilizing factors
are involved. However this ignores the polarizing effects of
the electric fields of the negative sites (the oxygen of O=CH2

and the nitrogen of NSH) which can induce positive σ-holes
on the chlorine and on the phosphorus [40]. It is not the Cou-
lombic interpretation (and the Hellmann-Feynman theorem)
that is inadequate to explain these interactions, but rather the
restricted use of Belectrostatics^ as reflecting the isolated, un-
perturbed molecules.

H3C-Cl----O=CH2

6

H3P----NSH

7

Dispersion

Dispersion has traditionally been attributed to attractive inter-
actions between instantaneous induced dipoles created by the
correlated movements of the electrons as they respond to their
mutual electrostatic repulsions; see, for example, London [43]
and Hirschfelder et al. [26]. Feynman, on the other hand,
argued that the stabilizing effects of dispersion are due to
intramolecular attractions between the nuclei of eachmolecule
and its own electronic charge that has been polarized into the

intermolecular region [22]. The validity of Feynman’s expla-
nation has been confirmed on several occasions [30, 31, 44,
45], and London’s 1/R6 dependence of the dispersion energy
[46] has been derived from the Hellmann-Feynman theorem.

In terms of the present discussion, however, the key point is
that dispersion—whether involving dipole/dipole or nuclear/
electronic interactions—is Coulombic; it is simply part of po-
larization. It is not a separate interaction. This also follows
from the Hohenberg-Kohn theorem [47], which tells us that
the correctly polarized electronic density of a complex will
yield its true total energy; it is not necessary to calculate an
additional dispersion contribution. Treating dispersion as dis-
tinct from polarization is just another example of trying to
separate what cannot be separated.

Charge transfer

In the context of noncovalent bonding, charge transfer and
polarization are also not separate contributions to the interac-
tion; they are equivalent. Morokuma and Kitaura observed al-
ready in 1981 that BIf one uses a complete basis set, one cannot
distinguish between the charge transfer and the polarization^
[48]. The same point has been made by others [40, 49–53].

Polarization is a real physical phenomenon, i.e., the re-
sponse of onemolecule’s electronic density to the electric field
of another. Charge transfer is a way of modeling that response
mathematically. Unfortunately, the model is often erroneously
taken to correspond to physical reality.

Thus we are told that the formation of complexes such as
1–4 involves the transfer of some fraction of an electron from
an occupied orbital on an Belectron donor^ (the negative site)
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to an empty orbital, usually antibonding, of an Belectron
acceptor^ (the molecule with a positive σ-hole). However this
explanation ignores the inconvenient truths that (1) electrons
are indivisible and cannot be fractionated, and (2) orbitals
have no physical existence [34]!

Stone and Misquitta [52] offered a good example of how a
model can affect the interpretation. Consider a noncovalent
complex X⋯Y. The usual quantum chemical treatment would
be in terms of orbitals centered on the atoms of both X and Y.
The form of the resulting X⋯Ywave function, which in itself
has no physical meaning, might suggest that some transfer of
electronic charge has occurred, e.g. from Y to X. The same
complex could be described equally well using only orbitals
centered on Y, provided that a sufficient number and variety
were included. The two treatments would produce comparable
electronic densities that show the polarization within the com-
plex. However the second X⋯Y wave function could not
possibly imply charge transfer from Y to X since there are
no orbitals on X to receive electronic charge. The illusion of
charge transfer is in the model; the reality of polarization is in
the electronic density, the physical observable.

Density-difference plots indicating the shifting of electron-
ic charge that accompanies a σ-hole interaction, as depicted
schematically in 1A–4A, may show what could be interpreted
as charge transfer into an antibonding orbital of the molecule
containing the σ-hole. However Clark et al. [39] demonstrat-
ed, for the F3C–Cl⋯OH2 interaction, that this inference
would be incorrect. They showed that essentially the same
density difference plot is obtained when each participant is
polarized separately through an iterative process in which
the other is represented by point charges. Since the partici-
pants are treated separately, no charge transfer can take place.

Aσ-hole interaction is typically accompanied by a change in
the stretching frequency of the bond on the extension of which
is theσ-hole (i.e., the C–H in 1, the C–Br in 2, the Cl–S in 3 and
the F–P in 4). The frequency usually decreases (a red shift), but
in some cases an increase (blue shift) is observed [2, 54, 55].
The occurrence of red shifts has been claimed to support the
notion of charge transfer into an antibonding orbital of the mol-
ecule with the σ-hole, which would presumably weaken the
bond in question and diminish its stretching frequency. How-
ever, Hermansson [56] and Qian and Krimm [57] have devel-
oped formalisms that allow both the red and the blue shifts in σ-
hole complexes to be explained and predicted in terms of just
the electric field of the negative site and the permanent and
induced dipole moments of the molecule having the σ-hole.
Such calculations have been carried out for numerous σ-hole
complexes [54, 55], confirming that electric field and polariza-
tion considerations suffice to explain the observations.

This was further demonstrated by Hennemann et al. [35].
They placed point charges Q along the extensions of the O–H
bond of H3C–OH and the C–H bond of F3C–H, as in 8 and 9.
Q was put at the position that the oxygen of the H2O molecule

occupies in the complexes H3C–OH⋯OH2 and F3C–
H⋯OH2. When the Q in 8 was made negative, the O–H
stretching frequency decreased; when it was positive, the fre-
quency increased. In 9, the opposite was observed: a negative
Q increased the C–H frequency, a positive Q decreased it.
Thus, the polarizing effects of the electric fields of the Q in
8 and 9 were sufficient to produce both red and blue shifts; no
charge transfers could be involved since the Q are point
charges and have no electronic charge to transfer nor orbitals
to receive it. The frequency changes, both increases and de-
creases, are the consequences of polarization.

H3C-O

8

H

Q

F3C-H-----Q

9

Concluding comments

The elegant mathematics of quantum chemistry—which deals
with exchange, Pauli repulsion, electronic correlation, orbital
representations, etc.—plays an essential role in arriving com-
putationally at a description of the charge distribution in a
noncovalent complex. Once that has been achieved, however,
the Hellmann-Feynman theorem and even the Hamiltonian
itself tell us that the interactions within the system are purely
Coulombic—which encompasses polarization and therefore
dispersion.

It is important to resist the seductive allure of mathematical
models, no matter how gratifyingly complex they may be.
Mathematical models should not be confused with physical
reality, even if the latter is exasperatingly straightforward.
Newton recognized this perverse tendency of physical phe-
nomena, BNature is pleased with simplicity^ [58], as did Ein-
stein, BNature is the realization of the simplest conceivable
mathematical ideas^ [58].
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