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Abstract Modeling the three-dimensional (3D) structures of
proteins assumes great significance because of its manifold
applications in biomolecular research. Toward this goal, we
present MaxMod, a graphical user interface (GUI) of the
MODELLER program that combines profile hidden Markov
model (profile HMM) method with Clustal Omega program to
significantly improve the selection of homologous templates
and target-template alignment for construction of accurate 3D
protein models. MaxMod distinguishes itself from other
existing GUIs of MODELLER software by implementing ef-
fortless modeling of proteins using templates that bear modi-
fied residues. Additionally, it provides various features such as
loop optimization, express modeling (a feature where protein
model can be generated directly from its sequence, without
any further user intervention) and automatic update of PDB
database, thus enhancing the user-friendly control of compu-
tational tasks. We find that HMM-based MaxMod performs
better than other modeling packages in terms of execution
time and model quality. MaxMod is freely available as a
downloadable standalone tool for academic and non-
commercial purpose at http://www.immt.res.in/maxmod/.
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Introduction

Recent advancement in high throughput next-generation se-
quencing technologies has led to an exponential rise in ge-
nome sequence databases. However, the significance of the
genomic data cannot be gained until functional inferences of
these sequences are deciphered. Toward this end, elucidation
of protein three-dimensional (3D) structure bears great impor-
tance in understanding the mechanism of protein function, its
evolutionary features and catalytic activity, all of which can
serve as important framework in designing further experimen-
tal studies. Keeping in view of the time consuming nature of
experimental determination of protein structure, theoretical
modeling based on homology is currently the most reliable,
rapid, and cost-effective approach for deducing structural
properties of sequences and to bridge the ever expanding
gap between the number of known protein sequences and
the number of structures solved [1]. Homology modeling
method predicts the 3D structure of a given protein sequence
(target) based primarily on its alignment to one or more pro-
teins of known structure (template) [2]. Although the reliabil-
ity of this method has been well established in recent years,
selection of the most accurate template and correctness of the
target-template alignment are still the challenging areas of
research.For homologous protein sequences with sequence
identity greater than 40 %, the alignment is generally consid-
ered to be almost accurate. However, as the overall sequence
identity decreases, alignment becomes difficult and subse-
quently reduces the quality of the final model [1, 3]. There-
fore, the choice of sequence alignment strategy plays a more
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critical role in generating accurate protein models than the
choice of the modeling program, with distinctly improved
models obtained by employing the best available sequence
alignment technique [4]. The widely used MODELLER pro-
gram [5] for homology modeling uses standard pairwise com-
parison methods for template selection and target-template
alignment [3]. The subsequently released graphical user inter-
faces (GUIs) of MODELLER program such as MINT (http://
www.bioinf.org.uk/software/mint/), EasyModeller [6],
SWIFT MODELLER [7] and PyMod [8] have also
implemented pairwise comparison methods into their
workflow for comparative protein structure modeling. A
brief account of some essential features of these programs
with their limitations is presented in Table 1.

Although pairwise comparison methods, which employ a
dynamic programming algorithm guarantee an optimal align-
ment, the intensity and generality of the underlying substitu-
tion matrices (PAM and BLOSSUM) limit the reliability of
such methods to cases of high sequence identity. On the other
hand, alignment in the so called twilight zone (between 15—
30 % sequence identity) requires additional information

regarding the protein family to which the particular sequence
belongs [9]. In the past several years probabilistic inference
methods based on profile hidden Markov models (profile
HMM) have emerged as an alternative to conventional
pairwise alignment methods such as BLAST [10, 11] and
FASTA [12] for creating sequence profiles in order to detect
more distant remote homologous templates from database
[13]. The key factor in HMM algorithm is in computing not
just one best-scoring alignment but a sum of probabilities over
the entire local alignment ensemble and therefore, contain
more information about the sequence family than a single
sequence [14, 15]. Furthermore, a number of recent studies
have corroborated the principal advantage of profile-profile
based alignment in template identification and overall model
quality generation [16—18]. Despite these many advantages,
implementation of HMM method in homology modeling soft-
ware and tools is yet to be addressed adequately [13]. Here we
describe the development and benchmarking of MaxMod, a
unique Microsoft Windows based GUI of MODELLER that
integrates HMMER3 program for template identification and
Clustal Omega program for sequence alignment. HMMER3

Table1 Comparison of various GUI’s of MODELLER program available for protein homology modeling

Tool name Features Limitations URL/reference

MINT MINT is the first GUI of the MODELLER program « It allows only the basic homology modeling http://www.bioinf.org.uk/
that automates the process of protein homology functions of MODELLER to be used. It is built on software/mint/

modeling having basic features.

EasyModeller EasyModeller tool is a frontend graphical interface to

SWIFT

Mathur et al.,
2011;
http:/
WWW.
bitmesra.
ac.in/

MODELLER program. In contrast to MINT,
EasyModeller performs visualization and
optimization of protein structures in addition to the
basic homology modeling protocol.

MODELLER

swiftmodeller/swift.htm

an older version of MODELLER i.e.,
MODELLERS with no further improvements in
the software after the release of MINT v3.2.

« For multi-template based modeling, users can load

up to a maximum of ten templates. Customized
features are unavailable for model optimization
and refinement. No options are available for
template search. Cannot include ligands from
templates having modified residues. No option for
copying selective ligands.

SWIFT MODELLER was developed later to

EasyModeller and follows a step-by-step approach
where the flow of the software screen depicts the
sequential steps of the homology modeling
process. SWIFT MODELLER is capable of
performing homology modeling, visualization,
optimization, and generation of Ramachandran
plots for the developed protein models.

Kuntal et al., 2010; http:/
modellergui.blogspot.in/

* Requires plotting
utilities as
prerequisites for
drawing evaluation
plots. Customized
features are
unavailable for model
optimization and
refinement. Unable to
model proteins, when
templates are having
modified residues. No
options are available
for copying ligands.

PyMod PyMod developed as a plug-in to PYMOL,
is used to perform homology modeling which
is comparatively faster than the above mentioned
graphical interfaces to MODELLER. It uses BLASTP

for protein homology search.

« Unable to model proteins, when templates are having
modified residues. No option for copying selective ligands.
Lacks a sequential step-by-step approach making it more
difficult for end-users.

Bramucci et al., 2012 http:/
schubert.bio.uniromal..it/
pymod/
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makes profile HMM searches as fast as BLAST, while
retaining the power of probabilistic inference technology
[13]. In conjunction, implementation of Clustal Omega allows
fast scalable generation of high quality multiple sequence
alignment by using HHalign package of HMMERS3 [19]. We
believe that MaxMod will make the entire process of protein
homology modeling much faster and user-friendly.

Methods

MaxMod has been developed using Visual Studio.NET plat-
form with C# as the programming language for a high degree
of flexibility in the development of user interface (UI) and
creating an interactive modular system. The UI is built on a
multiple document interface (MDI) for effective presentation
of different user modules. The input and output (I/O) opera-
tions dominate the entire coding architecture for formatting
Python scripts and input files of the backend MODELLER
program.

The architecture of MaxMod (Fig. 1) consists of three dis-
tinct layers, (a) Presentation layer: All visual elements of
MaxMod including user I/O, job directory management and
PDB sequence database update are present in this layer. (b)
Business layer: This layer contains standard programming
features of the .NET framework base class library (BCL) such
as collection classes, data type definitions, variables, security
and IO operations along with some non-standard features viz.,
drawing, classes for database interaction, and web support.
Business layer takes input from the preceding presentation
layer, processes data (formatting of python scripts and prepar-
ing inputs for other 3rd party programs) and sends it to the
next level. (¢) Data access layer: This is a virtual layer con-
trolling various 3rd party programs such as HMMER3,
Clustal Omega, Jmol, and PROCHECK [20], all of which

Fig. 1 Architecture of MaxMod
demonstrating three different
layers of data processing. (a)

have been integrated within MaxMod. The other programmes
such as MODELLER and Python require pre-installation. The
PDB database also resides in this layer for templates search.
All processed data and instructions from BCL are received by
the 3rd party programs of data access layer and are further
executed to display the output in the presentation layer. Based
on the above architecture, MaxMod follows a definite
workflow as illustrated in Fig. 2.

Submission of protein sequence

The user is required to submit the target protein sequence in
RAW format with a job title of a maximum of five characters.
If no title is provided, the program assigns a default name
(MODEL) to the submitted sequence along with date and time
(format: YYYYMMDDHHMMSS) of submission. The job
title also represents the working directory name, where the
results are saved for accessing at a later time. At this stage
the user can select one of the options viz., “search templates”,
“upload templates” or “express modeling”, depending on the
requirement (Fig. 3a).

Search templates

The PDB sequence database and “phmmer” program of
HMMER3 software suite are packaged together with
MaxMod in order to search templates. On selecting the
“search templates” option, HMMER3 program executes to
find remote homologs from PDB for the target protein se-
quence and the output is presented in a tabular format
outlining the PDB code with chain name of the crystal struc-
ture, E-value, bit-score, E-value of domain hits, bit-score of
domain hits and percentage of sequence identity. The user can

Presentation layer (b) Business

Sequence / Structure Input

layer (¢) Data access layer

a

Cc

Result/Output
MaxMod
Database Update
User Interface &
Directory Management

PRESENTATION LAYER

.NET Framework Base Class Library (BCL)

BUSINESS LAYER

__________________ i T

MODELLER, Python, HMMER, Clustal Omega, PROCHECK, Jmol,

PDB Sequence Database
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Fig. 2 Workflow of MaxMod for
predicting protein 3D model from
target sequence
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<

select desired number of templates for viewing more detailed
information of the crystal structure available in PDB and their
alignment with target sequence. The window will then be
directed to RCSB website (www.rcsb.org) for extracting the
atomic coordinates of the selected structures (Fig. 3b).

Upload templates

If the “upload templates” option in the homepage is selected,
the user will be redirected to a separate window where any
number of PDB structures can be uploaded as templates and
the appropriate chain can be further chosen from a drop down
menu (Fig. 3c¢).

Compare templates

The user can select the most accurate template by clicking on
the “compare templates” option, which performs comparison
between the selected templates on the basis of better crystal-
lographic resolution (R-factor) and higher overall sequence
identity. MaxMod then displays a dendrogram from the gen-
erated log file with their respective R-factor (Fig. 3d).

@ Springer
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Model construction and analysis

Successful submission of template structures by exercising
any of the options viz.,“search templates”, “upload templates”
and “compare templates”, the user will be redirected to the
model construction window where template-wise arrange-
ment of ligands are displayed in a tree-view topology. Re-
quired ligands may be selected to copy their atomic coordi-
nates onto the modeled structure. Other advanced features are
also available in MaxMod such as, “optimization and refine-
ment” where each model is first optimized with the variable
target function method with conjugate gradients, followed by
its refinement using molecular dynamics with simulated an-
nealing; “rapid optimization” enables the user to get an ap-
proximate model very quickly and, the “automatic loop refine-
ment after model building” allows refinement of loop regions
after constructing the 3D protein model (Fig. 3e). Selection of
the “build model” option after indicating the number of
models to be generated will automatically redirect to a new
window where ‘file name’, ‘molpdf (molecular probability
density function)’, and ‘discrete optimized potential energy
(DOPE) score’ are shown in the left panel and options for
‘PROCHECK’, ‘visualization’, ‘DOPE evaluation’, and
‘download’ are available in the right panel (Fig. 3f). A low
‘molpdf” or ‘DOPE score’ signifies a reliable model.
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Fig. 3 Screenshots of various windows of MaxMod. (a) Sequence input
window (b) Homologous proteins obtained from PDB using HMMER3
program (c¢) Template upload window (d) Window showing R-factor of
the selected templates (e¢) Window showing ligands selection from

PROCHECK and Jmol are programs used to generate the
Ramachandran plot (Fig. 3g) and visualize 3D conformation
of protein, respectively (Fig. 3h).

Express modeling

To make the homology modeling procedure simpler and user-
friendly, especially for beginners and non-programmer biolo-
gists, another useful feature named “express modeling” option
is provided in the home page of MaxMod, where submission

templates and the default/advanced parameters of MODELLER (f) Out-
put of the resulting protein models (g) Ramachandran plot generated
using integrated PROCHECK program (h) Model visualization through
Jmol (i) Residue-wise DOPE profile plot

of protein sequence in RAW format is the only requirement
for building protein 3D model.

Loop optimization

Loops that connect elements of secondary structure for proper
protein folding determine the functional specificity of the pro-
tein [21]. As a consequence, the accuracy of loop modeling is
a crucial component in determining the usefulness of compar-
ative models for studying protein-ligand interactions [22]. In
this context we have included a “loop optimization™ utility in

@ Springer



J Mol Model (2015) 21: 30

30 Page60f10

juasald

JU9SAIJ

JuAsaIg

(poayo01g
3uisn) juasald

Juasald
jowr
JUQSaI

JuasaIg

uonogJas Josn
uo Surpuadap ‘eSow [eIsnD

10 Y TT4dON Jo
puBlILIOd NOI'TVS

CIHNIANH

689°0
o'L—
% 818
% 0’0 :uoI3aI
pamojresig

% 6°66
:u0I321 PaMO[[y

siojourered
Jnejop

Suisn s ¢ pue
uoneziumndo

Se Pojoqe] SOJeurpIo-0d
orwoje [[e sardoo)juasqy

Juesqy

Juesqy

Juasqy

Juasald
TONAd
JUSqQY
JUOSQY

sojerduwoy

ordpnuu se [om se o[3urs

poq 10} YHTTHAON JO
PUBLILOd NOI'TVS

LSVI4-ISd % d1SV'1d

$69°0
LT6—
% €€°¢8

% 0°0 :uoI3ar

PIMO[IEsId % 666
:uoI3a1 Pamo[[y

uesqy

JUISqy

JuesqQy

JuasaIg
soysinbaoid se qipojdien

pue AJuny saamnbay

fowf

uesqy

JUDSAIJ

"A[oAnoadsar

‘sarejdwd) ordnnu pue

derdwd) o3urs 10y

YITTHAON JO pueuios
NOITVS Pue AZNDI'TV

YA TTAAON Jo
puewruod ()prng-aqyord

9L9°0
60°6—
% 10'vL

% €0 :uoI3ax

PIMO[IesId % L'66
:u0I321 pamo[y

SOYRUIPIO-00
orwoge [[e sa1doo) Jussqy

Juesqy

Juesqy
jussarg

Juasald
Jowsey
juosald

JUASAIJ
‘K1oanoadsar
‘sorerdwe) ordnnu pue
Jedwo)

a[3urs 103 YITIIAON
JO puewiod

NOITVS Pue AZNOITV

J]qe[reA. JON

9L9°0
60°6—
% 10vL

%, €0 :uoI3ar

PIMO[IesId % L'66
:uoI321 pamoyy

spuesi| 9anooes Sutkdo)
sjopow dyewrxoxdde
pue 1sej urelqo

03 uoneziundo prdey
Suipymq
[opow SuLmp aInyedy
JuSUIDUIJI

pue uoneziundo [OpOI

(yord uerpuey
JrWIRY) UONEPI[RA [OPOIA
(yord oyoxd
HdOQ) uonen[eAd [Ppo
uornezIensIp
judwauyal dooj opewony

uonezrumdo doo

yuowu3ie oyerduwoy
-1081e],

yoreas derduay
soInjes) o1y10ads
591008 NVHINO
pVSOUd
2AE-AJHIA

qlold ueIpueyORIIEy

uonEpIfeA [9pOIN

UuonoN)Su0d
[opow pue juowugIfe

pider ySnomp s ¢ S /S S GL S 8/ oyedwo)-)o5e) 10 UoNe) S|,
sg s 71 S 6% S[qE[TeAR JON oreds oyerdura],

LUoYe) oW,

0°T PONXEIN Q0'T PONAd 0T YdTTHAON LAIMS 0't7 JoTIPPOINASET Ananoy

werdord YT TTAAOIN JO SIND d[qe[reae Aorqnd 19730 Im PONXBIA JO SaInjedf pue douewiojiod jo uosuedwo) g d[qel

pringer

Qs



J Mol Model (2015) 21: 30

Page 7 of 10 30

Table 2 (continued)

MaxMod 1.0

PyMod 1.0b

SWIFT MODELLER 2.0

EasyModeller 4.0

Activity

“HETATM” which also
includes ligands)

Absent

labeled as “HETATM”

which also includes ligands)

Absent

Present

Absent

PDB sequence database update and job directory management

# calculated for protein sequence lactate dehydrogenase (Uniprot Acc Id: 096445) using the crystal structure of malate dehydrogenase protein from Thermus thermophilus HB8 (PDB Id: 1129 chain a) as
template (E-value: 8.2e-79, Identity: 44 %) for all the programs, on a x86 based 2.80 GHz Pentium D dual-core processor with 1 GB primary memory (RAM) and 80 GB secondary memory (Hard-Disk)

space.

® The allowed region in the Ramachandran plot corresponds to confirmations in which shorter van der Waal radii used in the calculation. Disallowed regions involve steric hindrance between the side chain

group and main chain atoms.

¢ Percentage of residues with VERIFY3D average score >0.2. VERIFY3D is used to analyze the compatibility of the 3D protein model with its own amino acid sequence.

9PROSA Z-score indicates overall model quality score and measures the deviation of the total energy of the modeled structure with respect to energy distribution derived from random conformations.

€ Qualitative model energy analysis (QMEAN) is a composite scoring function describing four major geometrical aspects of protein structure viz., c-beta interaction energy, all atom pairwise energy,

solvation energy, and torsion angle. The QMEAN score should fall within the reliability zone of 0 and 1.

MaxMod where PDB structures can be uploaded or obtained
directly from the job directory. The user is required to specify
the loop region to be refined as well as the number of struc-
tures to be generated. The resulting optimized 3D protein
models are displayed in a separate window to analyze and
download.

Results and discussion

MaxMod is a rich user-friendly standalone tool for protein
homology modeling that implements profile HMM method
in the modeling framework, unlike other existing GUIs like
EasyModeller, SWIFT MODELLER, and PyMod, which em-
ploy pairwise comparison methods such as ALIGN2D or
SALIGN commands for target-template alignment. The ad-
vantage of using profile HMM over pairwise comparison
method in MaxMod is that it turns a multiple sequence align-
ment into a position-specific scoring system which is more
suitable for identifying distant homologous relationships.
MaxMod can also effortlessly construct protein models using
templates bearing modified residues, a feature not present in
any other GUIs. Additionally other important features are
available such as loop optimization, model validation, and
visualization, automated update of PDB database, and express
modeling to enable users, to build 3D model by simply sub-
mitting the protein sequence.

On comparing MaxMod with other MODELLER-based
GUIs with respect to the total time taken to construct 3D
model for the protein sequence lactate dehydrogenase
(UniProt Acc Id: 096445), it was observed that MaxMod
takes around 18 s which is approximately three times faster
than PyMod and five times faster than EasyModeller and
SWIFT MODELLER (Table 2). The rapid construction of
protein model by MaxMod can be attributed to improved tem-
plate search and target-template alignment using HMMER3
and Clustal Omega programs, respectively. Moreover on
assessing the above four modeling programs in relation to
their ability to build 3D models with template bearing modi-
fied residues, specifically using the crystal structure (PKR
kinase domain-elF2alpha- AMP-PNP complex; PDB Id-
2A19) containing a modified residue named
phosphothreonine, it was observed that unlike other programs
which, either completely failed to construct any model or were
unable to copy the atomic coordinates of ligands, MaxMod
successfully completed protein modeling without any difficul-
ty. Furthermore, the overall performance of these programs
was compared by assessing the stereochemical quality of the
various 3D structures generated from modeling a test set of 15
randomly selected proteins, ranging sequences identity from
as low as 27 % to as high as 84 % (Table 3). PROCHECK
results indicated that all 3D models determined using
MaxMod were of better stereochemical quality with

@ Springer
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approximately more than 99 % of residues in the allowed
region of Ramachandran plot (Table 3). Furthermore, to check
the compatibility of inter-residues interactions, Verify3D [23,
24] tool was employed where the scores indicated that models
generated through MaxMod have relatively greater percent-
age of residues with an average score >0.2, as compared to the
models generated by other programs. Similarly, to detect po-
tential errors in the proteins, their Z-score and total energy
plots were calculated using ProSA-web program [25]. The
Z-score indicates overall model quality and measures the de-
viation of the total energy of the modeled structure with re-
spect to energy distribution derived from random conforma-
tions [26]. The score outside a range characteristic for native
proteins indicates erroneous structures. The ProSA energy
plot indicated that all the 3D models generated using MaxMod
fall within the range of experimentally determined structures
(Supplementary Fig. 1). Thus, the overall results (Table 3)
conclusively demonstrate the reliability of MaxMod for sig-
nificant improvement in model accuracy.

Conclusions

MaxMod is a rich user-friendly GUI to the MODELLER pro-
gram for prediction of protein 3D structures. Its unique
strengths are, (i) the use of profile HMM methods such as
HMMER and Clustal Omega for template identification and
target-template alignment, respectively; (ii) effortless model-
ing of protein using templates having modified residues (iii)
other useful features such as (a) loop optimization, (b) express
modeling, (c) model validation, and (d) PDB database update
facility. Additionally, the processing time required for model
building as well as the overall model quality is significantly
improved due to substitution of progressive alignment with
profile HMM method. The program runs on any version of
Microsoft Windows and we plan to release regular updates,
twice annually.
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