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Abstract A new software (UCA-FUKUI) has been devel-
oped to facilitate the theoretical study of chemical reactivity.
This program can calculate global parameters like hardness,
softness, philicities, and Fukui condensed functions, and also
local parameters from the condensed functions. To facilitate
access to the program we have developed a very easy-to-use
interface. We have tested the performance of the software by
calculating the global and local reactivity indexes of a group
of representative molecules. Finite difference and frontier
molecular orbital methods were compared and their correla-
tion tested. Finally, we have extended the analysis to a set of
ligands of importance in coordination chemistry, and the
results are compared with the exact calculation. As a general
trend, our study shows the existence of a high correlation
between global parameters, but a weaker correlation between
local parameters.
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Introduction

The density functional theory (DFT) has proven to be very
successful in understanding and developing the conceptual

issues of chemical reactivity [1–6]. It gives the connection
between the electronic chemical potential and Mulliken’s
electronegativity. Global hardness [7] has been identified as
the derivative of the electronic chemical potential [8] with
regard to the number of electrons. Local quantities like local
softness and the Fukui function have also been developed.
They have been very useful in the theoretical justification of
the hard-soft acids-bases principle [9–14] and the principle of
maximum hardness [15–23]. Global softness has been related
to physically observable quantities such as dipole polarizabil-
ity, as well as to other chemical concepts like molecular
valency.

The interpretation and prediction of organic reactions are
often complicated by the entanglement of electronic and steric
effects amongst others. In 1963, Pearson [24] launched a
unifying concept by which the chemical reactivities, selectiv-
ities, and stabilities of compounds could be readily rational-
ized. Chemical entities were categorized as "hard" and "soft"
Lewis acids or bases. Complex stability, however, cannot be
adequately estimated by considering only the hardness; addi-
tional parameters have to be introduced.

Condensed Fukui functions and the related local and global
parameters are very useful to study chemical reactivity. Sev-
eral reactivity studies [25–29] show the utility of this kind of
theoretical descriptors. For this reason, we have developed a
new software that can calculate this type of parameters of the
reactive compounds in a chemical reaction. In turn, hardness,
softness, philicities, electronic chemical potential, Fukui con-
densed functions and local parameters from the condensed
functions can be obtained through the UCA-FUKUI software
that we present in this study. The program has an easy-to-use
interface. A graphical interface has been developed to facili-
tate program handling and to avoid errors. For example,
starting the calculation is not permitted while any field
in the window is empty (in this case a warning window
will appear).
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Theoretical background

In 1999, the concept of the electrophilicity index (ω) was
quantitatively introduced by Parr et al. [30–34] as the stabili-
zation energy when atoms or molecules in their ground states
acquire additional electronic charge from the environment.

At the second order, the energy change (ΔE) [35] due to
the electron transfer (ΔN) satisfies Eq. 1:

ΔE ¼ μΔN þ 1

2
η ΔN2; ð1Þ

where μ and η are the chemical potential (negative of the
electronegativity) and chemical hardness, respectively defined
by Eq. 2 and Eq. 3:

μ ¼ ∂E
∂N

� �
υ

ð2Þ

and

η ¼ ∂2E
∂N2

� �
υ

; ð3Þ

with υ(r) as the external potential of the electrophile. Refer-
ence [36] shows how the H-K theorem is extended to frac-
tional electron number (N) and in refs. [37, 38] the implica-
tions of derivative discontinuity for conceptual DFT are

explored. According to Mulliken [39–43], using a finite dif-
ference method, working equations for the calculation of μ
and η may be given as:

μ ¼ −
1

2
IP þ EAð Þ ð4Þ

and

η ¼ IP−EAð Þ; ð5Þ

Fig. 2 Finite difference window: NH3 sample

Fig. 1 Scheme of the UCA-
FUKUI code
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where IP and EA are the first ionization potential and electron
affinity, respectively. According to, Janak’s theorem [44] for
DFT (and Koopmans’ theorem [45] for Hartree-Fock), IP can
be expressed in terms of the highest occupied molecular
orbital (HOMO) energy, ∈H [46]. The HOMO-LUMO gap
(Eg) is considered an excitation energy [47]. The fundamental
band-gap for an N-electron system in an external potential
v(r), is given by: Eg=(Eυ(N−1)−Eυ(N))−(Eυ(N)−Eυ(N+1))=
IP−EA [48]. Thus,

μ ≈
1

2
∈L þ ∈Hð Þ ð6Þ

and

η ≈ ∈L − ∈Hð Þ; ð7Þ

where ∈H and ∈L correspond to the Kohn–Sham [49] one-
electron eigenvalues.

If the electrophile environment provides enough charge
[36, 37], it will be become saturated with electrons according
to Eq. 1:

dE

dN

� �
¼ 0; ð8Þ

leading to the maximum amount of electron charge

ΔNmax ¼ −
μ
η
; ð9Þ

and the total energy decrease

ΔEmin ¼ −
μ2

2η
: ð10Þ

The new density functional theory (DFT) reactivity index,
global electrophilicity index or electrophilicity index (ω) [50]
is proposed as

ω ≡
μ2

2η
: ð11Þ

Fig. 3 UCA-FUKUI main
window, NH3 sample

Table 1 NH3 example
to get the overlap inte-
grals from Gaussian

#B3LYP/6-31G(d) iop(3/33=4) pop=full

NH3 molecule example

0 1

N 0.000 0.000 0.130

H 0.000 0.930 -0.290

H -0.810 -0.470 0.290

H 0.810 -0.470 -0.290

Table 2 Electronic po-
tential, hardness, soft-
ness, and electrophilicity
for the NH3 example

Global parameters:

Electronic potential (au): -0.1051

Global hardness (au): 0.6455

Global softness (au): 1.5493

Electrophilicity (eV): 0.2328
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The electrophilicity indexmeasures the stabilization energy
when the system acquires an additional electronic charge
ΔNmax=−μ/η from the environment, in terms of the electronic
chemical potential μ and the chemical hardness η.

The electrophilicity index encompasses both the propensity
of the electrophile to acquire an additional electronic charge
driven by μ2 (the square of electronegativity) and the resis-
tance of the system to exchange electronic charge with the
environment described by η. A good electrophile is, in this
sense, characterized by a high value of μ and a low value of η.

A previous study [51] presented a good linear correlation
between the electrophilicity values obtained from the comput-
ed IPs and EAs of ethylene derivatives and those obtained
from the HOMO and LUMO energies. The results from this
study [51] allow us to confirm the use of accessible B3LYP/6-
31G* HOMO and LUMO energies, ∈H and ∈L, to obtain
reasonable values for the global electrophilicity index of or-
ganic molecules, and thus make valuable electrophilicity
scales.

Local reactivity descriptors: local parameters

To understand detailed reaction mechanisms such as regio-
selectivity, apart from global properties, local reactivity pa-
rameters are necessary to differentiate the reactive behaviour
of atoms forming a molecule. The Fukui function [52–54]
(f(r)) and local softness [55, 56] (s(r)) are two of the most
commonly used local reactivity parameters (Eq. 12).

f rð Þ ¼ ∂ρ rð Þ
∂N

� �
ν

s rð Þ ¼ ∂ρ rð Þ
∂μ

� �
ν

¼ ∂ρ rð Þ
∂N

� �
ν

⋅
∂N
∂μ

� �
ν

¼ S⋅ f rð Þ
ð12Þ

The Fukui function is primarily associated with the re-
sponse of the density function of a system to a change in the
number of electrons (N) under the constraint of a constant
external potential [v(r)]. The Fukui function also represents

Table 3 Condensed Fukui functions (electrophilic, nucleophilic, and radicalary attack), condensed dual-descriptor, local hardness, and local electro-
philicities (electrophilic and nucleophilic attack) calculated for the NH3 example

N k f- f+ f0 Dual-Descriptor Hardness(au) W-(eV) W+(eV)

1 7 0.9559 0.5846 0.7703 -0.3713 0.5362 0.2225 0.1361

2 1 0.0147 0.1385 0.0766 0.1238 0.0364 0.0034 0.0322

3 1 0.0147 0.1385 0.0766 0.1238 0.0364 0.0034 0.0322

4 1 0.0147 0.1385 0.0766 0.1238 0.0364 0.0034 0.0322

Fig. 4 (left) Local philicities
(w+) for the NH3 molecule.
(right) NBO energies for the NH3

molecule
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the response of the chemical potential of a system to a change
in external potential. As the chemical potential is a measure of
the intrinsic acidic or base strength [13], and local softness
incorporates global reactivity, both parameters provide us a
pair of indices to demonstrate, for example, the specific sites
of interaction between two reagents.

Due to the discontinuity of the electron density with respect
to N, finite difference approximation leads to three types of
Fukui function for a system, namely f +(r) (Eq. 13), f −(r)
(Eq. 14) and f 0(r) (Eq. 15) for nucleophilic, electrophilic and
radical attack, respectively. f +(r) is measured by the electron
density change following addition of an electron, and f −(r) by
the electron density change upon removal of an electron. f 0(r)
is approximated as the average of both previous terms. They
are defined as follows:

f þ rð Þ ¼ ρN0þ1 rð Þ−ρN0
rð Þ; for nucleophilic attack; ð13Þ

f − rð Þ ¼ ρN0
rð Þ−ρN0−1 rð Þ; for electrophilic attack; ð14Þ

f 0 rð Þ ¼ 1

2
ρN0þ1 rð Þ−ρN0−1 rð Þ� �

; for neutral or radicalð Þ attack:

ð15Þ

In references [57] and [58] is proposed a new index (Dual
Descriptor) of selectivity toward nucleophilic attack, but it can
also be used to characterize an electrophilic attack. It is de-
fined as

Δ f rð Þ ¼ f þ rð Þ− f − rð Þ½ � ð16Þ

If Δf(r) > 0, then the site is favored for a nucleophilic
attack, whereas if Δf(r) <0, then the site could hardly be
susceptible to undertake a nucleophilic attack but it may be
favored for an electrophilic attack.

Because Fukui functions are positive (0 ≤ f(r)≤ 1), −1
≤Δf(r)≤ 1 and the normalization condition for Δf(r) isZ

Δ f rð Þdr ¼ 0 ð17Þ

On the basis of these results, it is clear that numerical values
of Δf(r) are defined within the range {−1; 1}. This is an
advantage with respect to other reactivity indexes that may
present large values, thus leading to hard-to-interpret results.
Reference [59] shows a complete comparison between two
local-evaluation common methods (finite difference lineariza-
tion and Koopmans approximation) and also studies two
atomic condensations schemes (Hirshfeld’s and Bader’s
partitions)

A common simplification of the Fukui function [60] is to
condense its values to individual atoms in the molecule. That
is, through the use of a particular population analysis, one can
determine the number of electrons associated with every atom
in the molecule. The condensed Fukui function is then deter-
mined through a finite differences approach, so that for the kth
atom in the molecule one has that

f −k ¼ qk N 0ð Þ−qk N 0−1ð Þ; for electrophilic attack; ð18Þ

f þk ¼ qk N0 þ 1ð Þ−qk N0ð Þ; for nucleophilic attack; ð19Þ

f 0k ¼
1

2
f þk þ f −k

� �
; for neutral or radicalð Þ attack: ð20Þ
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Fig. 5 Global electrophilicities vs the ones calculated by UCA-FUKUI
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In these relationships, qk(N0−1), qk(N0), and qk(N0+1) are
the number of electrons associated with the kth atom in the
molecule, when the total number of electrons in the molecule
isN0−1,N0, andN0+1 electrons, respectively. The calculation
of the N0−1 and N0+1 electron systems is done at the ground-
state geometry of the N0 electron system.

Local parameters: frontier molecular orbital method

Equation 12 was used to develop another condensed form of
the Fukui function that can be approximately defined as:

f − rð Þ ¼ ρHOMO rð Þ; for electrophilic attack; ð21Þ

f þ rð Þ ¼ ρLUMO rð Þ; for nucleophilic attack; ð22Þ

f 0 rð Þ ¼ 1

2
ρLUMO rð Þ−ρHOMO rð Þð Þ; for neutral or radicalð Þ attack:

ð23Þ

Under frozen orbital approximation (FOA) of Fukui and
neglecting the second-order variations in the electron density,
the Fukui function can be approximated as:

f α rð Þ≈ ϕα rð Þj j2; ð24Þ

where ϕα(r) is a particular frontier molecular orbital (FMO)
chosen depending upon the value of α=+ or α=−. Expanding
the FMO in terms of the atomic basis functions, the condensed
Fukui function at the atom k is:

f αk ¼
X
ν∈k

Cναj j2 þ
X
χ∉μ

Cχα
�Cνα Sχν

" #
ð25Þ

f −k ¼
X
ν∈k

CνHj j2 þ
X
χ∉ν

CχH
�CνH Sχν

" #
electrophilic attackð Þ

ð26Þ
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f þk ¼
X
ν∈k

CνLj j2 þ
X
χ∉ν

CχL
�CνL Sχν

" #
nucleophilic attackð Þ ð27Þ

f 0k ¼
1

2
f þk þ f −k

� �
radicalary attackð Þ; ð28Þ

where Cνα are the molecular frontier orbital coefficients, and
Sχν are the atomic orbital overlap matrix elements. The sub-
indexes “H” and “L” are referenced to the HOMO and LUMO
orbitals. This definition of the condensed Fukui function
(Eqs. 25–28) has been used in a variety of studies yielding
reliable results [61–63] but it has been severely criticized by
Joubert [59].

Once the Fukui function is evaluated following a particular
scheme, condensed-to-atom softness can easily be evaluated
from Eq. 12 as Eq. 29,

sαk ¼ S f αk α ¼ þ;−or 0ð Þ; ð29Þ

the corresponding condensed-to-atom philicity index [64] can
be expressed as Eq. 30:

wα
k ¼ wf αk α ¼ þ;−or 0ð Þ; ð30Þ

and finally, local hardness [65–67] has been defined as Eq. 31.
This definition is less conventional than the Berkowitz con-
cept [68] but it is very useful.

ηk ¼ ∈L f þk − ∈H f −k ð31Þ

UCA-FUKUI package. Programming details

Figure 1 shows the scheme of the UCA-FUKUI code. It can
calculate many parameters like hardness, softness and
philicities. It can also calculate the Fukui condensed functions
and estimate the local parameters obtained with them. More-
over, the program can read natural bond orbitals from a
Gaussian analysis (Gaussian03 [69] or 09 [70]) and can dis-
play the NBOs energy levels in a graphical interface as a
helpful tool in a reactivity study.

For UCA-FUKUI (http://www2.uca.es/dept/quimica_
fisica/software/UCA-FUKUI.zip), the electronic charges
(qk(i)) from Eqs. 18 and 19 are the natural population atomic
(NPA) charges obtained from a natural bond orbital (NBO)
analysis [71]. It is necessary to select "finite difference
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Fig. 9 Condensed dual
descriptor (Δf −) calculated with
FMO method vs. calculated with
FD method

Fig. 10 Dyes type ligands. L1-4 and L6-7 are neutral, L5 and L8 have
charge −1
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indexes/condensed Fukui functions" in the main menu to
obtain a window (Fig. 2) that allows us to calculate the Fukui
functions. This window can read the NPA charges from a
Gaussian file (*.log or *.out).When the "calculate/all indexes"
option is selected, the program calculates the condensed Fukui
functions (f −, f + and f 0), and displays a result window like in
Fig. 2; as an example, we show the results for NH3.

Program handling

The software needs two Gaussian files to run. Figure 3 depicts
the window where the files must be loaded (“files\open fch
file” and “files\open overlap integral file”). One is a “*.fch”
(formatted chk) single point calculation file and the other one
is a “*.out” or “*.log” result file with all the overlap integrals.
The file order is not important. Also, the program has been
developed to work with Linux or Windows *.fch and *.out
(*.log) Gaussian files.

The keywords to get Gaussian overlap integrals are shown
in Table 1 for the NH3 molecule.

The program generates three types of result files. The
“calculate” menu shows the type of results that can be
obtained.

In Table 2 we can see the global parameters: electronic
potential, hardness, softness, and electrophilicity calculated
with UCA-FUKUI for the previous example (NH3).

In Table 3 we can see the local parameters: condensed
Fukui functions (electrophilic, nucleophilic, and radicalary
attack), local hardness, and local electrophilicities (electro-
philic and nucleophilic attack) calculated for the NH3

molecule.
The program can draw graphical representations of the

calculated parameters by selecting "graphics" in the main
window and then choosing the graph type. For example,
Fig. 4 (left) shows a graphical representation of local philicity
(w+) for the four atoms of the NH3 molecule. Also, the results
of an NBO analysis (obtained with Gaussian) can be used to
generate another graph type. Figure 4 (right) shows an NBO
energy diagram corresponding to the NH3 molecule.

Computational details

All the structures included in this study were optimized at the
B3LYP/6-31G(d) level of theory using the Gaussian09 pack-
age [70]. The UCA-FUKUI software needs the MO

coefficients and the overlap integrals that are calculated by
the Gaussian program. The electrophilic Fukui function is
evaluated from a single point calculation in terms of the
molecular orbital coefficients and the overlap matrix. Local
electrophilicity values are obtained from the global electro-
philicity index (Eq. 11) and the electrophilic Fukui function
(Eq. 25).

Results and discussion

To test the correct performance of the software, we have
repeated the calculations of the global electrophilicities
(Eq. 11) and local electrophilicities (Eq. 25) for the first 25
molecules from the work of Domingo et al. on the reactivity of
the carbon-carbon double bond toward nucleophilic additions
[72].

Figure 5 shows a good correlation between the two sets of
global electrophilicities. The correlation coefficient (R2) is
0.999. We have chosen this parameter because it depends on
the electronic chemical potential μ and the chemical hardness
η as we can see in Eq. 11, and in this way we get a very
significant test.

Figure 6 shows the local electrophilicities of the alpha and
beta carbons from reference [72] vs. the one calculated by the
UCA-FUKUI program. The alpha carbon linear regression
has a correlation coefficient (R2) of 0.988, while for the beta
carbon it is 0.980. The results of the UCA-FUKUI are
completely satisfactory, and the minor difference between
the two sets may be due to the fact that the original results
were obtained by using Gaussian 98 [73] and the new results
with Gaussian 09.

Finite differences and frontier molecular orbital: comparison
in a set of representative molecules

The molecule set used to compare the finite differences with
the frontier molecular orbital methods is: H2O, NH3, CH2O,
CH3OH, C5H5N, C6H5OH, C6H5COOH, CH2CHF,
CH3NHOH, CH2CHNO2, NH2CH2COOH, NH2OCH3 and
NH2OH.

Fig. 12 |ϕHOMO(r)|2 with the 6-31G(d), 6-31G(d,p), 6-31+G(d,p), cc-
pVDZ basis sets.

�Fig. 11 Local Fukui function f − calculated for the L1, L4, L5, and L7
ligands with the methods: frontier molecular orbital (FMO) method
(Eq. 24), finite difference (FD) (Eq. 16), frozen orbital approximation
of Fukui (Eq. 22), and exactly calculated (Eq. 13)
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Finite differences and frontier molecular orbital: global
parameters comparison

Figure 7 shows a good correlation between the global param-
eters calculated by the finite difference and frontier molecular
orbital methods. In the case of the philicity, the correlation
coefficient (R2) is 0.977.

Finite differences and frontier molecular orbital: local
parameters comparison

Figure 8 shows the condensed Fukui function (f −) calculated
with the finite difference method and the frontier molecular
orbital (FMO) method. In this case, the correlation between
the two methods is smaller than in the global parameters case,
the correlation coefficient being 0.811. As noted by Bultick
[74] different approaches to atom condensed Fukui functions
can provide too different values. Concerning the dual descrip-
tor (Fig. 9), correlation coefficient between FD and FMO drop
to 0.16 and FMO values are greater than FD ones. Figure 9
also shows chemical content while considering the quadrants
formed by the axes. Since both ‘a’ and ‘c’ quadrants corre-
spond to dual descriptor values of opposite signs, the points
lying in these zones correspond to cases where the two ap-
proximations predict contradictory chemical reactive tenden-
cy (Δf >0 predominantly electrophilic, Δf <0 predominantly
nucleophilic). Of the considered atomic sites 15 % are located

within those quadrants, thus supporting the claim that FMO
approximation deviates significantly from FD ones.

Comparison between the finite differences and frontier
molecular orbital methods in a ligand set

We studied nucleophilicity, by means of the condensed Fukui
function (electrophilic attack, f −), in a ligand set (Fig. 10). We
performed this analysis to check the previously obtained
results, but in a more complex molecule sample. The exact
condensed Fukui function (Eq. 13) was also calculated (with
the same method and base), as a reference.

The selected ligands belong to dye sensitized solar cell
coordination complexes and they are molecules with a great
nucleophilic character. The L1 ligand belongs to the ACIDIA
[75], ACAYUZ [76], ACAYOT [76], ABUWID [77],
ABUWAD [78], HUWLUH [79], and PEKSAA [80] com-
plexes; the L2 to ACODEB [81]; the L3 to ACIDIA [75]; the
L4 to GOKMOI [82]; the L5 to AFARAB [83] and AFAREF
[83]; the L6 to GAGMOS [84]; the L7 to GAGMOS [85]; and
L8 to EFEKIK [85] and XIMWUM [86]. The nomenclature
of the complexes was taken from the Cambridge Crystallo-
graphic Data Centre (CCPC) (http://www.ccdc.cam.ac.uk/
pages/Home.aspx).

Figure 11 shows representations of the condensed Fukui
function (f −) for L1, L4, L5, and L7 (Fig. S1 shows repre-
sentations for all the ligands). The f − values are represented
by colors. The smaller values are colored in red, the interme-
diate ones in black, and the high ones in green. In Fig. 11 four
representations of f − can be compared:

(I) Calculated with the frontier molecular orbital method
(Eq. 26). Figure S2 shows a complementary representa-
tion of these values,

(II) Finite difference method (Eq. 18),
(III) Frozen orbital approximation (FOA) of Fukui (Eq. 24),
(IV) Exactly calculated (Eq. 14). The electronic densities

were normalized to the appropriate number of electrons

Fig. 14 Energy levels with
B3LYP (left) and CAM-B3LYP
(right)

Fig. 13 |ϕHOMO(r)|2 with the HF, B3LYP, CAM-B3LYP methods
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before their subtraction. The brown color represents
negative values for f − [87].

The topological analysis of the Fukui function (III and IV)
presents an alternative to the analysis of the Fukui function
[88]. The four kinds of representations (Fig. 11) have been
plotted by using the GaussView program [89].

In most of the cases the tendencies are similar (Fig. 11), but
there are important exceptions (L7) that we will discuss in the
next section. The interpretation of the exact condensed Fukui
function is very complicated, but the other representation of f −

(FD) helps in the interpretation. It is important to have all the
graphics, as this makes the information easier to understand.

Method and basis set dependence

Next, regarding the reactivity index calculation, several com-
binations of methods and basis sets were studied. We used the
L7 ligand to carry out this study because it was the only one
where we found significant differences between the frontier
molecular orbital and finite difference methods.

The “methods/basis sets” used in this study were B3LYP
with the basis sets 6-31G(d) [90, 91], 6-31G(d,p) [92], 6-31+
G(d,p) [93], and cc-pVDZ [94]. Otherwise we have compared
the methods HF [95], B3LYP [96], CAM-B3LYP [97] using
the 6-31G(d) basis set. For all the calculations we used the
B3LYP/6-31G(d) optimized geometry.

Figure 12 shows that the change of basis set did not
significantly affect the results. With regard to the method,
Fig. 13 shows that the B3LYP results are clearly different to
the other two methods; in this case, we find a strong depen-
dence on the method. Figure 14 shows the orbital energy
levels calculated with B3LYP and with CAM-B3LYP; in the
right figure (CAM-B3LYP) the HOMO and HOMO-1 orbitals
have similar energy (−0.32695 and −0.32843), which leads us
to believe that small changes in the functional could lead to
exchanges in the energy levels, which is an important matter
to bear in mind when we calculate the reactivity indexes.

Conclusions

The UCA-FUKUI software, which calculates the most stan-
dard chemical reactivity parameters, was developed. It can
calculate global hardness, softness, philicity, condensed Fukui
functions and their related parameters (local hardness and
local philicities). The program results were tested on a reason-
able number of molecules and its correct behavior was proven.

To show the usefulness of the software, it was applied to
compare the finite difference and frontier molecular orbital
methods for a molecule sample. The study shows a high
correlation between global parameters and a weaker

correlation between local parameters. The nucleophilicity in
a ligand set was also studied to check previously obtained
results and we found that the results were similar.
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