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Abstract The three-dimensional quantitative structure–activ-
ity relationship (3D-QSAR) for inhibitors of thyroid hormone
receptors (TR) α and (TR) β was studied. The training set of
the TRα model generated a correlation coefficient (R2) =
0.9535, with standard deviation (SD)=0.3016. From the test
set of the TRα model, a Q2 value for the predicted activities
(= 0.4303), squared correlation (random selection R2− CV=
0.6929), Pearson-R (= 0.7294) and root mean square error
(RMSE=0.6342) were calculated. The P-value for TRα
(= 1.411e-96) and TRβ (= 2.108e-165) models indicate a high
degree of self-reliance. For the TRβ model, the training set
yielded R2 =0.9424 with SD = 0.3719. From the test set of
TRβ , Q2 value (= 0.5336), the squared correlation (R2− CV=
0.7201), the Pearson-R (= 0.7852) and RMSE for test set
predictions (=0.8630) all strengthen the good predictive com-
petence of the QSAR model derived. Examination of internal
as well as external validation supports the rationality and good
predictive ability of the best model. Molecular docking ex-
plained the conformations of molecules and important amino
acid residues at the docking pocket, and a molecular dynamics
simulation study further uncovered the binding process and
validated the rationality of docking results. The findings not
only lead to a better understanding of interactions between

these antagonists and thyroid hormone receptors α and β, but
also provide valuable information about the impact of struc-
ture on activity that will be very beneficial in the design of
novel antagonists with preferred activity.
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Introduction

Thyroid hormone receptors (TRs) play an important role in
normal development, differentiation, growth and metabolic
regulation in humans. TRs can be considered as ligand-
regulatable transcription factors, assuming their competencies
to interact with ligands and DNA along with their ability to
control transcription [1, 2]. TRs, which are members of the
nuclear hormone receptor (NR) superfamily, are differentially
expressed as many isoforms (TRα1, TRβ1 and TRβ2) in
different tissues of the body and are key targets for commonly
used drugs [3–5].

TRs are comprised of functional domains A/B, C, D and E,
with a DNA binding domain (DBD), hinge domain and ligand
binding domain (LBD) associated with the C, D and E do-
mains, respectively. The sequences of DBD and LBD are
extremely highly conserved amongst the TR isoforms. Con-
versely, no resemblance occurs in the A/B domain between
TRα and TRβ isoforms [6]. TRα1 and TRβ1 vary from 400
to 500 amino acids in size, having abundantly homologous
DBD and LBD. TRα isoformsα1,α2 andα3, are encoded by
the TRα gene. These isoforms vary in their carboxyl termini
due to alternative splicing. TRα1 has a binding capacity for
T3, which leads to activation or repression of target genes,
whereas TRα2 and TRα3 are non-T3 binding products and
inhibit T3 function [7]. TRβ gene encodes three T3-binding
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splice products isoforms: TRβ1, TRβ2, and TRβ3, which
differ in their amino termini. All TRβ isoforms are capable
of binding to their cognate ligand T3 with high affinity to
facilitate target gene transcription [1]. The effects of thyroid
hormone have been delineated by observations in investiga-
tions on human subject with poor or extreme thyroid hormone
levels. Hypothyroidism occurs due to thyroid hormone defi-
ciency, while hyperthyroidism results from oversecretion of
thyroid hormone. Resistance to thyroid hormone (RTH) is a
condition in which persons have hyposensitivity to thyroid
hormone, raised circulating serum levels of T3 and T4, and
high or non-suppressed thyroid stimulating hormone (TSH)
serum levels. RTH was recognized because of a muta-
tion in TR genes. It is significant that RTH patients can
exhibit inconsistent resistance in various tissues and
clinical symptoms characteristic of the hypothyroidism
and hyperthyroidism [8].

To date, numerous thyroid ligands have been reported [9,
10]. These TR ligands could lead to safe treatments for non-
thyroid illness while evading the cardiac side effects and,
therefore, could be used as a short-term supplemental therapy
to traditional cures [11]. Specifically impeding the conse-
quences of thyroid hormone binding at the receptor level
may lead to a substantial improvement in the treatment of
hyperthyroid patients [3].

Various quantitative structure–activity relationships
(QSAR) from one- to six-dimension models, as well as struc-
ture–activity relationships (SARs) have been developed satis-
factorily [12–15]. Hormone activities of OH-PBDEs for the
TRβ and 2D-QSAR model have also been reported [16]. 3D-
QSAR studies have been combined with a molecular docking
and molecular dynamic (MD) simulation approach [17–19].
These models can assist with finding critical structural fea-
tures for high binding affinity of novel ligands against TRβ.
The identification and design of novel TR antagonists could
play a significant role in their potential medical applications in
the therapy of thyroid disorder [20]. Such antagonists usually
interact with hydrophobic and important hydrophilic residues
lining the ligand-binding pocket [21].

The aim of the present study was to explore the binding
mode of inhibitors with TRα and TRβ receptors through
molecular docking and MD simulation to gain further insight
into their structure–activity relationship, and to obtain robust
3D-QSAR models. Such models could be useful in designing
novel antagonists.

Materials and methods

All computational analysis was carried out on a Linx operat-
ing system (Cent OS 6.3) on a 64-bit machine running with an
Intel quard core (4*2 core) processor and 16 GB RAM, with

nvidia (Quadro FX 1700) graphic memory cards (512 MB)
and a 900-GB SAS hard disk.

Ligand preparation and dataset for analysis

Three dimensional (3D) molecular structural datasets of 357
and 203 inhibitors from the binding database [22] were
employed against TRβ and TRα, respectively. All molecules
were processed with LigPrep 2.5 software [23] in order to
assign appropriate protonation states at physiological pH
(7.2±0.2), employing the ionizer option. The IC50 values
of the biologically active molecules were converted to
pIC50=−log10 (IC50)+9. The distribution of pIC50 of the
entire data set for TRβ inhibitors varied from 10.721 to
2.699, whereas for TRα inhibitors fluctuated from 3.67 to
10. Care was taken to definite a uniform distribution for
TRα and TRβ inhibitors from a varied range of pIC50 for
both training and test sets.

Generating pharmacophore sites

Six pharmacophore features, such as hydrogen bond acceptor
(A), hydrogen bond donor (D), hydrophobic group (H), neg-
atively ionizable (N), positively ionizable (P), and aromatic
ring (R) are available in the Phase 3.4 [24] module of
Schrodinger. The procedures used to map the locations of
pharmacophore sites are acknowledged as feature definitions,
and are characterized within the program by a set of SMARTS
patterns. Each pharmacophore feature is specified by a set of
3D structural configurations of the compound. Once a feature
has been mapped to a precise position in a conformation, it is
stated as a pharmacophore site.

Searching common pharmacophores and scoring hypotheses

The desired variants were selected to find common
pharmacophores among the active ligands. In this study, with
five active compounds in the training set for TRβ and ten for
TRα, shared pharmacophores were studied using a scoring
procedure to recognise the pharmacophore from each surviv-
ing n-dimensional box that yields the best alignment of the
active-set ligands. This pharmacophore offers hypotheses to
describe how the active molecules interact with the receptor.
As there are many boxes, there will be many hypotheses. The
scoring method offers a ranking of the diverse hypotheses,
allowing rational selection of those hypotheses most suitable
for further examination. The shared pharmacophore hypothe-
ses were scored by setting the root mean square deviation
(RMSD) value <1.2 Å, the vector score value to 0.5 and
weighting to include consideration of the alignment of inac-
tive molecules by default constraints.
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3D-QSAR model development

Phase—an integrated software module in maestro—was used
to produce pharmacophore and 3D-QSAR models for TRα
and β inhibitors. 3D-QSAR models of TRα and TRβ were
developed from varying activities of different compounds,
linked with a particular reference molecule, that have all been
aligned to a common pharmacophore hypothesis. An atom-
based QSAR model was used in this study, which takes all
atoms into account. Standard parameters of the program were
employed utilizing the partial least-squares (PLS) regression
analysis method. The precision of the predicted models in-
creases with rising number of PLS factors until over fitting
twitches to transpire.

Model validation

Phase 3D-QSAR models utilise distinct training and test sets
rather than internal cross-validation methods. In Phase 3D-
QSAR models, leave-n-out models are made and the R2 value
between the leave-n-out estimates is calculated. The estimates
come from the model built on the complete training set. This
value is designated as the stability value and has a maximum
value of the integer one. Models with high stability are pre-
ferred because they are not excessively reliant on the pecu-
liarities of any specific training set.

The variance in observed activity (σy
2) and coefficient of

determination (R2) are very important statistical parameters
used for precision of the training set model where the observed
activity for the training set molecule i (yi), is as shown in
Eqs. 1 and 2:

σ2
y ¼

1

n

X
i¼1

yi−yið Þ2 ð1Þ

R2 ¼ 1−
σ2
err

σ2
y

ð2Þ

The value of R2 will always be positive, for the reason that
the regression coefficients are optimized to have low sum of
squared error (sse). The weakest situation is when the inde-
pendent variables have absolutely no statistical association
with activity. The regression coefficients will all be zero, and
the predicted model will comprise only an intercept factor, the
value of which will be mean observed activity(y) as per the
above-mentioned conditions. Therefore, all predicted activity
will be y, and variance in errors (σ∈rr

2 ) will be equivalent to σy
2,

resulting in R2=0.
A statistical quantity Q2 (Eq. 3), equivalent to R2 is calcu-

lated using the experimental and predicted activities for the
test set. It is uncommon to obtain negative Q2 values due to
smaller variance in y as the test set does not have as high a
series of activity values as the training set and the variance in

the errors is larger because of errors in the test set, which have
tendency to be larger than those for the training set. As all
values are moved by the sample means, the Pearson correla-
tion coefficient (r) is impervious to logical errors in the esti-
mations; however, Q2 is not. Therefore, if the rank order of
activity computations is basically precise, but there is a key
constant shift in the values related to the experiential activities,
rmay still be moderately high, even ifQ2 is small or negative.
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The PLS regression was performed by PHASE with all
available (i.e., seven) PLS factors. All models were validated
by predicting activity for test sets of 47 and 71 molecules for
TRα and TRβ, respectively.

Pharmacophore screening

For external cross validation of the predicted model, a phase
3D-database was created against both models. A total of 197
inhibitors, consisting of 146 TRβ and 51 thyroid oxidase2
antagonists were employed to screen external cross validation
of the built 3D QSAR model of TRβ. In total, 66 inhibitors,
consisting of 15 compounds of TRα and 51 thyroid oxidase 2
inhibitors molecules, were used to cross-validate the con-
structed 3D QSAR model of TRα.

Molecular docking

Molecular docking was performed to investigate in-depth
binding modes of different sets of TRα and TRβ inhibitors.
The Glide 5.8 [25] module of Schrodinger software was used
for molecular docking. Glide applies a hierarchical succession
of filters to explore probable sites of the ligand in the active-
site region of the target protein. The shape and properties of
the target protein are characterized on a grid by numerous
diverse sets of fields that make available gradually more
precise scoring of the compound poses. Mainly, the degrees
of freedom of side chains were sampled, while minor back-
bone movements were permitted through minimization. The
3D coordinates of the TRα in complex with ligand (PDB ID:
3JZB), and TRβ in complex with ligand (PDB ID: 1NAX),
were retrieved from the Brookhaven Protein Databank. The
four significant amino acids residues Arg 282, Arg 320, Asn
331 and His 435 for TRβ and three residues Arg 266, Ser 277,
His 381 for TRα, distinct as flexible residues in the docking
process, were considered as binding sites. The best docking
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score was selected on the basis of the conformation possessing
high docking scores as well as maximum activity.

The XP glide docking process is very precise and produces
10,000 poses for every ligand during docking and provides the
top pose on the basis of the energy term Emodel. The top poses
of each compound were further given preference on the basis
of XPGscore [26]. Lower XPGscore for a ligand specifies im-
proved binding affinity with the protein. The limit of the
XPGscore constraint for XP glide docking was kept to 0.0
kcal mol−1, a restraint set to reject compounds with positive
XPGscore after docking yield.

Molecular dynamics simulation

Desmond 3.1 and 3.5 [27]—a suite of computer program for
executing classical MD simulation systems—was used to
evaluate the stability and conformational changes, and to
generate high-quality simulation trajectories of moderate
timescales in solution along with thermodynamic measures
of docking complexes [28]. TheMD simulations were studied
through using the OPLS2005 force field with the predefined
[29] with the docked complex of TRβ protein with second
lowest value docking score of ligand PCID 9933119 and TRα
protein with lowest docking score of ligand PCID 10456672.

The original coordinates for the MD simulations were
pocketed from the docking results. Prior to the simulation,
an energy minimization process was performed on the full
system without constraints using the steepest descent integra-
tor for maximum 2,000 iterations, and the limited memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithms,
with a convergence threshold of 20.0 kcal mol−1 Å−1. The
system was rooted with simple point charge (SPC) water
model along with 10 Å×10 Å×10 Å ortho-rhombic water
box, and the systems were neutralized by replacing solvent
molecules with counter ions (Na+) to balance the net charges
of the systems. This ensures that the major surface of both
complexes (TRα and TRβ) were covered by the solvent
model. In all, 64,009 atoms of TRα and 59,141 atoms of
TRβ protein and ligand complex were simulated through a
multi sim step procedure of the final system.

Prior to equilibration and extensive MD simulations, the
structures wereminimized and pre-equilibrated using a default
relaxation routine. To perform this, the program ran six phases
composed of minimizations and small (12 and 24 ps) MD
simulations to relax the model system before accomplishment
of the final long simulations. A 5-ns production MD simula-
tion was then performed for each system. The shake algorithm
was applied to all hydrogen atoms and the van der Waals
(VDW) cut off was set to 9 Å [30]. The temperature of the
system was maintained at 300 K, using the Nose-Hoover
thermostat approach with a relaxation time of 1 ps, and pres-
sure was maintained by employing the Martyana-Tobais-
kleinbarostat approach using coupling style isotropic with

relaxation time of 2 ps. Long-range electrostatic forces were
considered bymeans of the particle-mesh Ewald (PME) meth-
od [31]. Trajectory was recorded at 4.8 ps during the MD runs
and the recording interval energy was set at 1.2 ps. The
dynamics equilibration was observed by studying the stability
of temperature, energy, pressure and density of the system
along with RMSD of the backbone atoms. RMSD and energy
fluctuations of the complex in every trajectory were examined
with respect to simulation time. The root mean square fluctu-
ations (RMSF) of overall atoms, backbone and side chains of
TRα and TRβ were studied for each residue. The docking
complex was explored and examined for consistency of hy-
drogen bonding interactions.

Results and discussion

Analysis of the atom-based 3D-QSAR model

To explore the common pharmacophore hypotheses, the com-
plete dataset was separated into an active set and an inactive
set, underlying the attribute of pharm set. Compounds with
pIC50>8.60 for TRα and pIC50>10.00 for TRβ were consid-
ered to be active and those with pIC50<5.00 for both (TRα
and TRβ) were set to be inactive, whereas those in-between
were considered asmoderately active (supplementary Tables 1
and 2). Total 439 (8 variant) and 33 (5 variant) hypotheses
were identified for TRα and TRβ, respectively (Table 1).

These hypotheses yielded a scoring process comprising of
three scores: survival (solely on the basis of the active set),
surv-inactive (on the basis of the active and inactive sets) and
post-hoc score; calculated on the basis of active and inactive
sets, with a reward assigned based on the pIC50 of each
compound of the data set. The default parameter of the post-
hoc score was taken as cut-off value. A total of 80 TRα
(Table 2) and 20 TRβ (Table 3) hypotheses survived, and
only hypotheses with the highest survival-inactive scores were
considered for building 3D-QSAR models. All molecules in
the dataset were then aligned, matching with at least three
pharmacophore features. The selected test set members were
considered by the minimum distance from the centroid of each
cell in the top map. After analyzing the alignment between
active ligands and the generated hypothesis, the best model
was DHHHNRR.251 of TRα, in which five active molecules
in the active set matched with the hypotheses and were select-
ed for further study. Likewise, the built QSAR model gener-
ated by hypothesisAHHHNRR.25 for TRβ had two active
molecules in the active set out of five that matched hypothe-
ses. Hypothesis 79 for TRα (Table 2) and 19 for TRβ (Table 3)
are also shown to allow the reader to draw comparisons. The
QSAR model was constructed by an atom-based QSAR
modeling method.
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The best models for TRα and TRβ were selected on the
basis of the PLS factor model’s minimum SD (standard devi-
ation) and RMSE (root-mean-square error) value for both sets.
The PLS regression was achieved by Phase with a maximum
of seven PLS factors at a minimum of ten ligands per PLS
factor. The legitimacy of each model was tested based on the
calculated correlation coefficient (R2) and variance (F) for the
test set. Training and test set ligands were respected in a 4:1
ratio to obtain the best model. “F” enlightens the proportion of
the model variance to the observed activity variance. Higher
values of “F” specify a more statistically significant regres-
sion. Pearson-R value indicates the correlation between the
experimental and observed activity for the test set. The “P”
value indicates probability, i.e., correlation could occur by
chance and signify a level of “F” when considered as a ratio
of Chi-squared distributions. Lower values indicate a higher
degree of confidence. Cross-validated R2 (R2−CV) value,
computed from predictions is obtained by a leave-n-out
approach.

It is advocated that Phase works well when R2>0.4 [32].
The statistical constraints related to the built atom-based 3D-
QSARmodel for TRαwere as follows: the training set (= 156
compounds) attained an R2 value of 0.9535, with SD of
0.3016; the test set (= 47 compounds) obtained Q2 (value of
Q2 for the predicted activities) of 0.4303, squared correlation
(random selection R2−CV=0.6929), Pearson-R of 0.7294 and
RMSE of 0.6342. The P value of 1.411e-96 stated a high
degree of self-reliance. The anticipated activities of the train-
ing and test set molecules were given in Table 4. The regres-
sion line for predicted activity of TRα (cross validated test
data set) is displayed in Fig. 1.

A total of 357molecules was employed for the TRβmodel,
of which 336 were retrieved from the binding database and 21
from the published literature [3].

The entire data set for developing the TRβ QSAR model
was distributed, randomly choosing 279 compounds to be in
the QSAR training set and 71 compounds for the test set.
Training and test set were maintained at a one to four ratio in
an automatic process. Thus, total 350 molecules were engaged
for making the model and seven molecules were discarded
because they did not fulfill the criteria to fit the model. The
training set yielded an R2 value 0.9424 with SD (= 0.3719).
The squared correlation (random selection R2−CV=0.7201),
the Pearson-R (= 0.7852), and RMSE for test set predictions
(= 0.8630) all strengthen the good predictive competences of
the concluding QSAR model for the test set of TRβ. The P
value, 2.108e-165 specified a high degree of self-reliance for
TRβmodel. The predicted activities of the training and test set
molecules are given in Table 5. The regression line for pre-
dicted activity of TRβ (cross validated test data set) is shown
in Fig. 2. Stability of the model predictions to modifications in
training set composition have a maximum value of 1.

The Q2 value of TRα at PLS factor 3 yielded better at the
cost of R2, so it was omitted. The optimummodel of TRβwas
found at PLS factor 6. The RMSE value of PLS factor 6
was found to be lower (= 0.8630) compared to PLS factor
7 (= 0.9067) and there was very little difference between
R2 values.

The established 3D QSAR model satisfies model require-
ments and has good correlation with biological activity. After
analyzing the statistical values, the QSARmodel for TRβwas
found to be much improved as compared to that of TRα.

QSAR visualization of TRα and TRβ models

In the present study, the best QSAR model for inhibitors of
both TRα and TRβ were developed at PLS factor 6. The
selected hypothesis DHHHNRR.251 of TRα contains one
hydrogen-bond donor (light blue), three hydrophobic sites
(green), one negatively ionizable atom (red) and two aromatic
rings (dusky saffron) in Fig. 3a. The 3-D arrangement of
pharmacophore sites reveals that the main section of the
model is engaged by a hydrophobic pocket. The hydrogen
bond donor site is located on one aromatic ring and the
negatively ionizable atom on the other.

The pharmacophore hypothesis displaying distance site
and angle mapping between the pharmacophoric sites of
TRα is shown in Fig. 3b,c. The distances between sites D3–
H4 and D3–R8 were 2.169 Å and 3.266 Å, respectively. The
details of distances and angles between different groups of
TRα are listed in supplementary Table 3.

The chosen hypothesis AHHHNRR.25 was found as the
best among 20 hypotheses of the TRβ model; this hypothesis
is comprised of one hydrogen-bond acceptor (light red), three

Table 1 Pharmacophore hypotheses with variant of thyroid hormone
receptors (TR) TRα and TRβ

Target protein Variant
no.

Variant Maximum no.
of hypotheses

TRα 1 ADHHNRR 75

2 AAHHHNR 42

3 DHHHNRR 64

4 AAHHNRR 44

5 AHHHNRR 72

6 AAHHHRR 30

7 ADHHHRR 52

8 ADHHHNR 60

Total 439

TRβ 1 ADHHHRR 6

2 AAHHNRR 1

3 AAHHHRR 20

4 DHHHNRR 1

5 AHHHNRR 5

Total 33
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Table 2 All 80 pharmacophore hypotheses of TRα with parameters and their values for all 10 matching sites

Sample no. Hypotheses ID Survival Inactive Survival -inactive Post-hoc Site Vector Volume Selectivity Energy Activity (pIC50)

1 DHHHNRR.251 8.693 0.53 8.163 3.511 0.68 0.995 0.837 3.823 2.16 10.39

2 DHHHNRR.246 8.693 0.53 8.163 3.511 0.68 0.995 0.837 3.823 2.16 10.39

3 DHHHNRR.277 8.663 0.704 7.959 3.491 0.67 0.995 0.83 3.814 1.364 10

4 DHHHNRR.284 8.663 0.704 7.959 3.491 0.67 0.995 0.83 3.814 1.364 10

5 DHHHNRR.279 8.65 0.747 7.903 3.485 0.67 0.996 0.82 3.808 2.844 9.85

6 DHHHNRR.288 8.65 0.747 7.903 3.485 0.67 0.996 0.82 3.808 2.844 9.85

7 DHHHNRR.415 8.656 0.794 7.862 3.496 0.68 0.994 0.825 3.802 4.376 10.39

8 DHHHNRR.418 8.657 0.81 7.848 3.486 0.67 0.994 0.821 3.814 2.421 10.39

9 DHHHNRR.416 8.626 0.795 7.831 3.475 0.67 0.994 0.812 3.793 2.519 9.62

10 DHHHNRR.420 8.639 0.813 7.827 3.478 0.67 0.994 0.817 3.804 3.066 9.62

11 AHHHNRR.101 8.58 0.843 7.737 3.48 0.68 0.995 0.809 3.742 2.728 9.85

12 AHHHNRR.94 8.58 0.843 7.737 3.48 0.68 0.995 0.809 3.742 2.728 9.85

13 ADHHNRR.44 8.535 0.869 7.665 3.545 0.72 0.995 0.825 3.632 2.844 9.85

14 ADHHNRR.45 8.535 0.869 7.665 3.545 0.72 0.995 0.825 3.632 2.844 9.85

15 ADHHNRR.48 8.529 0.871 7.658 3.539 0.72 0.994 0.823 3.632 3.066 9.62

16 ADHHNRR.49 8.529 0.871 7.658 3.539 0.72 0.994 0.823 3.632 3.066 9.62

17 ADHHNRR.51 8.513 0.858 7.655 3.523 0.71 0.995 0.818 3.632 2.728 9.85

18 ADHHNRR.52 8.513 0.858 7.655 3.523 0.71 0.995 0.818 3.632 2.728 9.85

19 ADHHNRR.47 8.508 0.867 7.642 3.514 0.71 0.995 0.811 3.636 2.311 9.62

20 ADHHNRR.50 8.508 0.867 7.642 3.514 0.71 0.995 0.811 3.636 2.311 9.62

21 ADHHNRR.240 8.517 0.879 7.638 3.533 0.72 0.996 0.82 3.626 2.948 9.85

22 ADHHNRR.234 8.517 0.879 7.638 3.533 0.72 0.996 0.82 3.626 2.948 9.85

23 AHHHNRR.96 8.578 1.011 7.567 3.474 0.68 0.993 0.802 3.745 2.838 9.62

24 AHHHNRR.102 8.578 1.011 7.567 3.474 0.68 0.993 0.802 3.745 2.838 9.62

25 AAHHHNR.141 8.491 0.947 7.544 3.481 0.67 0.997 0.815 3.651 2.519 9.62

26 ADHHHNR.130 8.46 0.941 7.52 3.482 0.66 0.996 0.823 3.62 2.844 9.85

27 ADHHHNR.124 8.46 0.941 7.52 3.482 0.66 0.996 0.823 3.62 2.844 9.85

28 AHHHNRR.104 8.588 1.084 7.504 3.496 0.69 0.995 0.814 3.734 2.844 9.85

29 AHHHNRR.97 8.588 1.084 7.504 3.496 0.69 0.995 0.814 3.734 2.844 9.85

30 AHHHNRR.144 8.592 1.112 7.48 3.499 0.69 0.994 0.813 3.735 3.066 9.62

31 AHHHNRR.477 8.652 1.184 7.468 3.494 0.67 0.994 0.829 3.8 4.328 10.39

32 AHHHNRR.143 8.556 1.099 7.457 3.464 0.68 0.99 0.799 3.734 2.969 9.62

33 AHHHNRR.131 8.556 1.099 7.457 3.464 0.68 0.99 0.799 3.734 2.969 9.62

34 AAHHNRR.28 8.595 1.168 7.426 3.547 0.73 0.996 0.822 3.69 2.597 9.85

35 AAHHNRR.27 8.595 1.168 7.426 3.547 0.73 0.996 0.822 3.69 2.597 9.85

36 ADHHHRR.186 8.458 1.034 7.423 3.724 0.87 0.999 0.856 3.376 2.203 10

37 ADHHHRR.193 8.458 1.034 7.423 3.724 0.87 0.999 0.856 3.376 2.203 10

38 ADHHHNR.156 8.366 0.953 7.413 3.496 0.69 0.996 0.813 3.513 2.844 9.85

39 ADHHHNR.150 8.366 0.953 7.413 3.496 0.69 0.996 0.813 3.513 2.844 9.85

40 ADHHHNR.153 8.331 0.947 7.384 3.474 0.66 0.996 0.814 3.499 2.597 9.85

41 ADHHHNR.149 8.331 0.947 7.384 3.474 0.66 0.996 0.814 3.499 2.597 9.85

42 AAHHNRR.129 8.526 1.169 7.357 3.485 0.67 0.996 0.815 3.683 2.597 9.85

43 AAHHNRR.128 8.515 1.168 7.348 3.475 0.67 0.995 0.814 3.682 2.928 9.62

44 AAHHNRR.148 8.521 1.176 7.345 3.493 0.7 0.992 0.804 3.67 2.519 9.62

45 ADHHHNR.216 8.362 1.019 7.342 3.489 0.68 0.995 0.81 3.514 3.066 9.62

46 AAHHNRR.131 8.534 1.193 7.341 3.502 0.7 0.993 0.81 3.673 2.844 9.85

47 AAHHNRR.146 8.502 1.167 7.335 3.468 0.68 0.99 0.798 3.677 2.43 9.62

48 AAHHNRR.130 8.513 1.183 7.331 3.477 0.67 0.996 0.813 3.678 2.928 9.62

49 AAHHNRR.127 8.542 1.216 7.326 3.498 0.68 0.997 0.817 3.686 2.844 9.85
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hydrophobic (green), one negatively ionizable atom (red) and
two aromatic rings (dusky saffron) (Fig. 3d). The
pharmacophore hypothesis displaying distance site and angle
mapping between the pharmacophoric sites of TRβ is shown
in Fig. 3e,f. The distance between sites A2–R9 and A2–H6
were 2.77 Å and 3.238 Å, respectively. The details of different
distances and angles between different groups of TRβ are
given in supplementary Table 4. The spatial arrangement of
the pharmacophore sites shows a major area of the model
being occupied by a hydrophobic pocket. The hydrogen bond
acceptor site is situated on one aromatic ring and a negatively
ionizable atom at the other ring with a COOH− group.

All the active compounds (ten active compounds for TRα
and five for TRβ) used for building the model fitted and
occupied into the similar spatial arrangement is illustrated in
Fig. 4a,b. The mapping reveals both that the model satisfied

the hypothesis and that all active molecules taken for the
training set are aligned.

Pictorial representations of volume occupied maps (hydro-
phobic, donor, aromatic ring and electron-withdrawing fea-
tures) for TRα hypothesis DHHHNRR.251 and TRβ hypoth-
esis AHHHNRR.25 are shown in Fig. 5. The reference com-
pounds for TRα and TRβ are 3-[4-(4-hydroxy-3-
iodophenoxy)-3, 5-diiodophenyl] propanoic acid (PCID
5804), 2-[3, 5-dibromo-4-(4-hydroxy-3-propan-2-ylphenoxy)
phenyl] acetic acid (PCID 9933119), respectively. Favorable
and unfavorable contacts are displayed in blue and red cubes
in the contour map. The volume occupied map is helpful to
identify significant sites that necessitate a convinced physico-
chemical property for developing an effective antagonist drug
for hyper level thyroid hormone secretion as discussed in the
following section.

Table 2 (continued)

Sample no. Hypotheses ID Survival Inactive Survival -inactive Post-hoc Site Vector Volume Selectivity Energy Activity (pIC50)

50 ADHHHNR.139 8.346 1.032 7.313 3.476 0.68 0.996 0.804 3.512 2.311 9.62

51 ADHHHNR.137 8.346 1.032 7.313 3.476 0.68 0.996 0.804 3.512 2.311 9.62

52 ADHHHNR.214 8.346 1.036 7.31 3.486 0.69 0.994 0.805 3.502 2.519 9.62

53 ADHHHRR.164 8.419 1.111 7.307 3.697 0.86 0.999 0.838 3.364 4.634 10.39

54 ADHHHRR.163 8.419 1.111 7.307 3.697 0.86 0.999 0.838 3.364 4.634 10.39

55 AAHHNRR.132 8.531 1.226 7.305 3.492 0.69 0.996 0.808 3.681 2.519 9.62

56 ADHHHRR.151 8.432 1.13 7.302 3.71 0.86 0.999 0.853 3.364 2.16 10.39

57 ADHHHRR.158 8.432 1.13 7.302 3.71 0.86 0.999 0.853 3.364 2.16 10.39

58 ADHHHRR.188 8.438 1.161 7.277 3.726 0.88 0.998 0.847 3.355 0.237 10

59 ADHHHRR.195 8.438 1.161 7.277 3.726 0.88 0.998 0.847 3.355 0.237 10

60 AAHHHNR.108 8.411 1.141 7.269 3.499 0.69 0.997 0.812 3.554 2.844 9.854

61 AAHHHNR.104 8.411 1.141 7.269 3.499 0.69 0.997 0.812 3.554 2.844 9.854

62 ADHHHRR.275 8.412 1.164 7.248 3.705 0.86 0.998 0.846 3.349 1.801 10.39

63 ADHHHRR.251 8.412 1.164 7.248 3.705 0.86 0.998 0.846 3.349 1.801 10.39

64 AAHHHNR.144 8.403 1.156 7.247 3.495 0.69 0.997 0.804 3.55 2.519 9.62

65 AAHHHNR.107 8.381 1.157 7.224 3.477 0.67 0.998 0.813 3.546 2.928 9.62

66 AAHHHNR.105 8.381 1.157 7.224 3.477 0.67 0.998 0.813 3.546 2.928 9.62

67 AAHHHNR.131 8.369 1.15 7.219 3.46 0.67 0.994 0.797 3.551 2.43 9.62

68 AAHHHNR.143 8.369 1.15 7.219 3.46 0.67 0.994 0.797 3.551 2.43 9.62

69 AAHHHNR.94 8.384 1.176 7.208 3.475 0.68 0.995 0.803 3.551 2.311 9.62

70 AAHHHNR.98 8.384 1.176 7.208 3.475 0.68 0.995 0.803 3.551 2.311 9.62

71 AAHHHRR.122 8.287 1.236 7.051 3.727 0.87 0.999 0.856 3.202 2.203 10

72 AAHHHRR.129 8.287 1.236 7.051 3.727 0.87 0.999 0.856 3.202 2.203 10

73 AAHHHRR.127 8.259 1.224 7.035 3.71 0.86 0.999 0.85 3.191 2.16 10.39

74 AAHHHRR.133 8.259 1.224 7.035 3.71 0.86 0.999 0.85 3.191 2.16 10.39

75 AAHHHRR.139 8.246 1.222 7.024 3.697 0.86 0.999 0.837 3.191 4.634 10.39

76 AAHHHRR.140 8.246 1.222 7.024 3.697 0.86 0.999 0.837 3.191 4.634 10.39

77 AAHHHRR.124 8.269 1.245 7.024 3.727 0.88 0.998 0.848 3.183 0.237 10

78 AAHHHRR.131 8.269 1.245 7.024 3.727 0.88 0.998 0.848 3.183 0.237 10

79 AAHHHRR.298 8.238 1.215 7.023 3.706 0.86 0.999 0.845 3.174 1.801 10.39

80 AAHHHRR.338 8.238 1.215 7.023 3.706 0.86 0.999 0.845 3.174 1.801 10.39
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Hydrogen bond donor

The volume occlusion map for the hydrogen bond donor
(HBD) of TRα explains the favorable 3D arrangement of
hydrogen bonding or non-covalent interactions with acceptor
groups of the protein. The structure of the HBD acquired from
the QSAR model could be applied to the most active ligands
(Fig. 5a). HBD favorable blue cubes are present near the
fourth position of the benzene (R8) group of the model. All
highly active molecules contain the HBD group (OH) at their
fourth position in molecules PCID 5804, 10456830,
23648079, 5803, 71212, 7048703, 10904700, 9933119,
9951790 and 10479779. The unfavorable red contours are
not found in this volume occupied region. These HBD groups

also showH-bonding contacts with His381 in docking (Fig. 6)
with the most active ligand PCID (5804) but the docking score
with (2-[4-(5-bromo-6-hydroxynaphthalen-1-yl)-3, 5-
dichloroanilino]-2-oxoacetic acid) PCID(10456672) was the
best compared to that mentioned above, which is a moderately
active ligand, thereby indicating the importance of this inter-
action for the activity of all molecules. This result thus justifies
the occurrence of HBD blue regions at this site.

Hydrophobic/non-polar property

The hydrophobic property of the TRα 3D-QSAR model was
applied to the most active compound PCID (5804) as shown
in Fig. 5b. In this figure, favorable blue maps are seen near the

Table 3 Twenty hypotheses generated to build three dimensional quantitative structure–activity relationship (3D-QSAR) model of TRβ for five
matching sites with their parameters

Sample no. Hypotheses ID Survival Inactive Survival -inactive Post-hoc Site Vector Volume Selectivity Energy Activity

1 AHHHNRR.25 7.615 1.079 6.536 3.351 0.6 0.957 0.796 3.8 2.266 10.721

2 AHHHNRR.26 7.598 1.075 6.522 3.335 0.58 0.964 0.79 3.799 2.279 10.721

3 AHHHNRR.1 7.585 1.108 6.477 3.309 0.56 0.964 0.789 3.812 4.588 10.602

4 ADHHHRR.3 7.239 0.975 6.264 3.404 0.72 0.899 0.788 3.371 2.337 10.602

5 ADHHHRR.4 7.239 0.975 6.264 3.404 0.72 0.899 0.788 3.371 2.337 10.602

6 AAHHHRR.20 7.352 1.094 6.258 3.686 0.88 0.975 0.833 3.202 0 10.022

7 AAHHHRR.16 7.352 1.094 6.258 3.686 0.88 0.975 0.833 3.202 0 10.022

8 AAHHHRR.22 7.341 1.132 6.209 3.693 0.88 0.976 0.839 3.183 0.284 10.022

9 AAHHHRR.18 7.341 1.132 6.209 3.693 0.88 0.976 0.839 3.183 0.284 10.022

10 AHHHNRR.4 7.282 1.092 6.19 3.022 0.38 0.919 0.724 3.796 0.237 10.602

11 AHHHNRR.3 7.282 1.092 6.19 3.022 0.38 0.919 0.724 3.796 0.237 10.602

12 AHHHRR.172 7.293 1.136 6.157 3.655 0.84 0.976 0.837 3.174 0.151 10.319

13 AHHHRR.196 7.293 1.136 6.157 3.655 0.84 0.976 0.837 3.174 0.151 10.319

14 ADHHHRR.42 7.231 1.087 6.143 3.411 0.71 0.897 0.8 3.355 4.588 10.602

15 ADHHHRR.46 7.231 1.087 6.143 3.411 0.71 0.897 0.8 3.355 4.588 10.602

16 AHHHRR.211 7.272 1.149 6.123 3.638 0.84 0.973 0.829 3.17 3.561 10.022

17 AHHHRR.187 7.272 1.149 6.123 3.638 0.84 0.973 0.829 3.17 3.561 10.022

18 AAHHNRR.1 7.23 1.176 6.054 3.084 0.42 0.947 0.713 3.682 3.493 10.721

19 AAHHHRR.21 7.171 1.122 6.049 3.522 0.83 0.976 0.711 3.185 0.242 10.222

20 AAHHHRR.17 7.171 1.122 6.049 3.522 0.83 0.976 0.711 3.185 0.242 10.222

Table 4 Statistical analysis of 3D-QSAR model for TRα. PLS Partial least squares, SD standard deviation, RMSE root-mean-square error

PLS
factor

SD R2 F P R2-CV Stability RMSE Q2 R -Pearson Opt
model

1 0.9493 0.5238 169.4 1.36E-26 0.4703 0.9918 0.7511 0.2009 0.5729

2 0.7268 0.7227 199.3 2.46E-43 0.5845 0.9532 0.589 0.5085 0.7772

3 0.6128 0.8041 208 1.37E-53 0.6034 0.9126 0.5555 0.5629 0.7977

4 0.4571 0.8917 310.9 8.65E-72 0.6601 0.8329 0.6298 0.4382 0.7307

5 0.3756 0.9274 383.1 1.70E-83 0.6819 0.8038 0.6274 0.4425 0.7223

6 0.3016 0.9535 509.1 1.41E-96 0.6929 0.7917 0.6342 0.4303 0.7294 √
7 0.2675 0.9637 560.6 4.07E-103 0.6949 0.7759 0.6247 0.4471 0.7344
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third position of the benzene ring (R8), and the third and fifth
positions of the phenyl ring (R9) in active molecules. On the
other hand, hydrophobic unfavorable red contours are visual-
ized near the ortho- position of the benzene ring (R8) in most
of the inactive molecules. Hydrophobic favorable blue

contours are also shown near the first position of the
diiodophenyl ring in active molecules. This location is espe-
cially favorable for hydrophobic aliphatic chains having a
carboxylic group at their terminus. This noticeably specifies
that hydrophobic substitutions can be acknowledged at this

Fig. 1 Scatter plot of cross
validated predicted values of
thyroid hormone receptor α
(TRα)

Table 5 Statistical analysis of 3D-QSAR for TRβ

No. of factors SD R2 F P R2-CV Stability RMSE Q2 R -Pearson Opt model

1 0.9669 0.6037 422 1.30E-57 0.5743 0.9971 0.925 0.4642 0.7036

2 0.738 0.7699 461.9 8.55E-89 0.6639 0.9678 0.8443 0.5536 0.7682

3 0.6283 0.8339 460.1 7.80E-107 0.6852 0.9443 0.8671 0.5292 0.7743

4 0.5017 0.8944 580.4 2.04E-132 0.6977 0.8943 0.864 0.5325 0.7881

5 0.4139 0.9284 708.2 5.23E-154 0.7031 0.8445 0.8714 0.5244 0.7737

6 0.3719 0.9424 741.9 2.11E-165 0.7201 0.833 0.863 0.5336 0.7852 √
7 0.3194 0.9577 876.4 4.47E-182 0.7172 0.8077 0.9067 0.4852 0.7717

J Mol Model (2014) 20:2286 Page 9 of 19, 2286



position to increase activity. The appearance of unfavorable
red cubes at approximately similar sites in inactive molecules
revealed that massive hydrophobic assemblies at this position
are harmful for activity. Favorable blue contours are present at
the second position of the diiodophenyl ring. Thus, hydropho-
bic groups affixed through a linker are favorable at this site,
whereas the non-appearance of hydrophobic groups at the
same site is likely to reduce the biological activity. A red
contour located not too close to any of the atoms of the
compounds suggests that occupancy of this spatial region by
a hydrogen bond acceptor group would cause a decrease in
activity.

Figure 5e shows the significant favorable regions and
unfavorable hydrophobic/non-polar contacts that arise with
the TRβ 3D-QSAR model applied to the most active ligand
of PCID (9933119). Favorable blue regions are seen near the
third position (H4) and fifth (H6) position of the benzene ring
(R8), and the third position (H9) of the phenyl ring (R9) in
active molecules. On the other hand, hydrophobic unfavorable
red regions are visualized near the aliphatic chain associated
with the phenyl ring (R9) in most inactive molecules. Hydro-
phobic favorable blue contours are shown more closer to the
dibromophenyl ring in active molecules. This place is mainly
favorable for hydrophobic aliphatic chains containing a car-
boxylic group at the terminus. This favors the view that

hydrophobic substitutions can be agreed at this position to
enhance the activity of the molecule. The presence of red
cubes at a nearly comparable position in inactive compounds
suggests that vast hydrophobic assemblies at this site are
detrimental for activity.

Electron withdrawing and hydrogen bond acceptor

An electron withdrawing (EW) property contour map for TRα
inhibitors is shown in Fig. 5c. Electronegative atoms such as
N, O, S and halogen along with hydrogen bond acceptor
(HBA) groups were considered under the EW property map
using atom-based QSAR. EW group blue regions are seen
close to atoms associated with N7 groups. In highly active
molecules, favorable blue cubes are present near the ‘O’ atom
of the 3-propanoic acid group attached to the position of the
phenyl ring (R9), and ‘O’ atoms form H-bonds with Arg266
in docking analysis acting as HBA (Fig. 6). Favorable blue
cubes are also present near the fourth position of the benzene
ring (R8) in all active molecules, thus suggesting the impor-
tance of this interaction for a molecule’s inhibitory activity for
TRα.

EW/HBA properties of TRβ inhibitors are displayed in
Fig. 5c. HBA group favorable regions are observed close to
atoms associated with the carboxylic group of the

Fig. 2 Scatter plot of cross
validated predicted values of TRβ
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dibromophenyl ring (R8). In highly active ligands, blue cubes
are seen near the ‘O’ atom of the acetic acid group attached to
the dibromophenyl ring (R8) and forming H-bonds with ami-
no acid Asn331 in docking analysis acting as HBA (Fig. 7d).
EW property favorable regions are seen near the aliphatic
chain associated with the phenyl ring (R9) in all active mol-
ecules. Analysis of this interaction is important for a mole-
cule’s inhibitory activity for TRβ.

Negative ionizable property

The negative ionizable property contour map of TRβ is shown
in Fig. 5d. Negative ionizable group favorable blue cubes are
found adjacent to the carboxylic group attached to the benzene
ring (R8). All highly active compounds examined in this study
bear a negative ionizable ‘O’ atom at this position. The neg-
ative ionizable property contour map of TRα is shown in

Fig. 3 (a) Pharmacophore mapping of hypothesis DHHHNRR.251for TRα (b) Distance site mapping (Å)for TRα (c) Angle mapping for TRα (d)
Pharmacophore mapping of hypothesis AHHHNRR.25 for TRβ (e) Distance mapping of TRβ (Å) (f) Angle site mapping for TRβ model

Fig. 4 (a) Alignment of the ten active compounds for the TRα model (b) Superposition of five active compounds for the TRβ model
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supplementary Fig. 1. Negative ionizable group favorable
blue cubes are seen adjacent to the phenyl ring (R9) and
aliphatic chain.

For TRβ, the active ligands are quite sensitive to steric
bulky groups or expansions to the phenyl ring, which lead to a

decrease in activity of the molecules. However, a propyl group
attached to the carboxylic group maintained the activity. The
expansion of ring size, i.e., n-propyl to cyclo-pentyl, reduces
the activity. Halogen atoms along with two benzene rings are
important for maintaining the activity of the molecules .

These results provide perceptions of the structural require-
ments of the most active compound in our dataset, which in
turn can help in the rational drug design of novel TR antago-
nist derivatives. This analysis opens up the possibility of
predicting the biological activity of new compounds and their
active sites inside their receptors through pharmacophore-
based virtual screening and interaction analysis.

External validation of 3D-QSAR model

For external validation of the TRα hypothesis DHHHNRR, a
3D-phase database of 66 compounds was created that includes
15molecules of TRα inhibitors and 51 known thyroid oxidase
2 inhibitors, which are provided in the supplementary Table 5.
The structures of known inhibitors were retrieved from the
binding database. The source organism taken for TRα was
Rattus norvegicus (mammal) due to the non-availability of a
human data set in the binding database; R. norvegicus was
considered for our study because it belongs to the mammalian
class. Only one molecule (T3) made a good hit, with a fitness
value of 2.39 (supplementary Table 6), giving a good predic-
tive value of being an active molecule for TRα. A fitness
value range of 1.89 (minimum) to 3 (maximum) was used in

Fig. 5 3D-QSAR visualization of contour map for TRα and TRβ. (a)
Hydrogen bond donor, (b) hydrophobic donor/non-polar (c) electron-
withdrawing features, of TRα hypothesis (DHHHNRR), and (d)

Negative ionic effect (e) hydrophobic donor/non-polar (f) electron-
withdrawing properties, of TRβ hypothesis (AHHHNRR)

Fig. 6 Two-dimensional (2D) docked view of ligand 3-[4-(4-hydroxy-3-
iodophenoxy)-3, 5-diiodophenyl] propanoic acid (PCID 5804) with TRα
receptor
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our study to build the 3D-QSAR model (supplementary
Table 1).

For external validation, a 3D-phase database of 197 com-
pounds was created including 146 known TRβ inhibitors (138
from Homo sapiens and 08 from R. norvegicus), the dataset
for which was retrieved from the binding database (given in
supplementary Table 7). The structures of known inhibitors
were taken from the binding database. The other 51 com-
pounds, thyroid oxidase 2, employed in the test set used for
external validation were selected from the binding database,
with care taken to ensure that none of the molecules was
structurally correlated with those in the original training and
test sets. When the AHHHNRR.25 hypothesis was used as the
query to build the 3D phase database, 18 molecules (supple-
mentary Table 8) were found as hits that target human TRβ,
but only 11 of them gave good predictive value as the range of
fitness values in the built model was predicted to lie in the
range of 1.78 (minimum) to 3 (maximum) (supplementary

Table 2). None of the thyroid oxidase 2 inhibitors made hits.
The biological activity of these molecules was also predicted
for all seven PLS factors. Hits with the highest fitness score
were retained. The score assortment for the vector score is
dispersed between −1.0 and 1.0, for the alignment score 0.0 to
1.0, and for the volume score 0.0 to 1.0. For all three terms, the
weight range is 0.0 to 1.0, with a default weight of 1.0. The
fitness score varied from −1.0 to 3.0 and is a linear combina-
tion of the site and vector alignment scores, in addition to the
volume score. The fitness score is a parameter that explains
how well the aligned compound conformer coordinates with
the hypothesis built on RMSD site matching, vector align-
ments and volume terms.

Molecular docking analysis

Flexible molecular docking of all the ligand molecules was
performed, but only 139 molecules were successful in

Fig. 7 Docking analysis of TRα and TRβ. (a) Ligand and protein
interaction hydrogen bond interaction view (black dotted lines hydrogen
bonds) (b ) 2D docked view of l igand 2-[4-(5-bromo-6-
hydroxynaphthalen-1-yl)-3,5-dichloroanilino]-2-oxoacetic acid (PCID

10456672) with TRαreceptor (c) Ligand and protein interaction
view with hydrogen bond (d) 2D docked view of 2-[3,5-dibromo-4-(4-
hydroxy-3-propan-2-ylphenoxy) phenyl] acetic acid (PCID9933119)
ligand with TRβ receptor
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molecular docking. Docking on the whole pharma-set was
carried out at the active site Arg 266, Ser 277 and His 381of
TRα (Pdb Id: 3JZB). The most active compound (PCID 5804)
was found to have a gscore of −8.731492. As can be seen
clearly in Fig. 6, there are two hydrogen bond interactions
between the carboxylic group (‘O’ atoms) of inhibitors and the
NH of Arg266. It is also observed that NH of Ser 277 forms a
hydrogen bond with the oxygen atom of the ligand group. The
‘N’ atom of imidazole group of His 381 makes a hydrogen
bond at fourth position of the OH group with the ligand. The
top gscore of compound PCID 10456672 was obtained as
−9.89261 at the cost of activity. The best possible pose view
of ligand 10456672 in the TRα binding site is shown in
Fig. 7a and the corresponding 2D-view of the ligand–protein
interaction is displayed in Fig. 7b. The hydrophobic surround-
ing is observed at the distal position of the ligand, shown in
green circles labeled with the three-letter code of the amino
acid. Note that three polar residues, viz. Ser 260, Ser 277 and
His 381 (circled in cyan),, two glycine residues at positions
290–291 and charged positive residue Arg 266 play an im-
portant role in the interaction. The binding contacts arrange-
ments noted during docking analyses are in agreement with
that of HBD and HBA contour maps. Docking gscores of
TRα inhibitors with receptors are given in supplementary
Table 9.

Figure 7c shows the best possible pose view for ligand
PCID (9933119). The most active compound among the
whole data set was docked into the binding site of the TRβ
receptor (PDB Id: 1NAX). Figure 7d shows the 2D represen-
tation of the ligand–protein interaction of the same. The
predicted gscore of ligand PCID 9933119 was −11.52. It can
be seen clearly from Fig. 7d that the ligand molecule is
surrounded by hydrophobic residues Ile 275, Ile 276, Ala
279, Met 310, Met 313, and Ala 317, mainly through hydro-
phobic interactions. The charged positive residues Arg 282
and Arg 316 also surround the ligand molecule. In addition,
the two oxygen atoms of the terminus of the ring form three
hydrogen bonds to Asn 331as HBAs and with Met 313 and
His 435 as HBD. Therefore, the inhibitor is stabilized in the
binding pocket by H-bond interactions. It should be empha-
sized that analysis of the docking modes of the inhibitors
PCID (9933119) in terms of gscore as well as activity spec-
ifies the establishment of more extensive contact forms.

Thus, it can be concluded that a ligand containing a halo-
gen or a more electronegative atom can result in increased
activity. This is in agreement with our contour maps as more
favorable regions (blue cubes) are observed at that location.
Another hydrophobic interaction was formed considering
mainly Ile 275, Ile 276, Ala 279, Met 310 Met 313, and
Ala317 amino acid residues, so a benzene ring in this position
can increase activity. Out of 357 ligands, only 97 succeeded in
docking. The succeeded docking gscores of these compounds
with 1NAX protein are given in supplementary Table 10.

Comparative docking studies suggest that the TRβ receptor
is a better potential target compared to TRα because of the
binding energy and biological activity of inhibitors towards
this target.

Molecular dynamics simulation analysis of TRα and TRβ
inhibitor complexes

The MD simulation of docking complexes, compound
10456672-TRα and compound9933119-TRβ receptor, was
performed for 5 ns to confirm the dynamic stability and
binding modes to uncover the conformational changes occur-
ring. Figures 8 and 9 show the RMSD trajectory, RMSF,
protein–ligand contacts (PLC) and ligand–protein contacts
(LPC) of both complexes. Fluctuations within 1–3 Å RMSD
values are perfectly acceptable for small proteins [33–35].

Ligand 10456672-TRα-complex reaches 1.5 to 3 ÅRMSD
from initial to 1.8 ns and undergoes a conformational change
during the MD simulation as reflected by its RMSD value
(Fig. 8a). During MD simulation from 1.8 to 5 ns, the RMSD
was found to be relatively stable about a 3-Å RMSD value.
The mean value of the TRα-complex of the backbone atom
was found to be 2.212 Å. A small perturbation in the initial
state was observed. Figure 9a displays the RMSD evolution of
a protein (left y-axis) and with ligand added (right y-axis). All
protein frames are aligned on the backbone. From initial to
3.8 ns, the compound 9933119-TRβ-complex trajectory was
observed to have an average RMSD of about 1.5 Å. During
3.80–3.90 ns MD simulation the backbone protein of TRβ
complex (red) underwent a slightly higher conformational
variation due to ligand and protein contacts and later attained
a second plateau after 3.9 ns simulation at about 2.5 Å RMSD.
The range of backbone TRβ complexes was found between 0
to 2.708 Å and the mean value was observed at 1.742 Å. The
average RMSD of heavy atoms and side chain atoms were
found to be 2.028 and 2.582 Å, respectively. It is observed
from the above plot that the ligand RMSD is lower than that of
the protein backbone atoms. Ligand RMSD attains two pla-
teaus, first from initial to 1 Å and later after 3.9 ns simulation
at about 1.75 Å. Lig fit Lig RMSD value calculates the
internal fluctuations of the ligand atoms and is aligned on its
reference conformation. Ligand RMSD specifies that the li-
gand is stable with respect to the protein and its binding pocket
during the course of simulation.

Figures 8b and 9b depict the analysis of RMSF versus the
residue number for TRα (aa 144–407) and TRβ (211–460),
respectively. RMSF is beneficial for describing local changes
along the protein chain. The analysis of RMSF is important
for the explicit relationship between the inhibitory capability
of a ligand and the folding pattern of a helix. Alpha-helical and
beta-strand regions are given in red and blue backgrounds,
respectively. These regions are explained by helices or strands
that continue over 70 % of the entire simulation. In Figs. 8b
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and 9b, peaks show the segments of protein that fluctuate the
most during the simulation. Typically, the tails (N- and C-
terminal) fluctuate more than any other part of the protein. It is
seen from the plot that alpha helices (red) and beta (blue)
strands are more rigid and have less fluctuation than the
unstructured part loop regions (white region) for both TRα
and TRβ complexes. Protein residues that interact with the
ligand are manifested as green vertical bars. It can be observed
that both TRα and TRβ proteins alter the conformation,
which agrees with the result of RMSF. Two major residue
segments, 357–362 and 391–400 and flexible protein regions
of the backbone atom (green) can be seen in TRα protein but
only one is seen in TRβ protein (251–263), which indicates
that TRβ protein is more stable than TRα. The fluctuation of
TRβ protein is seen at Asn 257 with a backbone RMSF value
of 4.17 Å, which could be due to a bend or turn.

PLCs for TRα are classified into four types: viz. hydrogen
bonds, and hydrophobic, ionic and water bridges (Fig. 8c).
The binding site includes Thr 178, Asn 179, Ala 180, Phe 218,
Ile221, Ile 222, Pro 224, Ala 225, Ile 226, Arg 228, Met 256,
Met 259, Arg 262, Ala 263, Arg 266, Leu 276, Ser 277, Leu
287, Leu 292, His 381, Phe 401, Phe 405 residues, with the
TRα complex coming mainly under the alpha-helix region.
The y-axis is normalized over the course of the trajectory. Phe
218 with 0.5 values, Ile 222 with 0.3 values and Leu 276 with

0.1 interactions over trajectory values are found, which sug-
gests that 50, 30 and 10 % of the simulation time, the specific
interaction of Phe 218, Ile 222 and Leu 276, are maintained
with ligand 10456672. The geometric criteria for TRα
protein-10456672 ligand, H-bond is 2.5 Å between the donor
and acceptor atoms (D–H···A, 2.5 Å, ≥120°). Ser 277 values
over 1.0 suggests that multiple contacts (water-bridge and H-
bond) with the ligand take place. Ser 277 (one side chain and
one backbone H-bond) and His 381(side chain) residues par-
ticipate mainly in intermolecular hydrogen bonding. Arg 266,
with an interaction trajectory value of about 0.4, shows that it
participates in ionic- and water-bridges with very little inter-
action of hydrogen bonding with the ligand, which differs
from the docking results (Fig. 7b). The significance of the
hydrogen-bonding interactions in drug design is important
because of their deep impact on drug specificity,
metabolization and adsorption. Three H-bonds appear in both
docking and MD simulation for the Ligand 10456672-TRα
complex, but distinct variations are observed in both results.
In docking His381, a backbone H-bond is observed, whereas
in MD simulation, a side chain H-bond is noted for same
residue. Met 259 makes a backbone H-bond with the NH
atom of the ligand in docking but shows only 20 % of
interaction over trajectory in the initial phase of the MD
simulation and later forms 10 % hydrophobic interaction.

Fig. 8 Results of molecular dynamics (MD) simulation analysis. For
TRα complex (a) MD simulation time vs RMSD in Å for all residues
shown in different colours: light green backbone, red along with ligand fit
on protein, and pink ligand fit on ligand (b) RMSF vs residues index for

TRα (c) Protein ligand contact interaction over trajectory (d) Average
conformation of the binding pocket of ligand 10456672-TRα complex
throughout the simulation
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An ionic interaction is seen between TRα protein residue Arg
266 and oxygen charged atoms of ligands that are within 3.7 Å
of each other in the docking complex and 20 % of simulation
time with specific interaction over the trajectory. Arg 266
forms a side chain H-bond with the oxygen atom of the –
COOH group of ligand 10456672 in docking but has a neg-
ligible interaction during MD simulation. Ser 277 plays a
significant role in MD simulation as it forms one side chain
and one backbone H-bond with the ligand and stabilizes the
interaction with TRα protein. In this analysis it is evident that
the conformational change in ligand 10456672 is due mainly
to fluctuations of the –NH–CO–COOH group attached to the
dichlorobenzene ring, which can be explained by both
docking and MD simulation study.

It is evident from the analysis that aromatic residues, main-
ly Phe 218 of TRα protein, can make π–π interactions with
the aromatic ring of ligand 10456672. The geometric criteria
for hydrophobic contacts are measured with π-cation- aromat-
ic and charged groups within 4.5 Å; π–π, i.e., two aromatic
groups stacked face-to-face or face-to-edge and others, i.e., a
non-specific hydrophobic sidechain within 3.6 Å of a ligand’s
aromatic or aliphatic carbons.

The binding site, including mainly Phe 269, Phe 272, Ile
275, Ile 276, Ala 279, Met 310, Met 313, Arg 320, Leu 330,
Asn 331, Leu 346 and His 435 for TRβ protein-ligand
9933119 participates in PLC (Fig. 9c). The binding site comes
mainly under the region of alpha-helix (red). The interactions
of key residues Ile 276, Leu 330, Leu 346 over trajectory
values are about 0.3 or greater, which suggests that, for ≥30 %
of the simulation time, the specific interaction of these resi-
dues is maintained with ligand atoms that make hydrophobic
contacts. Asn 331, His 435 and Arg 320 residues participate
mainly in hydrogen bonding (Fig. 9c,d). Asn 331 with about
>1.2 interaction trajectory value indicates that it makes multi-
ple contacts (H-bond side chain and backbone) with the ligand
in the form of hydrogen bonding through a water-bridge. Ionic
interaction is observed between TRβ protein residue Arg 320
and the oxygen atom of the terminal –COOH group of ligand
9933119 by 25 % of simulation time with specific interaction
over trajectory. Further, the new H-bond formed between the
ketonic oxygen of the ligand and the side chain of Arg 320, is
altered from docking results. Three H-bonds participate in
both docking and MD simulation, of which two H-bonds with
residues Asn 331 and His 435 of TRβ protein are consistent in

Fig. 9 Results of MD simulation for the TRβ complex. (a) MD simulation time vs RMSD in Å for all residues (b) RMSF vs residues index (c) Protein
ligand contact interaction over trajectory (d) Average 2D-docking view of ligand 9933119-TRβ complex throughout MD simulation
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both events but onlyMet 313 is altered to Arg 320 duringMD
simulation. This study suggests that these H-bonds play a
significant role in stabilizing interactions between ligand
9933119 and TRβ protein. Thus, the conformational change
of ligand 9933119 results mainly from movement of the
terminal –COOH-CH2 group attached to the dibromobenzene
ring, as could be elucidated by binding mode from docking
and MD simulation analysis.

Interactions that take place more than 30 % of the simula-
tion time in the selected trajectory (0.0 through 5.0 ns), are
shown in Figs. 8d and 9d for TRα protein and the TRβ
protein–ligand complex, respectively. The current geometric
criteria for a protein–water or water–ligand H-bond are: (D–H
⋯A, 2.7 Å ≥110°); and an acceptor angle of ≥80° between the
hydrogen-acceptor-bonded atom, i.e., atoms (H⋯A–X). Ad-
ditionally, two water bridges, hydrogen-bonded protein–li-
gand interactions mediated by a water molecule, are found
in TRβ protein-ligand 9933119 but not in TRα-10456672. In
TRβ protein-ligand 9933119, one water bridge is formed
between Asn 331 (H-bond side chain) and Ile 275 (H-bond
backbone).

The upper section of Fig. 10a,b displays the total number of
definite interactions for the 10456672-TRα complex and li-
gand 9933119-TRβ complex, respectively, over the course of
the trajectory. The lower section depicts the residues that make
contact with the ligand in each trajectory frame. Ser 277
residues of TRα protein and Asn 331 of TRβ protein form
more than one contact with ligands 10456672 and 9933119,
respectively, as denoted by a darker shade of orange, accord-
ing to the scale on the y-axis (right) of the plot. Ile 275, Arg
320 and His 435 of TRβ protein can be seen as more consis-
tent after 2 ns during MD simulation, which makes a single
contact and signifies the stability of the ligand 9933119-TRβ

complex. A differnt pattern is observed in ligand 10456672-
TRαcomplex as only Ser 277 is steady during the MD simu-
lation. These results suggest that the average structure and
backbone atoms of TRβ protein and its ligands are relatively
more stable than those of the TRα-complex during simulation
time, suggesting the acceptability of the model.

These outcomes suggest that the TRβ-complex is relatively
more stable during the course of simulation as compared to the
TRα-complex, and established the good predictive results
achieved from the molecular docking. Though both com-
plexes experienced numerous changes throughout the MD
simulation, the binding pocket and the conformation of
9933119-TRβ complex are more constant compared to those
of the10456672-TRα complex, imparting confidence in the
rationality and validity of the docking result. The regions
achieved from 3D contour maps are consistant with the con-
tacts between ligands and amino acid residues of receptor
TRα and TRβ recognised by molecular docking.

These findings validate the notion that computational 3D-
QSAR approaches can be an effective tool with which to
predict the biological activity of compounds, to comprehend
the toxicity process, and to propose novel molecules with
precise biological activity. The benefit of the molecular
docking methodology is that it takes the characteristics of
the binding pocket of both TRα and TRβ receptors into
consideration, to obtain the active conformation of com-
pounds. Due to both large numbers, i.e., 64,009 atoms of
TRα and 59,141 atoms of TRβ protein ligand complex, and
computational constraints, MD simulations were performed at
5 ns. A study by Genheden and Ryde [36] showed that
simulations of protein–ligand complexes with several ap-
proaches do not converge to equilibria even up to 500 ns,
meaning that not all available states have been touched.

Fig. 10 Protein ligand contact analysis (a) Ligand 10456672-TRα complex (b) Ligand 9933119-TRβ complex
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Hence, MD simulation will not reach equilibrium with the
current computation and algorithms.

Conclusions

The objective of this study was to establish a robust relation-
ship between structural properties and antagonist activity of
human TRα and TRβ by using 3D-QSAR,molecular docking
and MD simulation methods to explore receptor-ligand con-
tacts, which can be useful to minimize the adverse effect of
current drugs. The built model produces high Q2 values with
small standard errors of estimation. The TRβ model was
found to be more optimized and robust as compared to TRα
after analyzing the results. The model was validated internally
and externally both in order to confirm consistency and to
maintain high predictive ability. Contour maps revealed that
inhibitory activity can be improved by modulating the donor
abilities of nitrogen or oxygen atoms in the fused aromatic
rings that are involved in the H-bond interactions with the
binding site of the receptor. The built model can be used to
design more effective antagonists than existing drugs (PTU
and MMI), which have side effects such as agranulocytosis,
aplastic anemia, and the ability to cross the placenta [37–39].
The model built in this work could be useful to recognize
substantial essential features that affect thyroid hormone func-
tion and are favorable to deliver certain statistics about the
interaction of ligands with receptor. The coherence of the
outcome found from 3D-QSAR, molecular docking and MD
simulation further specifies the robustness of the best 3D-
QSAR model.
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