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Abstract The accurate identification of cytotoxic T lympho-
cyte epitopes is becoming increasingly important in peptide
vaccine design. The ubiquitin–proteasome system plays a key
role in processing and presenting major histocompatibility
complex class I restricted epitopes by degrading the antigenic
protein. To enhance the specificity and efficiency of epitope
prediction and identification, the recognition mode between
the ubiquitin–proteasome complex and the protein antigen
must be considered. Hence, a model that accurately predicts
proteasomal cleavage must be established. This study pro-
poses a new set of parameters to characterize the cleavage
window and uses a backpropagation neural network algorithm
to build a model that accurately predicts proteasomal cleav-
age. The accuracy of the prediction model, which depends on
the window sizes of the cleavage, reaches 95.454% for the N-
terminus and 95.011 % for the C-terminus. The results show
that the identification of proteasomal cleavage sites depends
on the sequence next to it and that the prediction performance
of the C-terminus is better than that of the N-terminus on
average. Thus, models based on the properties of amino acids

can be highly reliable and reflect the structural features of
interactions between proteasomes and peptide sequences.

Keywords Backpropagation (BP)neural network .Cleavage
site . Epitope . Proteasome

Introduction

With the development of tumor immunology, several studies
have demonstrated that cytotoxic T lymphocytes (CTLs)
play an important role in antitumor immunity. Given the
tumor-specific killing ability of CTLs, they are used to treat
malignant tumors [1]. As an integrity antigen, the peptide
vaccine for CTL epitope poses no risk for infection and can
be massively synthesized and oriented for antitumor and
antivirus activities. Thus, the accurate identification of
CTL epitopes has become increasingly important, and many
studies are focused on developing advanced methods for
CTL epitope screening [2–4].

The prediction of proteasomal cleavage sites and peptides
transported by transporter associated protein (TAP) has not yet
been considered. Thus, the current methods for CTL epitope
prediction are not perfect, and most of them are constructed
based only on the affinity between peptides of CTL epitopes
and major histocompatibility complex (MHC) class I (MHC-
I) molecules. Accordingly, an effective CTL epitope must
undergo the following translocationmechanism in living cells.
First, the CTL epitope is produced by proteasomes from the
protein antigen and transported by TAP to the endoplasmic
reticulum to assemble with the MHC-I complexes. Second,
the product is excreted by the Golgi apparatus to the surface of
the cell membrane and made available for interaction with T
cell receptors. In the CTL response, these intermolecular
recognition processes are connected like a chain, and any
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errors in them invalidate the whole response. Several studies
have also found that some peptides with high binding affini-
ties for MHC-I molecules do not elicit a strong CTL response
[5]. Therefore, predicting the binding affinity between pep-
tides and MHC-I molecules is insufficient; a prediction meth-
od that combines the prediction of proteasomal cleavage sites,
TAP transport peptides, and binding affinity of epitope pep-
tides must be established to improve the accuracy of epitope
prediction and identification.

Proteasomes are intracellular multi-subunit proteases that
catalyze selective proteolytic protein processing within vari-
ous cell signal-transduction pathways, such as cell cycle con-
trol, transcriptional regulation, and antigen presentation [6–8].
Proteasomes exist in several forms. For example, the proteo-
lytically active core complexes or 20S proteasomes, associa-
tion with ATP-dependent 19S cap complexes yields the larger
26S proteasomes, which can recognize proteins and are
marked by ubiquitin for proteasomal degradation [9, 10].
Eukaryotic eukaryotic 20S proteasomes consist of four
stacked rings (overall stoichiometry α7β7β7α7) each
consisting of seven different subunits [11]. Each of the two
inner β-rings carries three catalytically active sites on its inner
surface, and proteolytic specificities of active site have been
described as chymotrypsin like [cleaving after large, hydro-
phobic amino acids (AAs)], trypsin like (cleaving after basic
AAs), and peptidyl-glutamyl-peptide hydrolyzing (cleaving
after acidic AAs) [12]. Proteasomes cleave ubiquitin-protein
conjugates into smaller peptides and generate the correct C-
terminus of MHC-I-binding peptides [13, 14].

Several computational approaches for elucidating the cleav-
age specificity of proteasomes have been presented. These
approaches are all based on experimentally verified cleavage
sites within protein substrates and the analysis of the flanking
region of such sites. EpiJen is an integrated approach for
predicting proteasomal cleavage sites, transporting TAP, and
binding MHC-I based on quantitative matrices [15]. Pierre et
al. [16] used a new matrix-based method to establish a

proteasomal cleavage site prediction method based on experi-
mentally verified proteasomal cleavage sites. Holzhutter et al.
[17] used a statistical method based on the MAPPP prediction
server to analyze cleavage sites found in a set of peptide sub-
strates with lengths ranging from 22 AAs to 30 AAs. PAProC
[18, 19] is a method based on the proteasomal degradation of
enolase protein. Up to 10 flanking AAs around the verified
cleavage sites are used by an evolutionary algorithm to create
the network-based model used for prediction. Another method
for proteasomal cleavage prediction is NetChop, which uses a
neural network for prediction [20]. Two different sets of training
data are used byNetChop: verified cleavage sites within proteins
and naturally processed MHC ligands. Altuvia and Margalit
[21] used MHC-I ligands to study proteasomal cleavage.

This study proposes a new set of parameters to charac-
terize the structure of AAs and uses a backpropagation (BP)
neural network (BP-NN) to build a model for accurately
predicting proteasomal cleavage. The accuracy of the pre-
diction model reaches 95.454 % for the N-terminus and
95.011 % for the C-terminus, which depends on the cleav-
age window sizes. The results show that the proteasomal
cleavage site identification depends on the sequence next to
it and that the predictive performance of the C-terminus is
better than that of the N-terminus on average.

Materials and methods

Experimental data

A total of 175 epitopes associated with HLA-A*0201 mole-
cules with 8 AAs to 11 AAs were collected from the AntiJen
database and used as the positive samples of proteasomal
cleavage. The negative samples were constructed according to
literature [20]. Briefly, pseudo-epitopes with a N- or C-termini
at the middle of the epitopes are randomly produced, which
assume the presence of non-cleavage sites within the epitopes.

Table 1 Three descriptor scales
for natural amino acids

V1 residue volume, V2 electron-
ion interaction potential values,
V3 hydrophobicity

AA V1 V2 V3 AA. V1 V2 V3

Ala (A) 88.3 0.0373 −6.7 Gln (Q) 148.7 0.0761 17.2

Leu (L) 168.5 0.0000 −11.7 Ser (S) 88.7 0.0829 −2.5

Arg (R) 181.2 0.0959 51.5 Glu (E) 140.5 0.0058 34.3

Lys (K) 175.6 0.0371 36.8 Thr (T) 118.2 0.0941 −5.0

Asn (N) 125.1 0.0036 20.1 Gly (G) 60.0 0.005 −4.2

Met (M) 162.2 0.0823 −14.2 Trp (W) 227.0 0.0548 −7.9

Asp (D) 110.8 0.1263 38.5 His (H) 152.6 0.0242 12.6

Phe (F) 189.0 0.0946 −15.5 Tyr (Y) 193.0 0.0516 2.9

Cys (C) 112.4 0.0829 −8.4 Ile (I) 168.5 0.0000 −13.0

Pro (P) 122.2 0.0198 0.8 Val (V) 141.4 0.0057 −10.9
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The cleavage sites that produce the epitopes and pseudo-
epitopes are defined as positive (+1) and negative (−1) samples,
respectively. These samples are included in the appendix.

Structural descriptors and characterization

Three properties of AAs, including residue volume [22],
electron-ion interaction potential values [23], and hydrophobic-
ity [24], are selected to characterize the peptide. The values of
the parameters are listed in Table 1, and their correlation matrix
is shown in Table 2. Three descriptors are needed for each AA
to characterize the peptide structures, and 3×N parameters are
needed to characterize the peptide with N AAs. If a cleavage
window containsNAAs, the window can be characterized by a
set of 3×N descriptors. For example, a window constituting 4
AAs should be represented by 12 descriptors.

Neural network algorithm

Artificial neural networks have been developed as general-
izations of mathematical models of biological nervous sys-
tems [25, 26]. The present study uses a BP-NN model with
three layers. The nodes of the input layer are equal to the
descriptors of AAs, and the node of the output layer is the
ideal value, i.e., a negative or positive sample represented by
−1 or +1, respectively. The nodes of the hidden layer are
calculated by the following formula:

nl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ no

p þ 10;

where nl, ni, and no are the nodes of the hidden, input, and
output layers, respectively. The weights connected to the
input, hidden, and output layers are randomly generated and
adjusted using standard BP (a gradient descent type) algo-
rithm with the circular samples presented. Finally, the pro-
cess is terminated when the minimal error or the maximal
iteration is reached. For example, a cleavage window se-
quence containing 4 AAs should be represented by 12 de-
scriptors, which should all be placed in the input layer. Thus,
the BP-NN for the 4 AA cleavage window must have 12
neurons in the input layer.

Table 2 Correlation
matrix of parameters V1 V2 V3

V1 1.000 0.050 0.045

V2 0.050 1.000 0.180

V3 0.045 0.180 1.000

Table 3 Statistical results of
N-terminus

Win window sizes, SE sensitivity,
SP specificity, AC accuracy, CC
coefficient of correlation

Win. SE (%) SP (%) AC (%) CC Win. SE (%) SP (%) AC (%) CC

0–1 69.280 52.983 61.131 0.500 3–4 90.480 90.657 90.569 0.833

0–2 89.194 91.697 90.446 0.827 3–5 90.703 91.400 91.051 0.840

0–3 91.863 93.046 92.454 0.862 3–6 91.891 91.794 91.843 0.852

0–4 91.954 92.166 92.060 0.856 4–0 60.931 59.823 60.377 0.503

0–5 91.737 91.200 91.469 0.846 4–1 67.857 61.554 64.706 0.526

0–6 91.657 92.131 91.894 0.852 4–2 89.749 89.920 89.834 0.819

1–0 52.474 58.131 55.303 0.462 4–3 90.829 91.566 91.197 0.841

1–1 61.971 58.634 60.303 0.504 4–4 91.697 91.794 91.746 0.850

1–2 89.640 91.509 90.574 0.830 4–5 92.343 91.589 91.966 0.854

1–3 91.331 91.531 91.431 0.846 4–6 92.183 91.869 92.026 0.855

1–4 90.863 91.354 91.109 0.840 5–0 61.800 61.137 61.469 0.502

1–5 91.389 90.949 91.169 0.843 5–1 65.891 62.560 64.226 0.514

1–6 91.560 91.143 91.351 0.844 5–2 89.126 89.531 89.329 0.811

2–0 60.423 59.411 59.917 0.490 5–3 91.451 91.309 91.380 0.844

2–1 66.600 61.549 64.074 0.530 5–4 91.309 91.526 91.417 0.845

2–2 90.354 89.983 90.169 0.826 5–5 92.554 91.417 91.986 0.853

2–3 91.091 92.223 91.657 0.849 5–6 92.960 92.183 92.571 0.863

2–4 90.383 91.606 90.994 0.838 6–0 64.240 61.320 62.780 0.511

2–5 91.189 90.771 90.980 0.838 6–1 65.863 61.897 63.880 0.529

2–6 90.663 91.131 90.897 0.840 6–2 88.720 89.234 88.977 0.806

3–0 57.474 61.857 59.666 0.490 6–3 92.109 91.086 91.597 0.847

3–1 62.069 60.880 61.474 0.500 6–4 91.669 91.503 91.586 0.847

3–2 89.383 90.011 89.697 0.819 6–5 92.051 92.029 92.040 0.855

3–3 90.377 91.080 90.729 0.834 6–6 92.891 92.223 92.557 0.863
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Optimization of cleavage windows

The cleavage window is formed with several AAs at the
cleavage site and defined as “Pm…P2P1| P1′P2′…Pn′”, where
“|” is the cleavage site and m and n are 1 to 6, respectively.
For example, the cleavage window has 5 AAs when m=2
and n=3, which means that the previous 2 and the next 3
AAs belong to the cleavage window. For each cleavage
window, the network is trained for 100 times with all sam-
ples, and the statistical results are the average values. The
shortest cleavage window, also called the optimized win-
dow, is formed after training for every window.

Evaluation of network performance

The network performance is evaluated using the correlation
coefficient (CC) [27] as follows:

CC ¼ TP � TN � FN � FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TN þ FNð Þ FN þ TPð Þ TP þ FPð Þ FP þ TNð Þp ;

where TP is the number of true positives (experimentally
verified cleavage sites also the predicted cleavage sites), TN
is the number of true negatives (experimentally verified

non-cleavage sites also the predicted non-cleavage sites),
FP is the number of false positives (experimentally verified
non-cleavage sites predicted as cleavage sites), and FN is
the number of false negatives (experimentally verified
cleavage sites predicted as non-cleavage sites). The addi-
tional performance measurements used are as follows:

SE ¼ TP
TPþFN � 100 SP ¼ TN

TNþFP � 100

AC ¼ TPþTN
TPþFPþTNþFN � 100:

Results and discussion

The proteasomal cleavage window is important for the
recognition of cleavage sites. Several studies have selected
different windows [18, 20], and the maximum length of
window is composed of 12 AAs in the present study. To
determine the optimized window size, BP-NN models are
built with different cleavage windows. The procedure is
similar to window optimization and the final results are the
average values of 50 times of training and testing.

To identify the motif recognized by proteasomes, 48
windows are constructed according to the combination of

Table 4 Statistical results
of C-terminus

Win window sizes, SE sensitivi-
ty, SP specificity, AC accuracy,
CC coefficient of correlation

Win. SE (%) SP (%) AC (%) CC Win. SE (%) SP (%) AC (%) CC

0–1 50.851 53.154 52.003 0.448 3–4 95.017 94.200 94.609 0.899

0–2 57.257 58.366 57.811 0.490 3–5 95.097 94.514 94.806 0.902

0–3 56.429 61.800 59.114 0.487 3–6 94.211 94.183 94.197 0.891

0–4 58.463 60.777 59.620 0.483 4–0 93.937 94.817 94.377 0.896

0–5 62.086 58.589 60.337 0.486 4–1 94.966 94.817 94.891 0.904

0–6 63.703 62.240 62.971 0.515 4–2 94.509 93.971 94.240 0.893

1–0 94.234 97.589 95.911 0.922 4–3 94.674 94.029 94.351 0.894

1–1 95.337 97.777 96.557 0.934 4–4 95.143 94.389 94.766 0.901

1–2 95.040 96.691 95.866 0.921 4–5 93.983 94.086 94.034 0.889

1–3 95.063 96.297 95.680 0.918 4–6 94.411 93.771 94.091 0.889

1–4 94.777 95.297 95.037 0.906 5–0 94.789 95.234 95.011 0.906

1–5 94.554 93.869 94.211 0.893 5–1 94.829 94.577 94.703 0.901

1–6 94.543 94.114 94.329 0.894 5–2 94.240 94.400 94.320 0.894

2–0 94.577 97.080 95.829 0.921 5–3 94.400 94.634 94.517 0.897

2–1 95.503 97.023 96.263 0.928 5–4 94.846 93.874 94.360 0.894

2–2 94.606 95.857 95.231 0.910 5–5 94.166 93.389 93.777 0.885

2–3 94.371 94.886 94.629 0.900 5–6 94.091 93.389 93.740 0.883

2–4 94.211 94.971 94.591 0.898 6–0 94.589 94.406 94.497 0.897

2–5 93.623 93.280 93.451 0.879 6–1 95.074 94.657 94.866 0.903

2–6 94.200 93.960 94.080 0.889 6–2 95.149 94.594 94.871 0.903

3–0 95.486 96.286 95.886 0.921 6–3 94.526 94.166 94.346 0.894

3–1 95.400 95.846 95.623 0.917 6–4 94.646 94.006 94.326 0.894

3–2 94.994 94.840 94.917 0.904 6–5 94.674 93.554 94.114 0.890

3–3 94.429 93.766 94.097 0.890 6–6 94.554 93.577 94.066 0.889
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AAs before and/or after at N- and C-termini cleavage sites.
The sequence for every window is characterized by the
parameters and modeled by BP-NN. The BP-NN predictive
model is then evaluated and validated with the following
four statistical parameters: sensitivity (SN), specificity (SP),
accuracy (AC), and CC. The AC and CC are comprehensive
parameters, including SN and SP information.

A total of 96 sets of evaluation results are obtained
through calculation of the BP-NN models. These evaluation
results are divided into two groups, namely the N- and C-
termini. As shown in Table 3, the windows for the N-
terminus containing 0 or 1 AA at both sides of the cleavage
site have unsatisfactory reliability, whereas the other win-
dows have high predictive ability (AC of about 90 % and
CC above 0.80). As shown in Table 4, the windows
containing no AA before the cleavage site have low predic-
tive ability, whereas the windows containing one or more
AAs before the cleavage site have high reliability (AC of
about 95 % and CC of about 0.90). In general, the predictive
ability of the models based on the C-terminus is superior to
that of the models based on the N-terminus.

To compare the performance of the predictive models
clearly, the AC and CC statistical parameters are shown
with histograms for the N-terminus (Fig. 1) and C-

terminus (Fig. 2). As shown in Fig. 1, the performance of
the model based on the N-terminus is not high, but the AAs
after the cleavage site are less than 3, which indicate that the
proteasome can at least recognize the cleavage site through
the 3 AAs. Figure 1 shows the optimized window consisting
of 3 AAs expressed as “|P1′P2′P3′”. The windows show the 3
AAs motif at the N-terminus of epitope. Similarly, Fig. 2
shows the optimized window size consisting of 2 AAs
expressed as “P1|P1′”. The BP-NN models show high per-
formance based on one or more AAs before the cleavage
site. The windows expressed as “P1|” can be regarded as the
most suitable motif for proteasome recognition. The opti-
mized windows show that the epitope can be derived from
antigen by proteasomes, which are recognized through AAs
at the N-terminus and the C-terminus with sizes of 3 and 1,
respectively. The motif located in the terminus is similar to
the anchor residues of epitope and recognized by
proteasomes instead of MHC.

Knowledge of the cleavage patterns is essential for un-
derstanding how the proteasome contributes to the genera-
tion of peptides presented by MHC class I molecules on the
surface of vertebrate cells [27]. Compared with eukaryotic
proteasomes, immunosubunits replace the constitutive pro-
teolytically active subunits and significantly improve
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proteasome-dependent antigen processing. Groll et al. [28]
reported that the conformation of MHC-I bound peptides is
similar to that of the propeptides of proteasome active sub-
units, which suggests the co-evolution of MHC molecules
and proteasomal ligand-binding sites. Conserved AAs
should be present near the cleavage for recognition of
proteasomes, which are analogous to the anchor residues
of epitopes bound to MHC. In this study, the conserved
analysis is performed by weblogo [29], and the sequence
logo for the N- and C-termini is shown in Fig. 3. The motif
for the N-terminus contains the conservative site at position
2 and the corresponding residues are Leu, Ile, and Met.
Similarly, the motif for the C-terminus contains one residue
and the conservative AAs are Val, Leu, and Ile. More than

75 % of peptides are nonamers and the conservative sites are
consistent with nonamer epitopes, which are located at
positions 2 and 9.

In eukaryotic cells, the ubiquitin-proteasome system
plays a critical role in the cleavage of antigen protein in
epitope processing and presentation in the MHC-I pathway.
Ubiquitination occurs by the covalent attachment of multi-
ple ubiquitin molecules onto the substrate, which is then
transported and degraded in the 26S proteasome. Conse-
quently, the weak interactions between the AAs closing
the cleavage site and the proteasome depend on the AA
properties, such as stericity, electrostatic properties, and
hydrophobicity. The proteasome ligand-binding site is sim-
ilar to MHC; thus, the interaction between the optimized

Table 5 Comparison with literature (C-terminal)

Method Dataset Web server Number SE SP AC CC Literature

BP-NN Training / 350 94.234 97.589 95.911 0.922 /

ANN MHC I ligands PAProC 217 45.6 30.0 ±0.25 [27]
FragPredict 231 83.5 16.5 0.00

NetChop1.0 231 39.8 46.3 ±0.14

NetChop2.0 231 73.6 42.4 0.16

ANN MHC ligands + / 229 80 88 0.53 [20]
MHC ligands

MHC ligands and 20S + / 413 72 92 0.56
MHC ligands

Enlarged MHC Ligands + / 1110 66 74 0.37
HIV protein

20S + Peptide / 184 68 84 0.53

SVM (RBF) In vitro data Pcleavage 184 86.4 50.7 68.6 0.42 [28]
SVM (POLY) 84.6 55.6 70.0 0.43

PEBLS 57.9 62.9 60.5 0.21

Weke (Naïve Bayes) 51.3 70.9 61.6 0.23

Weka (J48.PART) 50.8 69.2 60.0 0.20

Weka (Logistic) 51.9 65.7 58.8 0.18

SVM (RBF) MHC ligand data Pcleavage 506 84.3 69.0 76.7 0.54 [28]
SVM (POLY) 86.2 65.4 75.8 0.53

PEBLS 25.3 96.2 88.5 0.28

Weke (Naïve Bayes) 51.4 91.7 87.3 0.39

Weka (J48.PART) 41.1 88.8 83.6 0.27

Weka (Logistic) 54.9 88.3 84.6 0.36

Fig. 3 Sequence logo of motif
for N- and C-terminus
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motif and proteasome depends on that between MHC and
epitope. The properties, residue volume, electron-ion inter-
action potential values, and hydrophobicity can reflect the
interaction between motif and proteasome, and the BP-NN
models show high reliability and predictive ability.

Numerous predictive models have been constructed with
the machine learning algorithm [20, 30, 31], including the
support vector machine and ANN. Table 5 lists the statistical
parameters of the predictive model built for the C-terminus
from the present and previous studies. The present predictive
model is superior to those in literature. Although the datasets,
characterization of sequence, and modeling method differ
among the listed models in Table 5, the BP-NN model has
high predictive ability because of the properties representing
the profile of the interaction between proteasome and motif.
Therefore, the modeling based on the properties of AAs can
provide a good scheme predicting proteasomal cleavage sites.

Conclusions

Sequences at both sides of a cleavage site are selected as
windows for proteasome recognition. The optimized win-
dows for the N- and C-termini are determined by BP-NN,
wherein the optimization standard is the window with
higher reliability and the shortest sequence. The prediction
model from the BP-NN has high reliability that is also
superior to those of previous models. The predicted CCs
of BP-NN are 0.862 for N-terminus and 0.922 for C-
terminus for the test dataset. The properties used in this
work can build a good predictive model but cannot reflect
the comprehensive structural features of cleavage sites.
Therefore, more suitable parameters for characterizing
cleavage sites are favorable for proteasome recognition at
corresponding positions. The predicted BP-NN model can
well calculate the cleavage site of the determinate and pre-
dict the novel cleavage site of the protein sequence.
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