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Abstract Antifungal activity was modeled for a set of 96
heterocyclic ring derivatives (2,5,6-trisubstituted benz-
oxazoles, 2,5-disubstituted benzimidazoles, 2-substituted
benzothiazoles and 2-substituted oxazolo(4,5-b)pyri-
dines) using multiple linear regression (MLR) and
Bayesian-regularized artificial neural network
(BRANN) techniques. Inhibitory activity against
Candida albicans (log(1/C)) was correlated with 3D
descriptors encoding the chemical structures of the het-
erocyclic compounds. Training and test sets were chosen
by means of k-Means Clustering. The most appropriate
variables for linear and nonlinear modeling were se-
lected using a genetic algorithm (GA) approach. In
addition to the MLR equation (MLR–GA), two non-
linear models were built, model BRANN employing the
linear variable subset and an optimum model BRANN–
GA obtained by a hybrid method that combined
BRANN and GA approaches (BRANN–GA). The lin-
ear model fit the training set (n=80) with r2=0.746,
while BRANN and BRANN–GA gave higher values of
r2=0.889 and r2=0.937, respectively. Beyond the
improvement of training set fitting, the BRANN-GA
model was superior to the others by being able to de-
scribe 87% of test set (n=16) variance in comparison
with 78 and 81% the MLR–GA and BRANN models,
respectively. Our quantitative structure–activity rela-
tionship study suggests that the distributions of atomic
mass, volume and polarizability have relevant relation-
ships with the antifungal potency of the compounds
studied. Furthermore, the ability of the six variables
selected nonlinearly to differentiate the data was dem-
onstrated when the total data set was well distributed in
a Kohonen self-organizing neural network (KNN).

Keywords QSAR analysis Æ Neural network Æ Bayesian
regularization Æ Heterocyclic ring derivatives Æ
Antifungal activity

Introduction

Fungi are highly resistant organisms responsible for
many kinds of diseases. Most are resistant to the action
of antimicrobial drugs. Recently, the frequency of sys-
temic infections has increased dramatically along with
the number of invasive, mostly opportunistic, fungal
species carrying infectious diseases. Fungal infections
are important causes of morbidity and mortality in
hospitalized patients [1]. None of the existing systemic
antifungals satisfies the medical need completely; there
are weaknesses in spectrum, potency, safety, pharma-
cokinetic properties, etc.

Infections due to Candida species are the most com-
mon of the fungal diseases [2]. Candida species produce a
broad range of infections, ranging from nonlife-threat-
ening muco–cutaneous illnesses to invasive processes
that may involve virtually any organ [3]. Few substances
have been discovered that exert an inhibitory effect on
the fungi pathogenic for man, and most of these are
relatively toxic [4]. Many effective antimicrobial drugs
possess heterocyclic systems in their structure, like imi-
dazoles [5], quinazolines [6], benzazoles [7–9] and oxaz-
olo(4,5-b)pyridines [10].

Computer simulation techniques potentially offer a
further means to probe structure–activity relationships.
Quantitative structure–activity relationships (QSAR)
represent the most effective computational approaches
in drug design [11]. Several reports of QSAR studies
over antifungal compounds have been developed in the
last years. Yalcin and co-workers [12] correlated struc-
tural indicator parameters and physicochemical prop-
erties with growth inhibitory activity against Candida
albicans for heterocyclic ring derivatives. The molecular
topology formalism was applied for Garcı́a-Domenech
and co-workers to search of QSAR relations for a group
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of substituted carbazoles, furans and bezimidazoles [13].
Hasegawa and co-workers [14] obtained a neural net-
work model for a small data set of antifungal azoxy
derivatives employing physicochemical parameters.
Neural network analysis was also employed by Mghazli
and co-workers [15] for constructing QSAR models of
relationships between structure and antifungal activity
of substituted imidazoles.

In the present work, we treated a set of 96 heterocyclic
ring derivatives (Fig. 1): 2,5,6-trisubstituted benzoxaz-
oles, 2,5-disubstituted benzimidazoles, 2-substituted
benzothiazoles and 2-substituted oxazolo(4,5-b)pyri-
dines both with multiple linear regression (MLR) and
Bayesian-regularized artificial neural network (BRANN)
analysis [16]. Three-dimensional molecular descriptors
were used for encoding the structural information of the
compounds studied. Optimum variable subsets of six
descriptors were selected using linear and nonlinear ge-
netic algorithm (GA) searches. Both MLR and BRANN
techniques were used for modeling the observed anti-
fungal activity of the training set (80 compounds). The
adequacy of the models was examined by means of their
statistic significances, the statistic of the leave-one-out
(LOO) cross-validation and the prediction of a test set
(16 compounds), which represent 1/6 of the total data set.
In addition, the capacity of the selected variables to dif-
ferentiate the data was evaluated by means of the unsu-
pervised training of a Kohonen self-organizing neural
network (KNN).

Materials and methods

Dataset: source and prior preparation

The in vitro inhibitory activities against Candida albi-
cans (log(1/C); C = minimum inhibition concentration
expressed in M), of 96 heterocyclic ring derivatives were
collected from two previous reports [9, 12]. A twofold
serial dilution technique was employed to carry out the
activity assays. The chemical structures along with
experimental antifungal activity data of the compounds
used in this study are shown in Table 1.

Geometry optimization calculations for each com-
pound of this study were carried out using the quantum
chemical semiempirical method PM3 [17] included in
Mopac 6.0 [18].

Molecular descriptors

The 3D descriptors from the Dragon software [19, 20]
were calculated for each compound: aromacity indices
[21, 22], randic molecular profiles [23], geometrical
descriptors [20], RDF descriptors [24], 3D-MoRSE
descriptors [25], WHIM descriptors [26] and
GETAWAY descriptors [27]. In total, 721 descriptors
were calculated. Descriptors that stayed constant or al-
most constant were eliminated and pairs of variables
with a correlation coefficient greater than 0.95 were
classified as intercorrelated, and only one of these was
included in the model. Finally, 322 descriptors were
obtained.

Selection of training and test sets

The k-means cluster analysis (k-MCA) was used to di-
vide the entire data in two subsets [28] (training and test
sets) so that general characteristics appear in both sets.
To ensure a statistically acceptable data partition into
several clusters, we took into account the number of
members and the standard deviation of the variables in
each cluster (as low as possible). The quality of the
model was determined by examining the standard devi-
ation between and within clusters, the respective Fisher
ratio and their P level of significance.

Particular characteristics of all compounds are rep-
resented in each cluster derived from k-MCA. Selection
was carried out by taking, in a random way, compounds
belonging to each cluster. Finally, the data was divided:
16 compounds were selected for the test set and the 80
remaining compounds were incorporated to the training
set.

GA variable selection

We used both linear and nonlinear modeling of the
antifungal activity of some heterocyclic ring derivatives.
Since 322 molecular descriptors were available for the
QSAR analysis and only a subset of them is statistically
significant in terms of correlation with biological activ-
ities, deriving an optimal QSAR model through variable
selection must be addressed. Six variables are adequate
for an 80-target model. In this sense, feature selection
approaches were carried out by means of a GA [29] in
such a way that optimum linear and neural network
models are obtained.

Genetic algorithm is a class of methods based on
biological evolution rules. The first step is to create a
population of linear regression models. These regression
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Fig. 1 General structure of heterocyclic ring derivatives
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models mate with each other, mutate, crossover, repro-
duce and then evolve through successive generations
toward an optimum solution. The distinctive aspect of a
GA is that it investigates many possible solutions
simultaneously, each of which explores different regions
in parameter space [24].

The GA implemented in this paper is a version of
the So and Karplus report [30] and was programmed
within the Matlab environment using the GA and
neural network toolboxes [31]. Inside the GA frame-
work, we implemented two routines, one to select
optimum subsets of six variables for multivariate lin-
ear regression of the activity (MLR–GA) and another
for neural network training using six variables as
BRANN inputs and the antifungal activity as target
outputs (BRANN–GA).

An individual in the population is represented by a
string of integers that indicate the numbering of the
columns in the data matrix. In the original study, the
fitness of the individual was determined by a variety of
fitness functions proportional to the residual error of the
training set, the test set, or even the cross-validation set
from the neural network simulations. In our approach,
we tried the MSE of data fitting for linear and BRANN
models, as the case may be, as the individual fitness
function. The basic design of the implemented GA is
summarized in the flow diagram shown in Fig. 2. The
first step is to create a gene pool (population) of N
individuals. Each individual encodes the same number
of descriptors; the descriptors are chosen randomly from
a common data matrix, and in a way such that (1) no
two individuals can have exactly the same set of de-
scriptors and (2) all descriptors in a given individual
must be different. The fitness of each individual in this
generation is determined by the MSE of the model and
scaled using a scaling function. A top scaling fitness
function scaled a top fraction of the individuals in an
equal population; these individuals have the same
probability to be reproduced while the rest are assigned
the value 0 [32].

In the next step, a fraction of children of the next
generation is produced by crossover (crossover children)
and the rest by mutation (mutation children) from the
parents. Sexual and asexual reproductions take place so
that the new offspring contains characteristics from two
or one of its parents (Fig. 3). In a sexual reproduction,
two individuals are selected probabilistically on the basis
of their scaled fitness scores and serve as parents. Next,
in a crossover, each parent contributes a random selec-
tion of half of its descriptor set and a child is constructed
by combining these two halves of the ‘‘genetic code.’’
Finally, the rest of the individuals in the new generation
are obtained by asexual reproduction when parents se-
lected randomly are subjected to a random mutation in
one of its genes, i.e., one descriptor is replaced by an-
other.

Similarly to So and Karplus [30], we also included
elitism, which protects the fittest individual in any given
generation from crossover or mutation during repro-

duction. The genetic content of this individual simply
moves on to the next generation intact. This selection,
crossover and mutation process is repeated until all of
the N parents in the population are replaced by their
children [32]. The fitness score of each member of this
new generation is again evaluated, and the reproductive
cycle is continued until a 90% of the generations showed
the same target fitness score [33].

Multiple linear regression

This method was used to generate a six-variable linear
model between the antifungal activity (log(1/C)) and the
selected molecular descriptors. The validity of the model
was proven by the square multiple correlation coefficient
(r2), the standard deviation (s) and the F test value.

Bayesian-regularized artificial neural network

In contrast to common statistical methods, artificial
neural networks (ANNs) are not restricted to linear
correlations or linear subspaces [34]. They can take into
account nonlinear structures and structures of arbi-
trarily shaped clusters or curved manifolds. As biologi-
cal phenomena are considered nonlinear by nature, the
ANN technique was used in order to discover the pos-
sible existence of nonlinear relationships between anti-
fungal activity and molecular descriptors that are
ignored for the linear model.

When parameters (weights and biases) increase, the
network loses its ability to generalize. The error on the
training set is driven to a very small value, but when new
data is presented to the network the error is large. The
predictor has memorized the training examples, but it
has not learned to generalize to new situations; the
network overfits the data.

Typically, training aims to reduce the sum of squared
errors:

F ¼MSE ¼ 1

N

XN

i¼1
ðYi � AiÞ2 ð1Þ

Bayesian regularization involves modifying the perfor-
mance function (F). It is possible to improve general-
ization by adding an additional term [16].

F ¼ b�MSEþ a�MSW ð2Þ

MSW ¼ 1

n

Xn

j¼1
w2

j ð3Þ

In these equations, F is the network performance
function, MSE is the mean of the sum of squares of the
network errors, N is the number of compounds, Yi is the
predicted biological activity of the compound, i,Ai is the
experimental biological activity of the compound, i,
MSW is the mean of the sum of the squares of the
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network weights, wj are the weights of the neuron, j, n is
the number of network weights and a and b are objective
function parameters.

The relative size of the objective function parameters
dictates the emphasis for training obtaining a smoother
network response. MacKay’s Bayesian regularization
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automatically sets the correct values for the objective
function parameters [16], in the sense that the regulari-
zation is optimized. In the Bayesian framework, the
weights of the network are considered random variables.
After the data is taken, the density function for the
weights can be updated according to Bayes’ rule:

P ðwjD; a; b;MÞ ¼ PðDjw; b;MÞ � Pðwja;MÞ
PðDja; b;MÞ ð4Þ

where D represents the data set, M is the particular
neural network model used and w is the vector of net-
work weights. P(w|D, a, b, M) is the posterior proba-
bility, that is the plausibility of a weight distribution
considering the information of the data set in the model
used. P(w|a, M) is the prior density, which represents
our knowledge of the weights before any data is col-
lected. P(D|w, b, M) is the likelihood function, which is
the probability of the data occurring, given the weights.
P(D|a b,M) is a normalization factor, which guarantees
that the total probability is 1.

Considering that the noise in the training set data is
Gaussian and that the prior distribution for the weights
is Gaussian, the posterior probability fulfils the relation:

P ðwjD; a; b;MÞ ¼ 1

ZF
expð�F Þ ð5Þ

where ZF depends on objective function parameters.
Thus, under this framework, minimization of F is iden-
tical to finding the (locally) most probable parameters
[16].

Bayesian regularization overcomes the remaining
deficiencies of neural networks [35]. Bayesian methods
produce predictors that are robust and well matched to
the data which make optimal predictions.

Model validation

The quality of the fit of the training set by a specific
model was measured by its r2,

r2 ¼ 1�
PN

i¼1 ðYi � AiÞ2PN
i¼1 ðYi � ��AÞ2

ð6Þ

where N is the number of compounds, Yi and Ai are the
predicted and experimental biological activities of i
compound respectively, ��Ai is the average experimental
activity.

However, a most important measure is the prediction
quality of models. An internal LOO cross-validation
process was carried out calculating q2 and of LOO cross-
validation. A data point is removed (left out) from the
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set, and the model refitted; the predicted value for that
point is then compared to its actual value. This is re-
peated until each datum has been omitted once. The sum
of squares of these deletion residuals can then be used to
calculate q2, an equivalent statistic to r2.

q2 ¼ 1�
PN

i¼1 ðYi � AiÞ2PN
i¼1 ðYi � ��AÞ2

ð7Þ

where N is the number of compounds, Yi and Ai are the
predicted and experimental biological activities of i left-
out compound respectively, ��Ai is the average experimental
activity of left-in compounds that are different to i.

The predictive power of the models was also measured
by an external validation process that consists in
predicting the activity of unknown compounds forming
the test set. In this case r2 of the test-set fitting is calculated.

Kohonen self-organizing neural network

KNN [36] has the special property of effectively creating
a spatially organized internal representation of various
features of input signals and their abstractions, follow-
ing an unsupervised and competitive process. In a self-
organizing neural network, the neurons are arranged in
a 2D array to generate a 2D feature map such that
similarity in the data is preserved. If two input data
vectors are similar, they will be mapped into the same
neuron or into neurons close together in the 2D map.
Similar features in output vectors will be grouped if
adequate variables are selected.

Learning in a self-organizing feature map occurs for
one vector at a time. First the network identifies the
winning neuron, then the weights of the winning
neuron and the other neurons in its neighborhood are
moved closer to the input vector at each learning step.
The winning neuron’s weights are altered proportional
to the learning rate. The weights of neurons in its
neighborhood are altered proportional to half the
learning rate. The learning rate and the neighborhood
distance used to determine which neurons are in the
winning neuron’s neighborhood are altered during
training through two phases; an ordering phase that
decreases the distances between neurons until the
tuning neighborhood distance and the tuning phase
that tunes the network, keeping the ordering learned in
the previous phase.

Results and discussion

MLR analysis

MLR–GA analysis was performed on the training set
selected by k-Means clustering described in Table 1. We
included all 80 molecules of the training set for the
model generation. After collecting the data, six param-
eters that give the ‘‘best’’ regression were selected by
GA. The model is shown in Eq. 8

log
1

C

� �
¼ð4:533�0:228Þ

þð1:060�0:245ÞMor13v

�ð0:502�0:203ÞMor19v

þð1:302�0:370ÞMor27v

þð2:835�0:548ÞMor29v

þð1:441�0:341ÞH8u

þð1:423�0:473ÞH5m

n¼ 80 r2¼ 0:746 s¼ 0:115 F ¼ 35:842

ð8Þ

where n is the number of compounds included in the
model, r2 is the square correlation coefficient, s is the
standard deviation of the regression and F is the Fisher
ratio.

Equation 8 shows that the six descriptor model in-
cludes four Molecule Representation of Structures based
on Electron diffraction (3D-MoRSE) descriptors
(Mor13v, Mor19v, Mor27v and Mor29v) and two
GETAWAY descriptors (H8u and H5m). It is note-
worthy that there is no significant intercorrelation
between these descriptors, as shown in Table 2. Table 3
shows statistic quantities for this model. Since the q2

value was about 0.692, the model was considered to be a
good predictive one, according to Wold [37] (q2 >0.5).
In addition, the external validation showed r2 values for
the test set of 0.780.

The 3D-MoRSE [25] code considers a molecular
transform, derived from an equation used in electron
diffraction studies. Electron diffraction does not yield
atomic coordinates directly but provides diffraction
patterns from which the atomic coordinates are derived
by mathematical transformations. The 3D-MoRSE code
is applied by Eq. 9:

IðsÞ ¼
XN

i¼2

Xi�1

j¼2
AiAj

sin srij

srij
ð9Þ

In this equation Ai and Aj are atomic properties of
atoms i and j,rij represents the interatomic distances
and s measures the scattering angle. The value of s (0,
..., 31.0 Å�1) is considered only at discrete positions
within a certain range. Values of Is) are defined at 32
evenly distributed values of s in the range of 0–
31.0 Å�1 . These 32 values constitute the 3D-MoRSE
code of the 3D structure of a molecule. Different
atomic properties Ai were used, like atomic mass,
atomic van der Waals volumes, residual atomic San-
derson electronegativities and atomic polarizabilities.
The possibility for choosing an appropriate atomic
property gives great flexibility to the 3D-MoRSE code
for adapting it to the problem under investigation. In
this work, 3D-MoRSE selected descriptors are weigh-
ted by atomic van der Waals volumes (Mor13v,
Mor19v, Mor27v and Mor29v), this code can express
the appropriate distribution of the size of the molecules
for having a certain activity.
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Table 1 Structures and in vitro antifungal activities of the analyzed compounds against C. albicans

Training Set
Compound X Y Z R R1 R2 log(1/C)

1 CH O – H H H 3.892
2 CH O – C(CH3)3 H H 4.001
3 CH O – NH2 H H 3.924
4 CH O – NHCOCH3 Cl H 4.059
5 CH O – Cl Cl H 4.024
6 CH O – NO2 Cl H 4.040
7 CH O – H NO2 H 4.282
8 CH O – CH3 NO2 H 4.308
9 CH O – C(CH3)3 NO2 H 4.375
10 CH O – NH2 NO2 H 4.310
11 CH O – Cl NO2 H 4.342
12 CH O – Br NO2 H 4.406
13 CH O – C2H5 NH2 H 3.979
14 CH O – F NH2 H 3.960
15 CH O – N(CH3)2 NH2 H 4.005
16 CH O – CH3 CH3 H 3.950
17 CH O – C2H5 CH3 H 3.977
18 CH O – OCH3 CH3 H 3.980
19 CH O – F CH3 H 3.958
20 CH O – NHCOCH3 CH3 H 4.027
21 CH O – NHCH3 CH3 H 3.979
22 CH O – N(CH3)2 CH3 H 4.004
23 N O – CH3 H H 4.225
24 N O – C2H5 H H 4.253
25 N O – OCH3 H H 4.257
26 N O – OC2H5 H H 4.283
27 N O – NH2 H H 4.227
28 N O – NO2 H H 4.285
29 CH O – Br NH2 H 4.110
30 CH O CH2 OCH3 H H 4.282
31 CH O CH2 NO2 H H 4.308
32 CH O CH2 H Cl H 4.290
33 CH O CH2 OCH3 Cl H 4.340
34 CH O CH2 Br Cl H 4.410
35 CH O CH2 NO2 Cl H 4.363
36 CH O CH2 H NO2 H 4.609
37 CH O CH2 OCH3 NO2 H 4.657
38 CH O CH2 Br NO2 H 4.725
39 CH O CH2 Cl NO2 H 4.664
40 CH O CH2O H H NO2 3.732
41 CH O CH2O Cl Cl NO2 3.831
42 CH O CH2S H NO2 H 4.359
43 CH O CH2S H CH3 H 4.009
44 N O CH2O H H H 4.26
45 N O CH2O Cl H H 4.319
46 CH NH CH2O Cl CH3 H 4.037
47 CH NH CH2S H NO2 H 4.358
48 CH NH CH2S H CH3 H 4.009
49 CH O CH2O H COOCH3 H 4.054
50 CH O CH2O Cl COOCH3 H 4.104
51 CH NH CH2O Cl COOCH3 H 4.102
52 CH NH CH2S H COOCH3 H 4.076
53 CH O C2H4 H NO2 H 4.331
54 N O C2H4 H H H 4.253
55 CH NH CH2O H NO2 H 4.283
56 CH NH CH2O Cl H H 4.015
57 CH NH CH2S H Cl H 4.041
58 CH NH C2H4 H H H 4.078
59 CH O CH2O H H CH3 3.981
60 CH O CH2O Cl Cl H 4.071
61 CH O CH2O Cl CH3 H 3.738
62 CH O CH2O Cl H CH3 3.738
63 CH O CH2O H Cl H 4.344
64 CH O CH2S H H CH3 4.009
65 CH O CH2O H H H 3.955
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On the other hand, in Eq. 8 H8u and H5m descrip-
tors belong to Geometry, Topology and Atom-Weight
AssemblY [27] (GETAWAY) descriptors that are based
on a molecular influence matrix (MIM) similar to that
defined in statistics for regression diagnostics and cal-
culated from the molecular matrix M as:

MIM ¼ M � ðMT �MÞ�1 �MT ð10Þ

GETAWAY descriptors match the 3D molecular
geometry provided by the MIM and atom relatedness
by molecular topology, with chemical information.
The diagonal elements hii of the MIM, called lever-
ages, encode atomic information and represent the
‘‘influence’’ of each molecule atom in determining the
whole shape of the molecule; in fact, mantle atoms
always have higher hii values than atoms near the

molecule center. Each off-diagonal element hij repre-
sents the degree of accessibility of the jth atom to
interactions with the ith atom.

Specifically, H8u and H5m are H indices from H-
GETAWAY descriptors based on Moreau-Brotto
autocorrelation descriptors [38]. In such descriptors,
geometrical information provided by leverage values is
combined with atomic weightings, accounting for spe-
cific physicochemical properties of molecule atoms. H
indices consider the MIM off-diagonal elements, which
provide information on the degree of interaction
between atom pairs, modifying the Moreau-Broto
autocorrelations. Hk (w) is defined as:

HkðwÞ ¼
XA�1

i¼1

X

j>1

hij � wi � wj � dðk; dij; hijÞ ð11Þ

Where k (1, 2, ..., d) is the path length (lag) in the
molecular graph, dij is the topological distance between
atoms i and j, while wi and wj are the A-dimensional
property vector of the atoms i and j. The function d (k;
dij; hij) is a Dirac-delta function defined as

d ¼ ðk; dij; kijÞ ¼
1 if dij ¼ k and hij > 0

0 if dij 6¼ k or hij � 0

� �
ð12Þ

Table 1 (Contd.)

Training Set
Compound X Y Z R R1 R2 log(1/C)

66 CH O CH2O H NO2 H 4.034
67 CH O CH2O H Cl H 4.017
68 CH O CH2O Cl NO2 H 4.086
69 CH O CH2S H H H 4.286
70 CH O CH2S H Cl NO2 4.409
71 CH O CH2S H COOCH3 H 4.379
72 CH S CH2O H H H 3.684
73 CH S CH2O Cl H H 3.742
74 CH S CH2S H H H 4.013
75 CH NH CH2O H Cl H 4.316
76 CH NH CH2O H COOCH3 H 4.053
77 CH NH CH2O Cl Cl H 4.370
78 CH NH CH2NH H H H 3.951
79 CH NH CH2NH H CH3 H 3.977
80 CH NH C2H4 H Cl H 4.012
Test set
81 CH O – NHCH3 H H 3.952
82 CH O – C2H5 Cl H 4.013
83 CH O – NHCH3 Cl H 4.025
84 CH O CH2 H H H 4.223
85 CH O CH2 Cl H H 4.290
86 CH O CH2 NO2 NO2 H 4.680
87 CH O CH2 Br H H 4.360
88 CH O CH2O H CH3 H 3.980
89 CH O CH2O H Cl NO2 3.785
90 CH O CH2O Cl H H 4.016
91 CH O CH2O Cl H NO2 3.785
92 CH O CH2S H H NO2 4.360
93 CH NH CH2O H H H 3.953
94 CH NH CH2O H CH3 H 3.979
95 CH NH CH2S H H H 4.284
96 CH NH C2H4 H CH3 H 4.277

Table 2 Correlation matrix of the descriptors selected by linear GA

Mor13v Mor19v Mor27v Mor29v H8u H5m

Mor13v 1
Mor19v 0 1
Mor27v 0.055 0.175 1
Mor29v 0.019 0.006 0.155 1
H8u 0.062 0.003 0.109 0.286 1
H5m 0.015 0.031 0.011 0.006 0.001 1
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As indicated by the d function, only positive hij values
are considered. Negative signs of the off-diagonal ele-
ments mean that the two atoms occupy opposite
molecular regions with respect to the center and hence
their mutual degree of accessibility should be low.

Bayesian-regularized artificial neural network analysis.

Artificial neural network (ANN) training was carried
out according to the Levengerg-Marquardt optimization
[39]. The initial value for l was 0.005 with decrease and
increase factors of 0.1 and 10, respectively. The training
was stopped when l became larger than 1010.

We used the following architecture:

– The input layer included the selected descriptors (six
descriptors).

– One hidden layer with sigmoid transfer function was
included. The hidden layer’s architecture was varied
from 4–7 neurons.

– The output layer had a linear transfer function and
one neuron, representing the antifungal activity. The
input and output values were normalized. Analysis of
the hidden-layer architecture showed that results were
stable between 4 and 7 neurons because the Bayesian
regularization avoids overfitting. Finally, a 6-5-1
architecture was chosen.

In a first approach, BRANN was generated using
the same descriptors that appeared in the MLR–GA
model as network inputs in order to improve the fit of
the linear model. Afterward, by running the BRANN–
GA routine until 90% of the generations reached the
same fitness values, an optimum neural network
model, BRANN–GA, was obtained (see Materials and
methods).

Statistics for the BRANN model appear in Table 3.
This nonlinear model was superior to the MLR–GA one
by fitting the training set with a higher r2 of 0.889, in
comparison with 0.746 for the linear model.
Nevertheless, the two models exhibited similar predictive
power measured by internal and external validation

processes. Linear and nonlinear values of q2 of LOO
cross-validation were 0.692 and 0.625 for the internal
validation, respectively, while the external validation
showed r2 values for the test set of 0.780 and 0.811,
respectively (Table 3). These results agreed with previ-
ous reports, in which ANNs trained with variables se-
lected by linear search routines were superior to linear
models by increasing data fitting, but the predictors did
not exhibit a remarkable improvement in predictive
power. [40, 41]

The BRANN–GA approach yielded an optimum
variable subset that was more diverse in comparison
with the descriptor subset of the linear model. The
BRANN–GA predictor includes four kinds of molecular
descriptors, two RDF descriptors (RDF055u and
RDF085m), two 3D-MoRSE descriptors (Mor10u
and Mor25p), one WHIM descriptor (E1u) and one
GETAWAY descriptor (H8v). Similarly to the variables
selected by MLR–GA, there is no significant intercor-
relation between these descriptors, as shown in Table 4.

RDF descriptors are calculated from the radial dis-
tribution function of an ensemble of N atoms that can be
interpreted as the probability distribution of finding an
atom in a spherical volume of radius r. Eq. 13 represents
the radial distribution function code:

gðrÞ ¼ f
XN�1

i

XN

j>1

AiAje�Bðr�rijÞ2 ð13Þ

where f is a scaling factor, N is the number of atoms, Ai

and Aj are atomic properties of atoms i and j,rij repre-
sents the interatomic distances and B is an smoothing
parameter, which defines the probability distribution of
the individual distances. g(r) was calculated at a number
of discrete points with defined intervals. In the
BRANN–GA model, RDF055u and RDF085m take into
account the atoms inside virtual spheres of 5.5 and 8.5 Å
of diameter, excluding atoms at the most external
spheres (heterocyclic ring-derivative diameters varied
from 10 to 15 Å).

Table 3 Statistic parameters of the linear and nonlinear models for the antifungal activity of the heterocyclic derivatives

Model Descriptors r2 training set q2 LOO r2 test set

MLR–GA Mor13v, Mor19v, Mor27v, Mor29v, H8u, H5m 0.746 0.692 0.780
BRANN Mor13v, Mor19v, Mor27v, Mor29v, H8u, H5m 0.889 0.625 0.811
BRANN–GA RDF055u, RDF085m, Mor10u, Mor25p, E1u, H8v 0.937 0.689 0.874

Table 4 Correlation matrix of
the descriptors selected by
nonlinear GA

RDF055u RDF085m Mor10u Mor25p E1u H8v

RDF055u 1
RDF085m 0.134 1
Mor10u 0.026 0.028 1
Mor25p 0.119 0.016 0.101 1
E1u 0.016 0.008 0 0.001 1
H8v 0.052 0.038 0.141 0.041 0.024 1
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Another descriptor in the BRANN–GA model is
the WHIM index E1u. The weighted holistic invariant
molecular (WHIM) indices are invariant to roto-
translation descriptors obtained for each molecular
geometry [26]. They are calculated by transforming
Cartesian coordinates weighted by atomic properties
and centering the coordinates to obtain invariance to
translation. Then, a principal components analysis
(PCA) leads to three principal component axes and
new coordinates are obtained by projecting the old
ones onto the PCA axes, obtaining three score column
vectors t1, t2 and t3. Four kinds of descriptor are
calculated from the first to fourth order of tm scores,
related to molecular size, shape, symmetry and atom
distribution. The WHIM descriptor E1u is that given
by the kurtosis, calculated from the fourth order
moments of the tm scores. It is related to the atom
distribution along the principal axes for the un-
weighted scheme.

An improvement in the reliability on the modeling of
the antifungal activity was achieved by the BRANN–GA
procedure. BRANN–GA fitted the training set with an r2

value of 0.937, its internal validation exhibited a q2 value
of LOO cross-validation of 0.689 and r2 value of 0.874
was obtained for test-set fitting (Table 3). When com-
paring this predictor with the previous models developed
in this paper, we found that, besides the improvement on
the fitting of training set, the most remarkable result is
the increment in predictive power. Although BRANN–
GA exhibits a similar q2 of LOO cross-validation in
comparison to the MRL–GA model, a remarkable in-
crease in the quality of the prediction of the external test
set was obtained. In this regard, several authors have
suggested that independent q2 values, the only way to
estimate the true predictive power of a QSAR model is to
compare the predicted and observed activities of a (suf-
ficiently large) external test set of compounds that was

not used for training [42]. Table 5 shows predicted and
experimental activities for the test set. Plots in Fig. 4
depict the fitting of the training and test sets for MLR–
GA, BRANN and BRANN–GA models. In the light of
this result, the superiority of this BRANN model is well
addressed by its significantly higher r2 value of 0.874 in
comparison with 0.780 and 0.811 for the MLR–GA and
BRANN models, respectively. Similarly, the plots of the
residual antifungal activities depicted in Fig. 5 confirm
the higher accuracy of BRANN–GA model. Figure 5c
showed that, contrary to linear GA-derived models, the
BRANN–GA predicts the whole test set with a residual
lower than 0.2, included compound 96, which was an
outlier for the other models.

KNN analysis.

In order to achieve data differentiation using the six
descriptors in the best predictor BRANN–GA, a KNN
with 12·12 neurons was mapped with these descriptors
as input vectors and both training and test sets were
included in the training process. Neurons were initially
located at a gridtop topology map. The ordering phase
was realized in 1,000 steps with learning rate = 0.9 until
the tuning neighborhood distance (1.0) was achieved.
The tuning phase learning rate was 0.02. Training was
performed for a period of 2,000 epochs in an unsuper-
vised manner.

Figure 6 depicts the KNN map of the data, 66 of a
total of 144 neurons were occupied, 8 neurons are con-
sidered as conflictive. As can be seen, compounds with a
similar range of activity were grouped into neighboring
areas. The most active compounds are grouped in the
upper-left zone, the rest of the active compounds (log(1/
C) > 4.2) are fundamentally grouped at the upper right.
The less active compounds were organized in clusters

Table 5 Predicted log(1/C) values of compounds from test set compared with their observed values by MLR–GA, BRANN and
BRANN–GA models

Compound log(1/C) Experimental MLR–GA BRANN BRANN–GA
log(1/C) log(1/C) log(1/C)
Predicted Residual Predicted Residual Predicted Residual

81 3.952 4.000 �0.048 4.037 �0.085 4.025 �0.073
82 4.013 4.099 �0.086 4.132 �0.119 3.883 0.130
83 4.025 4.042 �0.017 4.300 �0.275 4.081 �0.056
84 4.223 4.241 �0.018 4.290 �0.067 4.140 0.083
85 4.290 4.172 0.118 4.204 0.086 4.173 0.117
86 4.680 4.573 0.107 4.716 �0.036 4.662 0.018
87 4.360 4.315 0.045 4.363 �0.003 4.430 �0.070
88 3.980 3.967 0.013 3.897 0.083 3.806 0.174
89 3.785 3.870 �0.085 3.852 �0.067 3.811 �0.026
90 4.016 3.933 0.083 4.054 �0.038 3.962 0.054
91 3.785 3.936 �0.151 3.823 �0.038 3.895 �0.110
92 4.360 4.398 �0.038 4.372 �0.012 4.327 0.033
93 3.953 4.039 �0.086 4.010 �0.057 3.967 �0.014
94 3.979 4.029 �0.049 4.042 �0.063 3.892 0.087
95 4.284 4.234 0.050 4.372 �0.088 4.202 0.082
96 4.277 3.945 0.332 4.056 0.221 4.138 0.139
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through the entire map. The fact that most and less
active compounds were located in several islands con-
firms that the descriptors chosen distinguish the data
quite well.
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Fig. 4 Predicted versus experimental activities for the data set. a
MLR (d) training set; (s) test set. b BRANN (d) training set; (s)
test set. c BRANN–GA (d) training set; (s) test set
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Fig. 5 Residuals for predictions in data set compounds. (a) MLR.
(b) BRANN. (c) BRANN–GA
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Model interpretation

3D descriptors have found many applications in the
performance of QSAR studies. Moreover the results are
better when models combine several groups of descrip-
tors [43]. The most obvious way for coding the 3D
structure of a molecule by specifying the Cartesian or
internal coordinates of the atoms is unfavorable for
most applications because the number of 3D coordinates
is intimately tied to the number of atoms in a molecule.
This drawback is eradicated when using 3D descriptors.

Several reports have been published about linear
QSAR of the antifungal activity of heterocyclic
compounds. Specifically, Yalcin et al. [12] reported a
MLR equation using local descriptors and Verloop’s
STERIMOL parameters to describe the antifungal
activity of a subset of 68 compounds included in the
current study, dividing them in a 61-member training set
and 7-member test set. In spite of the good results
achieved by these authors, some remarks should be ad-
dressed. The authors reported an irrational r2 of 0.980
considering the implicit uncertainty of the twofold serial
dilution technique employed in the activity assays. Al-
though a q2 of LOO cross-validation of 0.670 is similar
to the values reported here and the model explains
83.7% of the external validation predictions, the test set
was bounded to the most inner compounds, including
neither more active (> 4.36) nor less active (< 4.01)
antifungal heterocyclic ring derivatives. Regarding this,
the test set is not a representative sample of the whole set
of 68 compounds. In addition, the significance of this
model in comparison with our approach is limited since
local descriptors consider molecules like frames with

isolated devices, while 3D global descriptors relate all
physicochemical properties in an integral frame, allow-
ing some interpretation of the study phenomena.

The ANN approach has been applied successfully in
antifungal QSAR studies. Hasegawa et al. [14] reported
modeling of the antifungal activity of a small data set of
30 azoxy compounds using back-propagation neural
networks and physicochemical parameters. Similarly
Mghazli et al. [15] used these networks in a QSR study
of 1-[2-(substituted phenyl)allyl]imidazole derivatives
using physicochemical parameters. Their results revealed
a nonlinear influence of the molecular hydrophobicity
on the antifungal activity. Both of these previous studies
lacked any feature-selection algorithm to search among
a pool of descriptors encoding different molecular
properties for variables having relevant relationships
with the antifungal activity.

In this paper, two sets of six 3D molecular descriptors
were selected from a pool of 721 descriptors for
modeling the antifungal activity of 96 heterocyclic
compounds. The linear GA results were framed in 3D-
MoRSE and H-GETAWAY descriptors weighted by
atomic van der Waals volumes and atomic masses.
Otherwise, the nonlinear GA found a more complex and
reliable solution including 3D-MoRSE, RDF, WHIM
and H-GETAWAY descriptors weighted by the same
properties and adding atomic polarizabilities.

The 3D-MoRSE selected descriptors are weighted by
atomic van der Waals volumes (Mor13v, Mor19v,
Mor27v and Mor29v). This code can express the
appropriate distribution of the size of the molecules for
having a certain activity. On the other hand, H8u, the
unweighted H index of lag 8, has a positive influence in
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Fig. 6 A KNN map for the
data set using the selected six
descriptors (model BRANN–
GA). More than one compound
for neuron is indicated.
Underlined number means
conflictive neuron. Squares at
right decode the ranges of
antifungal activities (log1/C)
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the MLR–GA. Atoms at dij=8 in opposite molecular
regions would be discarded, therefore H8u adopts larger
values for long molecules and stretched conformations.
Similarly, H5m has a positive influence and increases
when one-side fifth path lengths are present, but it also
takes into account atomic masses.

The BRANN–GA results are clearly different with
regard to the linear ones. The role of the descriptors in
the nonlinear models is not amenable to analysis because
of the black-box nature of the BRANN methodology.
The BRANN–GA model retains the H index of lag 8,
but weighted by atomic van der Waals volumes (H8v).
In addition, the nonlinear relation changes the code in
the 3D-MoRSE descriptors, introducing the effect of
atomic polarizabilities (Mor10u and Mor25p) and the
WHIM descriptor E1u is related to the atom distribution
along the principal axes for the unweighted scheme.

Despite the fact that interpreting QSAR models is
always a difficult task, we can conclude that the linear
and nonlinear models obtained here showed that the
distribution of van der Waals atomic volumes and
atomic masses have a large influence on the antifungal
activities of the compounds studied. This suggests that
molecular size and shape play an important role in the
antifungal activity modeled. Also, the BRANN–GA
model included the influence of atomic polarizability
that could be associated with the capacity of the anti-
fungal compounds to be deformed when interacting with
biological macromolecules. These facts agree well with
reports in which the capacity of the active molecule to
transfix fungi cellular wall is considered a key factor for
adequate antifungal activity [1].

Conclusions

Biological activities are complex in nature. A QSAR
study on antifungal activity was performed by means of
MLR and BRANN techniques. The GA approach was
used for selecting optimum subsets of descriptors for
linear and nonlinear modeling of the antifungal activity
of 96 heterocyclic derivatives. The highest linear corre-
lation between six descriptors and the activity had r2

values of 0.746 and 0.780 for training and test sets,
respectively. The use of variables selected by a linear GA
approach for training neural networks did not produce a
more predictive model. However, the combination of
BRANN and GA techniques yielded the best predictors
able to describe about 94% of the training set and 87%
of the test set. Our models suggest there are high influ-
ences of molecular size, shape and deformability in the
antifungal activity. On the other hand, the antifungal
compounds were well differentiated regarding their
antifungal potency in a KNN map built using the
descriptors present in BRANN–GA predictor.
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