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Abstract. In this paper we investigate a general purpose
interactive information organization system. The system
organizes documents by placing them into 1-, 2-, or 3-
dimensional space based on their similarity and a spring-
embedding algorithm. We begin by developing a method
for estimating the quality of the organization when it
is applied to a set of documents returned in response
to a query. We show how the relevant documents tend
to clump together in space. We proceed by presenting
amethod for measuring the amount of structure in the or-
ganization and explain how this knowledge can be used
to refine the system. We also show that increasing the
dimensionality of the organization generally improves its
quality, albeit only a small amount. We introduce two
methods for modifying the organization based on infor-
mation obtained from the user and show how such feed-
back improves the organization. All the analysis is done
offline without direct user intervention.

Key words: Information organization – User interface –
Evaluation

1 Introduction

An important part of a digital library is the ability to
access the stored information effectively. Due to recent
achievements in the area of information retrieval, a digi-
tal library is usually equipped with an automatic search
and retrieval system that users of the library may em-
ploy to find documents. Such a system accepts a free text
(“natural language”) query and responds with a list of
documents in the order they are most likely to be rele-
vant: the first document is the best match to the user’s
query, the second is the next most likely to be helpful,
and so on. We are interested in situations where this sim-
ple model breaks down — where the user is unable to

find enough relevant material in the first ten retrieved
documents. In particular, we are interested in helping
a searcher find all of the relevant material in the ranked
list without forcing him or her to wade through all of
the non-relevant material. We believe that in this case an
information organization technique that arranges the re-
trieved data and reveals how individual documents relate
to each other will help the user to isolate relevantmaterial
quickly.

The purpose of this paper is twofold. First, we define
an evaluation approach that we believe can be used to
analyze interactive information organization techniques.
The main idea of the approach is to perform multiple of-
fline simulations of a user interacting with the system.
Second, we apply this evaluation framework to inves-
tigate an interactive visualization technique where re-
trieved documents are placed in space and positioned ac-
cording to the similarity among them [5]. We study the
visualization for the specific task of helping the user find
the interesting material in the retrieved document set.

There are several different ways of evaluating interac-
tive systems. A user study is probably the most widely
employed method. Here a person is involved in applying
the system to a number of tasks. The user’s performance
is measured and used as the quality estimator. An ex-
ample of a user study is the interactive track included
in TREC [15]. It is a good example of how the “over-
all” performance of both the user and the system work-
ing together is measured. User studies are also applied
to evaluate some particular aspects of the system. For
example, in their user study of the Scatter/Gather sys-
tem, Hearst and Pedersen [16] showed that users seem
able to choose the cluster with the largest number of rel-
evant documents using the textual summaries the system
creates. User studies usually are very expensive, time-
consuming and difficult to execute. Designing a good and
informative user study is almost work of art.
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A different evaluation approach is the predictive eval-
uation method (e.g., see Card andMorgan [8]). This tech-
nique estimates how fast a particular task can be exe-
cuted using the system. It requires the task to be defined
precisely and the system is evaluated particularly for this
task. This is achieved by subdividing the task into a num-
ber of unit actions such as key presses and mouse clicks,
where the time necessary to perform the unit actions is
known. A set of possible strategies that combine the unit
actions together is generally assumed for the user. This is
similar to our approach as we are interested in how fast
the user can locate all relevant information and we also
assume different strategies for the user. However, we are
interested in measuring the amount of data the user is
forced to analyze before finding all relevant documents
and not the actual time that is required to complete the
search.

1.1 Visualization approaches

Multiple visualization approaches have been developed in
recent years. Generally these visualizations are designed
to present some type of patterns in a document set and
are considered to be browsing interfaces. To our know-
ledge there have been no studies on how such visualiza-
tions help the user locate relevant information.

The Scatter/Gather interface [16] presents the docu-
ment clusters as text. It groups the documents into five
(or any preselected number) clusters and displays them
simultaneously as lists. On a large enough screen, the top
several documents from each cluster are clearly visible.
Another text-based visualization is presented by Leouski
and Croft [18]. Their method is similar to the one used
by Scatter/Gather, but the number of clusters is based
on a similarity threshold. Their display looks more like
a standard ranked list because they can have an arbitrar-
ily large number of clusters (limited only by the size of the
retrieved set).

It is very common for clusters to be presented graph-
ically. The documents are usually presented as points or
objects in space with their relative positions indicating
how closely they are related. Links are often drawn be-
tween highly-related documents to make it clearer that
there is a relationship.

1.1.1 2D Visualization

Allan [1, 2] developed a visualization for showing the re-
lationship between documents and parts of documents.
It arrayed the documents around an oval and connected
them when their similarity was strong enough. Allan’s
immediate goal was not to find the groups of relevant
documents, but to find unusual patterns of relationships
between documents.

The Vibe system [12] is a 2D display that shows how
documents relate to each other in terms of user-selected

dimensions. The documents being browsed are placed in
the center of a circle. The user can locate any number of
terms inside the circle and along its edge, where they form
“gravity wells” that attract documents depending on the
significance of that term in that document. The user can
shift the location of terms and adjust their weights to bet-
ter understand the relationships between the documents.

1.1.2 3D Visualization

High-powered graphics workstations and the visual ap-
peal of 3-dimensional graphics have encouraged efforts to
present document relationships in 3-space. The Lyber-
World system [17] includes an implementation of the Vibe
system described above, but presented in 3-space. The
user still must select terms, but now the terms are placed
on the surface of a sphere rather than the edge of a cir-
cle. The additional dimension should allow the user to see
separation more readily.

Our system is similar in approach to the Bead sys-
tem [9] in that both use forms of spring embedding for
placing high-dimensional objects in 3-space. The Bead re-
search did not investigate the question of separating rele-
vant and non-relevant documents. Figure 2 shows sample
visuals of our system (they are explained in more detail in
later sections).

In this study we show how the relevant documents
tend to clump with each other in space. We present
a method for measuring the amount of structure in the
organization and explain how this knowledge can be
used to refine the system. We also show that increas-
ing the dimensionality of the organization generally im-
proves its quality. We introduce two methods for modi-
fying the organization based on the information obtained
from the user and show how such feedback improves the
organization.

2 Evaluation framework

Consider the interaction process that occurs between
a user and an information organization system. Figure 1
presents a simple model of this process. We assume that
when the user turns to the organization system she/he
has a particular goal to achieve, a task to complete. In
our study we will consider the task of identifying the rel-
evant material in the document set returned by an in-
formation retrieval system. The information organization
system analyzes the provided information (the retrieved
documents in our example), builds a data model , and uses
the model to organize the data. The organization is shown
to the user and the information reaches the user in the
form of “clues”. For example, in the system presented
in this paper the main “clue” is the spatial proximity
of the documents that reflects the inter-document sim-
ilarity — if the documents are shown nearby, they are
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Fig. 1. The relationship between the system and the user in an interactive information organization setting

probably about the same topic. It is for the user to rec-
ognize and interpret the supplied “clues” as effectively
as possible, apply this knowledge, and decide what docu-
ments to view and in what order. We call this decision
process the search strategy. It might be as simple as se-
lecting the next document randomly, or something more
elaborate, e.g., “find a relevant document, find another
relevant document in close proximity to the first one, keep
looking at the documents by going away from the first
document in the direction of the second document.” After
a document is selected, the user makes a relevance as-
sessment and passes the judgments to the system. The
system takes the user’s feedback and adjusts the data
model.

The described interaction model defines a general pro-
cess in which the system and the user are working to-
gether to achieve a predefined goal. Both serve as two
components of a large “engine” that drives toward that
goal. The quality of the system is estimated by applying
the engine to a known data set and measuring how well
the engine handles the task. The combined efforts of the
system and the user are measured — i.e., the quality of
how well the system and the user are able to perform the
given task. Generally, real users participate in such ex-
periments — a user study is performed.

We suggest an alternative where the user is “replaced”
by a probabilistic model of some search strategy. This
leads to a change in the research question: instead of in-
vestigating how well the system and the user perform
a certain task, we study how well the system is able
to support a random prototypical “user” in this task
with that strategy. In other words, we compute the lower
bound estimate of the system performance and isolate
the system’s effect on the overall quality. We call this
approach the Strategy-based Evaluation Method (SEM).
The quality of the system becomes a function of both
the task and the search strategy. By considering differ-
ent search strategies we can investigate which one is the
most suitable for the given organization system. We can
recommend an effective way of using the system. More
traditional user studies could be employed to validate the
proposed strategies or to confirm their usability.

The following is a short summary of the Strategy-
based Evaluation Method. We use this framework to
present and analyze the information visualization system
in our study and to organize the rest of the material.

– Experimental task.When a user turns to the informa-
tion organization system he or she generally has a goal
in mind. Thus, we always evaluate the system relative
to a particular task. In this study we consider informa-
tion organization as an information retrieval problem
and the tasks we employ in the evaluation are retrieval
tasks.

– System design. The system, including the data model
and the algorithm for data organization, is the first
main component. We specify what kind of feedback
the system accepts and how this information affects
the data model. The interface or the visualization part
of the system is also very important.We describe what
information about the data model is communicated to
the user and how these “clues” are presented.

– Search strategy. A probabilistic recognition value is
attached to each “clue”. Then the user strategy is de-
fined as a decision making process. The strategy is not
necessarily deterministic: it could be random, as long
as we have a probability for each part of the strategy
determined a priori.

– Performance measure. The performance measure de-
pends on the task in hand significantly. Several differ-
ent statistics might be used to evaluate the same task.

– Experiments. The performance is computed analyti-
cally or by simulating the task multiple times. It is
repeated for multiple data sets. If the user model con-
tains a random factor, the result could be a probability
distribution for the performance.

The following sections give more details on each part of
the evaluation method.

3 Experimental task

Our evaluation approach is task-oriented — we assume
that the user is working with the system to achieve a par-
ticular goal. In this study we consider information organi-
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zation in the context of information retrieval. In particu-
lar, we study automatic organization of documents that
were retrieved in response to a known query by an infor-
mation retrieval system. Therefore, we assume that there
exists a collection of documents and a topic of interest.
On the basis of this topic a query is created and is used by
the retrieval system to find a number of documents that
are supposed to be relevant to the topic. The retrieved
documents are usually organized in a ranked list accord-
ing to their probability of being relevant. Generally, only
a few of the retrieved documents are actually relevant.
The user is faced with the task of locating the relevant
documents among those retrieved. We believe that an or-
ganization system more sophisticated than a ranked list
will make the process of locating the relevant material
more effective.

The task of locating the relevant information is the
process we analyze in this study. We assume that the
user has located a few of the relevant documents — we
believe this is a reasonable strategy and almost always
could be done by looking at the titles in the ranked
list. We investigate how the visualization helps to locate
the rest of the interesting (relevant) documents. Thus,
the experimental task is: given that some of the docu-
ments presented by the information organization system
are marked as relevant or non-relevant, isolate the rest of
the relevant material without encountering non-relevant
documents.

4 System design

In this section we describe in detail how the visualization
system works, how it represents the documents and what
kind of user feedback it accepts. We define a technique
that allows us to estimate the amount of spatial struc-
ture in the images generated by the system. We also show
some examples of such images.

The system works by placing the retrieved docu-
ments in 1-, 2-, or 3-dimensional space according to the
similarity among them [5]. The documents are repre-
sented as vectors of terms with vector size equal to the
vocabulary size of the retrieved set. Each retrieved doc-
ument’s vector defines a point in a high-dimensional
space. The distances between these points and their
relative positions are strong indicators of the similar-
ity among the corresponding documents. Unfortunately,
it is difficult to visualize objects in more than three di-
mensions. To display the points properly and show the
relationships to the user we need to reduce the num-
ber of dimensions to 1, 2, or 3. There are many dif-
ferent algorithms that do dimensionality reduction. We
use spring-embedding in our system [13]. Our choice
was motivated by our earlier work [5]; other techniques
(e.g., Linear Programming) are entirely possible, though
we have not investigated whether our results apply to
them.

4.1 Spring-embedder

The idea of spring-embedder is as follows: consider a set
of points in a high-dimensional space and a function that
defines the distance between two points. We will call this
high-dimensional space t-space, where t is the actual di-
mension of the space. Consider also a low-dimensional
space where this point set is going to be visualized e.g.,
1, 2, or 3 dimensions. We call this space v-space (as in
visualization). The algorithm creates a point configura-
tion in v-space space that “mimics” the configuration in
t-space — it attempts to preserve the relative distances
and positions of the points in t-space. Generally, it is im-
possible to reproduce the same configuration exactly in
low dimensions.

Each object in t-space is modeled with a steel ring in
v-space. The rings repel each other with a constant force:
the rings are pushing away from each other and the sys-
tem is striving to break apart. The “break-away” does
not happen because the rings are inter-connected with
springs. The force constant of a spring is proportional to
the original distance between points in t-space. In this
way a “mechanical” model is created. Left to itself the
model oscillates and assumes an “optimal” final state.
If two points were very close to each other in t-space,
the corresponding rings are connected with a very strong
spring, and they are very likely to end up close to each
other in v-space. On the other hand, the rings that corres-
pond to pairs of points that are far apart have a weak link
and the general repulsive force among the rings will push
them apart.

Although ring placements may vary widely across
oscillations, the final configuration does not usually de-
pend on the original ring locations and these locations
are randomly selected. For N objects there are (N2−
N)/2 springs. If all springs are present in the model,
all rings are connected very strongly and the final con-
figuration tends to resemble a tight “soccer-ball”. Note
that Bead [9] was originally designed for a collection of
journal abstracts. Such documents are very small and
rarely have words in common. Thus just a few of (N2−
N)/2 possible springs were generally present. When
Chalmers attempted to apply his system on a collection
that contained complete (larger) documents, he observed
the “soccer-ball” phenomenon and did not resolve that
difficulty.

To prevent the “soccer-ball” from appearing and to
reduce computational expense, we impose a limit on the
inter-point distances in t-space. If a distance between two
points in t-space exceeds a predefined threshold, such
points are considered to be infinitely far apart and the
corresponding rings are not connected with a spring. In-
deed, this allows us to model a situation when two docu-
ments are known to be different, when at the same time
they have some terms in common.

Unfortunately, selecting the right threshold is a diffi-
cult task. Changing the threshold value adds or removes
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springs in the model and can have a dramatic effect on
visualization.

4.2 Vector generation and embedding

For each document we created a vector V such that vi was
a tf · idf weight of the ith term in the vocabulary:

vi =
tf

tf +0.5+1.5 doclen
avgdoclen

·
log
(
N+0.5
docf

)
log(N +1)

(1)

where tf is the number of times the term occurs in the
document, docf is the number of documents the term
occurs in, and N is the number of documents in the col-
lection. For each query this resulted in a set of vectors in
t-space, where t is the size of the vocabulary of the top
retrieved documents (about 3000 words for 50 retrieved
documents in most cases that we consider in this study).

The t-dimensional vectors were embedded in 1-, 2-,
and 3-dimensional space using the spring-embedder. Dis-
tance between vectors was measured by the sine of the
angle between the vectors. The embedded structure de-
pended on the number of springs among objects. This
number is determined by a threshold: a maximum dis-
tance between documents at which the corresponding ob-
jects are connected with a spring. For a set of 50 objects
there are (502−50)/2 = 1225 different spring configura-
tions, and therefore, 1225 different embeddings.

4.3 Relevance feedback

We consider two methods for incorporating user feedback
into the visualization: Space Warping and Restraining
Spheres.

4.3.1 Space warping

Suppose the system received relevance judgments for
a subset of the documents being used. The known rele-
vant documents are averaged to create a representative
relevant vector, VR, i.e.,

VR =
1

|Rel|

∑
∀V ∈Rel

V , (2)

where Rel is the set of known relevant documents. Sim-
ilarly, the remaining known non-relevant documents are
averaged to create a representative non-relevant docu-
ment, VN , i.e.,

VN =
1

|Non|

∑
∀V ∈Non

V , (3)

where Non is the set of known non-relevant documents.
With,

∆V = VR−0.25 ·VN , (4)

each known relevant vector is modified by adding ∆V
to it and the known non-relevant vectors are modified
by subtracting ∆V . Any resulting negative values are
replaced by zero (the vector-space model generally uses
only non-negative values).

∀V ∈Rel, V = V +∆V

∀V ∈Non, V = V −∆V .

This approach is very similar to relevance feedback
methods traditionally applied in information retrieval,
but rather than modifying the query, the relevant docu-
ments themselves are modified to be brought “closer” to
each other.

The vectors are modified in t-dimensional space and
the entire set is then embedded in 1-, 2-, and 3-dimensio-
nal space as described previously. We hypothesize that
unjudged relevant documents will move closer to the
known relevant, and unjudged non-relevant will shift to-
wards the known non-relevant.

4.3.2 Restraining spheres

An advantage of a ranked list is the direction it implies:
the user always knows where to start looking for rele-
vant information (i.e., at the top of the list) and where
to go to keep looking (i.e., down the list). We observed
that space warping, however effective it is in bringing to-
gether relevant documents, tends to “crowd” the objects,
making the whole structure more compact and not eas-
ily separable. We developed a small modification to the
warping approach that enhances separation among docu-
ments, i.e., at the same time creating a general sense of
direction on the object structure.

During spring-embedding, judged (i.e., known) rel-
evant documents are placed inside a small sphere and
forced to remain there during the oscillation of the em-
bedding, even if tensions in the system would normally
move them far from there. Similarly, judged (i.e., known)
non-relevant documents are forced into another sphere
positioned apart from the first one. The rest of the docu-
ments are allowed to assume any location outside of these
spheres. Intuitively, we grab the spring-embedded struc-
ture by the judged documents and “pull it apart”.

4.4 Visualization

Figure 2 shows several presentations of 50 documents re-
trieved in response to a representative query and em-
bedded with the spring-embedder. We assume that the
relative position of the documents serves as the main
“clue” for the user and that he or she can distinguish
even a tiny difference in inter-object distances. Another
assumption was made when we designed our system: we
assumed that the visualization algorithm will generate
“interesting” spatial configurations — e.g., pictures that
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(a) 2D embedding (b) 3D embedding

(c) 3D warped (d) 3D restrained

Fig. 2. Visualization of retrieved documents for one of the queries. Both 2- and 3-space embeddings are shown, plus two variations on the
3-space visualization. Relevant documents are shown as black spheres; non-relevant as white. In a real system, the user would initially not

know the colors and all spheres would be gray

have some structure, pictures with “clumps” and “gaps”.
Such structure can serve as an additional navigational
“clue” and would provide the user with an overview of the
inter-document relationships in the set. The importance
of such a structure is that it could not be easily described
and explained by analyzing individual pairwise similari-
ties between documents. As Fig. 2 shows, the layout gen-
erated by the spring-embedder can exhibit a significant
amount of structure.

4.5 Estimating spatial structure

We require a way of measuring this spatial structure.
Specifically, we desire answers for the following two ques-
tions:

– Are the spatial locations random, or are they clus-
tered? A spatial point pattern that exhibits some
structure provides potentially more information than
a set of randomly scattered objects. We require a sta-
tistical test to determine if the spatial pattern shows
any structure.

– If the spatial pattern shows any structure, what is the
extent of the structure? We require a way to quan-
tify the amount of “clumpiness” in the point pattern

that does not require asking a person’s opinion. Such
a statistic is crucial for this study: different observers
would disagree as to the amount of structure in the
point pattern. Further, the process of obtaining such
judgments would be enormously expensive.

The theory of point fields (i.e., point processes) [21]
introduces a simple and efficient technique for measuring
spatial dependencies between different regions of a point
pattern.1 Here we give an overview of key points. A full
description is available in a book by Cressie [10]. Consider
a set of points in a d-dimensional space and a distance
function on this space. Suppose λ is the mean number of
points in a unit volume of space, or the intensity of the
point field. LetN(h) be the number of extra points within
a distance h of a randomly chosen point. Then Barlett [6]
defines a function K as:

K(h) = λ−1E(N(h)), h≥ 0 , (5)

where E(·) is the expectation operator on the point field.
In other words, the K function is the average number of

1 Random point fields are mathematical models for irregular
“random” point patterns. We will use this terminology to describe
the location pattern of objects corresponding to the retrieved
documents.
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points in the point field within distance h of any point
in this field, normalized by the mean number of points
in a unit volume of space. Practically, it measures a local
concentration of points, or what part of the point field on
average is within distance h of any point in the point field.
Ripley [19, 20] shows that the K function has properties
that make it an effective summary of spatial dependence
in a point field over wide range of scales.

The main application of the K function is to test if
a point field exhibits any structure [21, p. 224]. Indeed,
K(h) is proportional to the number of points at most h
away from an arbitrary point. If this number is unusu-
ally high, we find many points in close proximity to any
given point — i.e., we have clumps or clusters of points in
the point field. If the number is low, we have few points
in close proximity — i.e., we have gaps in the field. Be-
cause of the expectation operator in (5) these conclusions
apply “on average” to the whole point field. Therefore,
the K function should not be much affected by outliers if
enough points are considered. The function does not ex-
plicitly depend on point locations, making it independent
of the shape of the point field.

The K function is just a metric for comparing one
point field to another. To decide if the the point field has
clusters, we compare this field to some configuration that
is known not to have clusters. Generally, a completely
random arrangement of points with neither clumps nor
gaps is selected. This configuration of points is called
a “random point field”.

It is customary [10] to model this random point field
with a Poisson point field, a configuration where a point
is equally likely to occupy any location in the space of
the field. The only condition is that no two points can
occupy the same location in space. The K function for
a d-dimensional Poisson field is defined as:

KPoisson(h) =
πd/2hd

Γ
(
1+ d

2

) (6)

To compute the values of the K function the expectation
operator in (5) is replaced with an empirical average over
the N given points:

K̂(h) = λ̂−1
N∑
i=1

N∑
j=1

I(‖si− sj‖ ≤ h)/N, i 	= j (7)

Here λ̂=N/v is the estimator of the intensity, v is the vol-
ume that contains the point field, si is the location of the
ith point, and I(·) is the indicator function:

I(x) =

{
1, if x is true
0, if x is false

(8)

It is also customary to use the following statistic L̂(h) in-
stead of K̂(h):

L̂(h) =
d

√
K̂(h)

Γ
(
1+ d

2

)
πd/2

(9)

When L̂(h) is greater than LPoisson(h) ≡ h, there are
clumps in the point field; L̂(h) < h implies gaps in the
configuration.

The test variable τ is used to test the amount of struc-
ture in the point fields:

τ = max
h≤h0

|L̂(h)−h| , (10)

where h0 is the upper bound on the interpoint distance.
The outcome of the test is based on comparing τ with
its table values [21, p. 225]. We will use the term spa-
tial structure when referring to τ in the rest of the
discussion.

5 Search strategy

The previous section presented the system design and we
now continue with the Strategy-based Evaluation frame-
work by describing the search strategy, the performance
measure, and the experimental setup.

The evaluation analysis requires some assumptions
about the search strategy — i.e., how we expect a user
to look for the relevant material. It is impossible to de-
fine the degree of separation between the relevant docu-
ments and the non-relevant documents without assuming
some search strategy first. In most studies, the strategy is
rather intuitive and goes unspecified. For example, con-
sider a linear separation test — two sets of points in 2-
dimensions are considered well-separated if it is possible
to draw a straight line between them. Here the assumed
strategy is “draw the line; consider all the points that are
on one side of the line”.

The assumptions about a particular search strategy
may also have a strong influence on the performance
measure. We proceed by defining two different search
strategies. Note that there exist many different strategies;
the procedures proposed in this section are two reason-
able examples. 2 Other alternatives are entirely possible.

– Single document strategy. Recall that we know the
values of relevance judgments for some of the docu-
ments (see Sect. 3). The strategy starts at an arbitrary
known relevant document and proceeds by analyzing
the rest of the unknown documents in proximity order
to the starting point. If there are several possible start-
ing points (if we know more than one relevant docu-
ment) the final performance has to be averaged across
all starting points.

– Relevant cluster strategy. We assume that we know
relevance judgments for some of the documents. The
strategy begins by defining a cluster that contains all

2 We confess that “reasonable” is defined by our intuition and
experience. It would be preferable to employ user models or field
studies to devise truly reasonable strategies. We view such an ap-
proach as important future work to explore the range of strategies
possible. This work focuses on evaluating two strategies and show-
ing the extent to which they are useful for this task.
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the known relevant documents. It then proceeds by
analyzing the rest of the unknown documents in the
proximity order to the cluster. If the document is rele-
vant, it is added to the cluster. Note that the distance
between a document and the cluster can be defined in
multiple ways by analogy with the traditional cluster-
ing algorithms [23]. Here d is an arbitrary unknown
document, C is the cluster of relevant documents,
and ρ(·, ·) is Euclidean distance in the visualization
space.
single-link. The documents are ranked by the distance
to the closest document in the cluster.

ρ(d,C) = min
∀dc∈C

ρ(d, dc) (11)

complete-link. The documents are ranked by the dis-
tance to the furthest document in the cluster.

ρ(d,C) = max
∀dc∈C

ρ(d, dc) (12)

average-link. The documents are ranked by the aver-
age of distances to all documents in the cluster.

ρ(d,C) =
1

|C|

∑
∀dc∈C

ρ(d, dc) (13)

centroid. A center of mass is computed for the clus-
ter. The documents are ranked by the distance to the
centroid.

ρ(d,C) = ρ

(
d,

1

|C|

∑
∀dc∈C

dc

)
(14)

Note that average link and centroid would be iden-
tical if we used the Manhattan metric instead of
Euclidean to define the distance in the visualization
space.

Thus, our simulated search strategies create a new
ranking order for the unknown documents. Information
Retrieval has a long legacy of dealing with document
rankings. In the next section we adapt a well-known defin-
ition of precision to our “spatial” ranking.

6 Performance measure

A search strategy “walks” over the unknown documents
creating a new ranking order. As soon as the search
strategy finds a relevant document we record precision
at that point — the proportion of relevant documents
among those already considered by the search strategy.
When the search strategy completes the ranking, we aver-
age the recorded precision numbers. This is the average
non-interpolated precision [14] and it serves as the per-
formance measure for the ranking. If the search strategy
assumes multiple starting points (as Single Document
Strategy does) we average the average precision across all
possible starting points.

7 Experiments

In this section we describe the testbed that we used for
running our experiments. We then proceed by describing
seven experimental questions that we consider, present-
ing their results, and analyzing the implications of our
results where appropriate. The questions we consider are:

1. Does the Cluster Hypothesis hold?
2. Can we choose a threshold for spring embedding?
3. Are more dimensions better for the embedding ap-

proach?
4. To what extent does relevance feedback help the visu-

alization?
5. What is the benefit of different search strategies?
6. How does the embedding compare to the classical

ranked list?
7. Are there indications that we might be able to do bet-

ter?

7.1 Experimental testbed

For our experiments we used TREC [14] ad-hoc queries
with their corresponding collections and relevance judg-
ments. Specifically, TREC topics 251–300 were converted
into queries and run against the documents in TREC vol-
umes 2 and 4 (2.1GB) that include articles from Wall
Street Journal, Financial Times, and Federal Register.
For each TREC topic we considered four types of queries:
(1) the title of the topic; (2) the description field of the
topic; (3) a query constructed by extensive analysis and
expansion [3]; and (4) a query constructed from the title
by expanding it using Local Context Analysis (LCA) [24].

The top 50 documents for each query were selected.
Because each query behaved differently, there were four
different ranked lists for each topic. We are interested in
situations when there was not enough relevant material
in the top ten documents, so ignored runs that contained
too many relevant documents — they are successful al-
ready and the visualization is unnecessary. We also dis-
carded complete failures, or runs that had just a few rel-
evant documents. Finally, because we are interested in
how the visualization changes when the user’s feedback
about both relevant and non-relevant documents is pro-
vided, a small amount of either relevant or non-relevant
data renders such analysis uninteresting. Therefore, the
lists with fewer than 6 relevant documents in the top 50 or
with fewer than 3 or greater than 9 relevant documents in
the top 10 were discarded. This resulted in 20 queries for
the title-only version, 24 for the description queries, 26 for
the full versions, and 17 for the expanded title version.

We also collected the same data using a different set
of queries on a different collection. We used TREC topics
301–350 to create the queries and ran the queries against
TREC volumes 4 and 5 (2.2GB) that include articles from
Congressional Records, Financial Times, and Los Angeles
Times. Again four different types of queries were con-
structed: (1) the title of the topic; (2) the title and the
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description field of the topic; (3) the full version con-
structed by expansion [4]; and (4) the expanded version of
title query. The same restrictions were imposed on the re-
trieved set. This resulted in 25, 27, 25, and 22 queries of
each type, respectively.

7.2 Does Cluster Hypothesis hold?

The Cluster Hypothesis of Information Retrieval states
that “closely associated documents tend to be relevant to
the same requests” [22, p.45]. It has been shown that the
hypothesis holds at least for the retrieved documents [11].
Each query has, on average, about 15 relevant docu-
ments in the top 50. If the documents were randomly
scattered in space, then an automatic search strategy
would produce a ranking where the relevant documents
occupy arbitrary positions with equal probability. The
expected average precision of such a ranking would be
about 33.1% (for example, one may use bootstrapping
to compute this number). Our search strategies build
a ranking based on the spatial proximity to the known
relevant documents. We have observed average preci-
sion values around 50% (Table 1), indicating substan-
tial clustering among relevant documents. That is, we
have found continued support for the Cluster Hypothesis’
truth in retrieved documents: relevant documents tend
to appear in close proximity to each other, often form-
ing tight “clumps” that stand apart from the rest of the
material.

7.3 Can thresholds be selected?

Recall from the system description in Sect. 4.1 that the
embedding structure is affected by the threshold choice.
For N objects there are (N2−N)/2 springs, so there
are (N2−N)/2 different threshold values: each thresh-
old allows an additional spring into the model. Noth-
ing in the spring-embedding approach suggests a way of

Table 1. Visualization quality evaluation of different query sets in different dimensions. Percent of average precision is shown. The first
column is for the system’s ranked list. The second column is for the original structure in t-dimensional space. The third column shows
the result of spring-embedding. The last column is for embedding with threshold selection done by the τ measure. The relevance judge-

ments for two documents are known to the system – the top ranked relevant and non-relevant documents

Queries Rank List t-D space Embedding
w/o threshold selection w/ threshold selection

1-D 2-D 3-D 1-D 2-D 3-D

TREC5 Title 63.0 43.8 38.0 41.8 41.8 42.5 58.2 59.1
Desc. 54.7 42.1 39.2 42.1 42.1 41.0 51.3 52.2
Full 58.4 53.1 45.3 46.3 46.7 47.0 49.9 50.9
Exp. Title 66.6 60.0 46.6 48.5 48.5 49.0 57.3 59.7

TREC6 Title 58.8 52.1 44.7 47.5 47.8 46.9 57.6 59.9
Desc. 57.7 48.2 39.8 44.0 44.6 41.7 54.8 55.3
Full 68.6 53.9 42.5 48.8 49.5 43.4 57.9 59.4
Exp. Title 64.3 52.0 42.3 45.5 45.9 44.0 55.9 59.0

average 61.5 50.7 42.3 45.6 45.9 44.4 55.4 56.9

choosing one threshold value over another (i.e., one em-
bedding over another), so in the absence of such infor-
mation we must randomly select one of the (N2−N)/2
structures to show to the user. We analyze system per-
formance by averaging precision over all possible values of
threshold.

We also determine the probability of randomly select-
ing a “good” threshold value. For all queries in question
and for all possible spatial embeddings (i.e., for all thresh-
old values) we count the number of times each average
precision value occurs and normalize them over the total
number of embeddings. This gives us a probability distri-
bution for precision values. If we take this distribution,
fix some precision value (prec0), and add all the values
in the distribution for each point that exceeds prec0, we
compute the probability for an arbitrary selected spatial
configuration among all possible embeddings to exceed
prec0, or P (prec > prec0) (see Fig. 3).

We begin by assuming that the user has identified
two documents: one relevant and one non-relevant. (We
believe this is a reasonable strategy and almost always
could be done by looking at the titles in the ranked list.)
For simplicity, let us assume the user identified the high-
est ranked relevant and the highest ranked non-relevant
document. We evaluate how quickly the user would be
able to find the rest of the relevant documents start-
ing from the known relevant one using the spatial infor-
mation. For this study we assume the Single Document
search strategy of Sect. 5.

Our hypothesis is that embeddings with high spatial
structure are more likely to have high precision scores.
Here we rely on the Cluster Hypothesis (supported by the
previous section): if the spatial structure has clusters, it
is likely that these clusters are “pure” clusters of relevant
documents. Clusters of non-relevant documents are also
possible, but “mixed” clusters are less likely.

As indicated earlier, in the absence of any other infor-
mation, a threshold value would have to be chosen ran-
domly. However, limiting our choice to the embeddings
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Fig. 3a,b. Probability of selecting an embedding at random with
a given precision value or higher, for the full queries on the TREC-
5 collection in two dimensions. These graphs illustrate the effect of
different user feedback techniques: a No restrictions are imposed on
the set of possible embeddings; b The set of embeddings is limited
to high τ values by the threshold selection procedure

with spatial structure τ (see Sect. 4.5) in the top 20% of
spatial structure values proved very effective. The average
precision across all “eligible” threshold values was signifi-
cantly increased by 17.2% relative to making no effort
to limit the set considered (p < 10−5 by the t-test). The
numbers are shown in the last two columns of Table 1.
The solid lines on Figs. 3a and 3b show how the threshold
selection procedure increases the probability of randomly
choosing a high quality spatial structure without any in-
formation supplied by the user. The effect is also consis-

Table 2. Average precision computed starting from the first 5 re-
levant documents. The retrieved documents from TREC-5/full
queries are embedded in 2 dimensions. The first column of num-

bers is for the case when no feedback has been yet given

Type of feedback Number of pairs judged
0 1 2 3 5

warping 49.3 50.5 51.4 51.4 51.5
restraining 49.3 49.9 51.4 52.3 53.4

tent across relevance feedback methods. Note that there
is almost no change in maximum and minimum values
of precision. That means the method does not limit the
possible choices of quality on the spatial structure: it just
makes it more probable we will select a “good” one.

7.4 Are more dimensions better?

Is a high-dimensional visualization more useful than
a low-dimensional one for the purpose of isolating the
relevant documents? That is, is a 2D picture more help-
ful than its 1D counterpart; is 3D better than 2D? The
documents exist in an extremely high-dimensional space
(thousands of dimensions). When these configurations
are forced down into 2 or 3 dimensions for the purpose of
visualization, some documents are shown “nearby” when
they are actually unrelated.We hypothesize that visualiz-
ing in extra dimensions will show the relationships among
documents more accurately and the relevant documents
will be better isolated from non-relevant ones.

Our results support this hypothesis only partially. In-
deed, a step from 1 dimension to 2 leads to a statistically
significant jump of 23.1% in precision (p < 10−5). How-
ever, the difference between 2- and 3-dimensional embed-
dings is only 1.1%, a result that, although consistent, is
not significant. (It is significant by the sign test, but not
by the t-test. A cut-off value of p = 0.05 is used in both
tests.)

Figure 4 shows how an increase in dimensionality of
the embedding leads to a general growth in precision. It is
difficult to see, but the maximum precision value for 1D
is higher than for 2D or 3D. This seems to indicate that
a better separation between relevant and non-relevant
documents could be achieved in 1-dimension than in 2- or
3-dimensions. However, finding that high precision struc-
ture randomly is extremely difficult.
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Fig. 4. Probability of selecting an embedding with a given preci-
sion value or higher, for the full queries on TREC-5 collection. The
effect of different dimensions on the original embedding is illus-
trated. The set of embeddings is limited to high τ values by the
threshold selection procedure. The values on the x-axis are aver-
aged over the query set
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7.5 Does user feedback help?

Feedback techniques enhance the separation between rel-
evant and non-relevant documents and the visualization
should be able to capitalize on that improvement. If
a searcher expends the effort to mark some documents
as relevant and others as non-relevant, can the separa-
tion between the two sets be enhanced — among both
the marked documents and (more importantly) the un-
marked part of the retrieved set?

Recall that the TREC queries used in this study
come with relevance information for the documents
in our retrieved sets. A small subset of the 50 docu-
ments being used was presumed known and marked
as relevant (or not) using the TREC relevance judg-
ments. Thus we simulate the user making relevance judg-
ments. We experimented with subsets of 2, 4, 6, and 10
documents.

Figure 2c illustrates how the warping process can im-
prove the separation between relevant and non-relevant
documents. It shows the same documents as those in
Fig. 2b, but with space warping added. The relevant and
non-relevant documents are still grouped apart from each
other, but the location of the groups is much more eas-
ily recognizable — particularly since 10 of the documents
in the presentation have already been judged. Figure 2d
shows the effect of restraining spheres on the same query.
In this particular case, the simple warping would proba-
bly be useful, but the location of unjudged relevant docu-
ments is even more obvious since the documents have
been “stretched”.

We also studied how the quality of the visualization
changes as the system is supplied with more and more rel-
evance information. Given the first relevant/non-relevant
pair of documents, we use it to warp the embedding space
and apply the restraining spheres. Then we add informa-
tion about the next relevant/non-relevant pair and so on
until up to 5 pairs have been added. Table 2 and Fig. 5 il-

Fig. 5. Average precision computed starting from the first 5 rel-
evant documents. The retrieved documents from TREC-5/full
queries are embedded in 2 dimensions. The first column of numbers
is for the case when no feedback has been yet given

lustrate how the average precision increases as more data
become available to the system.We show the average pre-
cision of a ranking generated by the search strategy start-
ing from an arbitrary document among five top ranked
relevant documents. The warping does not have any ef-
fect after the first two steps. The restraining spheres keep
pulling the documents apart; however, their influence is
also diminishing.

The previous exploration of feedback used up to 10
documents, but always added them in relevant/non-rele-
vant pairs. Our second strategy was to evaluate the effect
of a user’s feedback on the visualization using the top
ranked 10 documents, regardless of whether there was
a matching number of relevant and non-relevant docu-
ments. Recall from the corpus creation (Sect. 7.1), that
we know there are from three to nine relevant documents
in the top 10. We consider how quickly one can identify
the rest of the relevant material starting from the known
relevant documents (i.e., those in the top ranked 10). We
compare the effects that warping and restraining have on
this task.

From Table 3 we conclude that warping did not do
as well as we had expected. It increased average preci-
sion by 1.1% consistently, but not significantly (p < 0.02
by the sign test and p < 0.37 by the t-test). It actually
hurt precision in 3D. The effect of warping together with
restraining was more profound and nearly always bene-
ficial. The procedure significantly increased precision by
7.4% (p < 0.001 by the sign test and p < 0.037 by the
t-test).

Figures 3a and 3b show that feedback techniques in-
crease the probability of selecting an embedded structure
with high precision value. The growth is observed both
with and without threshold selection, but with threshold
selection the difference between the restrained and ori-
ginal cases is more prominent.

We also observed a strong effect that poorly formu-
lated and ambiguous queries have on feedback’s benefit.
The restraining spheres largely decreased the precision of
the embeddings generated for documents retrieved by the
title queries on TREC-5 collection. Expanding the “bad”
queries (see the “TREC-5/Exp. Title” row in Table 3) to
eliminate the possible ambiguity seems to alleviate the
problem. The TREC-6 title queries were created to be of
higher quality and ranked better.

7.6 What is effect of search strategy?

Because of concerns that the Single Document Strategy
(used in all previous sections) was unintuitive and a poor
match to a strategy that users were likely to use, we
also considered the effect that other strategies have on
effectiveness. We implemented four different versions of
the Relevant Cluster strategy (see Sect. 5): single-link,
complete-link, average-link, and centroid.We also consid-
ered two different starting conditions for each case: (1)
the highest ranked relevant and non-relevant documents
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Table 3. Relevance feedback effect on different queries in different dimensions. We show percent of average precision of a ranking
that is generated starting from a random relevant document in the top 10 ranked documents. The threshold selection procedure

(for high τ values) was applied

Queries Rank Embedded Original Warping Restraining
List in

1-D 35.7 36.2 (+1.3%) 31.5 (−11.7%)
TREC5 Title 46.8 2-D 47.3 48.9 (+3.3%) 40.7 (−14.0%)

3-D 48.4 50.3 (+3.9%) 40.2 (−17.0%)
1-D 38.6 39.8 (+3.3%) 37.1 (−3.1%)

Desc. 40.8 2-D 48.5 48.8 (+0.6%) 49.6 (+2.2%)
3-D 49.6 48.3 (−2.5%) 47.3 (−4.5%)
1-D 41.9 42.4 (+1.2%) 47.3 (+12.8%)

Full 43.1 2-D 45.9 47.1 (+2.8%) 52.0 (+13.4%)
3-D 46.1 47.0 (+2.0%) 47.5 (+3.0%)
1-D 42.4 42.7 (+0.6%) 51.7 (+22.1%)

Exp. Title 42.5 2-D 46.2 46.8 (+1.4%) 54.4 (+17.8%)
3-D 46.6 46.2 (−0.8%) 52.4 (+12.5%)
1-D 42.9 45.0 (+4.8%) 45.7 (+6.6%)

TREC6 Title 50.6 2-D 53.6 53.9 (+0.7%) 57.4 (+7.2%)
3-D 55.9 55.4 (−0.9%) 58.9 (+5.5%)
1-D 37.6 38.8 (+3.2%) 43.8 (+16.6%)

Desc.+Title 45.7 2-D 49.8 51.0 (+2.4%) 56.2 (+13.0%)
3-D 51.3 50.9 (−0.8%) 56.4 (+9.9%)
1-D 36.3 37.4 (+2.9%) 44.5 (+22.5%)

Full 53.1 2-D 46.6 47.0 (+0.7%) 55.3 (+18.5%)
3-D 48.9 47.5 (−2.8%) 54.0 (+10.5%)
1-D 39.1 38.7 (−0.9%) 42.5 (+8.9%)

Exp. Title 53.7 2-D 48.4 49.7 (+2.8%) 56.0 (+15.7%)
3-D 50.6 50.0 (−1.1%) 56.5 (+11.7%)
1-D 39.3 40.1 (+2.1%) 43.0 (+7.2%)

average 47.0 2-D 48.3 49.2 (+1.8%) 52.7 (+7.2%)
3-D 49.7 49.5 (−0.1%) 51.7 (+4.4%)

are known and (2) complete judgments for the top-ranked
10 documents are known.

Surprisingly, we did not find any significant differ-
ence in effectiveness between any of those search strate-
gies, in either of the two starting conditions. However, we
did observe a significant (p < 10−5) improvement using
the Relevant Cluster strategies over the Single Document
Strategy. This result is not entirely surprising since the
new strategies make more use of the relevant information
than did the earlier strategy which just blindly moved
out from a randomly chosen relevant document rather
than adjusting to new relevant documents as they are
found.

This result suggests that the significant results of ear-
lier sections might be even better if improved strategies
(e.g., Relevant Cluster) are employed. We leave this ver-
ification for future work.

7.7 Embedding compared to ranked list?

Table 4 shows average precision values for different query
sets in different dimensions. The ranked list is treated
as an embedding in 1-dimension where each document is
positioned on a line according to its rank value.

It is evident that when only the highest ranked pair of
documents (the highest ranked relevant and the highest
ranked non-relevant) is known and the threshold selection
procedure is applied, both 2- and 3-dimensional visualiza-
tions exhibit the same quality on average as the ranked
list.

However, if all the judgments for the top ten docu-
ments are known and the threshold selection procedure
is applied, the quality of the visualization exceeds the
quality of the ranked list. These numbers are in the last
columns of Table 4. We have observed that for the long
queries (“TREC-6/Full”) the quality of the ranked list
is superior. However, users almost never use this type of
query [7].

We have observed consistently across multiple search
strategies that the quality of the ranked list degrades
much faster as more documents are analyzed. For ex-
ample, if only two documents are known then perform-
ance of the ranked list is 61.5% and for 3-dimensional
visualization we get 61.4%. When the judgments for the
top ten documents become available the quality of the
ranked list is 47.0% and the quality of the visualization
is 53.8%. This seems to indicate that if more documents
are known, it is much faster to find the rest of the rele-



182 A. Leuski, J. Allan: Strategy-based interactive cluster visualization for information retrieval

Table 4. Ranked list vs. spatial embeddings. Visualization quality evaluation of different query sets in different dimensions. The Relevant
Cluster single-link search strategy is used and the threshold selection procedure (high τ values) is applied. Percent of average precision is
shown. The first column is when the highest relevant/non-relevant pair of document is known. The second column is when the top ranked

ten documents are known

Queries Two documents are known Two documents are known
Rank List Embedding Rank List Embedding

1-D 2-D 3-D 1-D 2-D 3-D

TREC5 Title 63.0 43.8 61.9 63.5 46.8 37.4 53.1 54.3
Desc. 54.7 42.4 59.9 56.9 40.8 40.4 51.6 50.8
Full 58.4 48.4 55.1 55.0 43.1 41.5 52.7 52.5
Exp. Title 66.6 50.3 62.8 65.4 42.5 43.6 53.3 54.2

TREC6 Title 58.8 48.0 62.4 64.3 50.6 44.7 58.7 59.8
Desc. 57.7 42.9 59.1 60.8 45.7 39.1 52.5 52.5
Full 68.6 44.6 63.0 62.5 53.1 37.7 48.0 49.6
Exp. Title 64.3 45.4 60.1 63.2 53.7 41.5 53.6 56.3

average 61.5 45.7 60.5 61.4 47.0 40.8 52.9 53.8

vant material with the visualization than with the ranked
list. Thus a strategy for a user might be suggested: “Start
with the ranked list, find a few relevant documents, then
switch to the visualization and look for the rest of the
interesting data in close proximity to the ones you have
found”.

7.8 Can we do better?

We have also done some “best case” analysis, when in-
stead of averaging precision over the set of possible em-

30

35

40

45

50

55

60

65

T
R

E
C

5/
Ti

tle

T
R

E
C

5/
D

es
c

T
R

E
C

5/
Fu

ll

T
R

E
C

5/
E

xp
.T

itl
e

T
R

E
C

6/
Ti

tle

T
R

E
C

6/
D

es
c

T
R

E
C

6/
Fu

ll

T
R

E
C

6/
E

xp
.T

itl
e

A
ve

ra
ge

 P
re

ci
si

on
 (

%
)

Fig. 6. Comparison of two different strategies and the ranked list
over multiple query types. Both the Relevant Cluster (single-link)
and the Single Document search strategies are shown. The thresh-
old selection procedure was applied (for high τ values) and the
relevance judgments for the top ten documents in the ranked list
are known

beddings we considered the structure with highest preci-
sion. In this case the values are about 15–20 points higher
than in the average case and the system beats the ranked
list “hands down”.

Note that this type of analysis is of questionable value
since it could be the result of random effects and smacks
of testing on the training data. However, we feel it is in-
teresting because it suggests that the visualization might
be able to do substantially better if we can find the right
threshold values. There are good embeddings out there; it
is just difficult to find them.

8 Discussion and conclusions

We presented a Strategy-based Evaluation Method for
analyzing interactive information organization techniques.
This approach allowed us to discover important prop-
erties about the system in our study. We believe our
approach can be used as a laboratory method for pre-
liminary investigations of interactive information organi-
zation systems. Such a framework has several potential
advantages:

– It helps to explain the performance. By breaking the
interaction model into components (i.e., the user and
the system), we can estimate the effect each compon-
ent has on the overall performance.

– It is relatively inexpensive. Even a small user study is
generally costly and time-consuming. Our analysis is
done offline.

– It can produce statistically sound conclusions. By do-
ing the analysis offline we can potentially process
much large data sets than could be done in real user
experiments. The results would have much stronger
statistical power.

– It should providemore experimental control for the re-
searcher. People are very different in their abilities and
skills. When conducting a user study it is impossible
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to control all the variables included. Our evaluation
gives the researcher complete control over the experi-
mental setup.

– It could help in designing user studies. By defining all
the components of the interaction model we will have
to state clearly all the hypotheses and assumptions we
make about the system and the user strategy. A real
user study could then concentrate on testing these
assumptions. For example, in a user study the sys-
tem might perform worse than expected if the search
strategy of a naive user is different from that assumed
in our evaluation. Then the system’s interface would
have to be redesigned to include a tutoring mechanism
that recommends that better strategy to the users.

– It helps to determine the optimal strategy for the user.
By considering several different strategies we could
select the one that is the most suitable for each par-
ticular system and task. Not only we can give the user
a system, but we can also describe an effective way of
using it.

We have applied the evaluation framework to ana-
lyze an information organization system that visual-
izes the documents by placing them into 1-, 2-, and 3-
dimensional space and positioning them according to the
inter-document similarity.

– It has been known for at least two decades that the
Cluster Hypothesis is true within the top-ranked re-
trieved documents. Although the system used in this
study does not explicitly generate clusters, we show
that the objects that represent relevant documents
tend to group together.

– The Cluster Hypothesis also helped us to select good
embedding structures. As a result we show that em-
beddings with a high spatial structure value (τ) tend
to have higher precision.

– We have hypothesized that an extra dimension is al-
ways helpful for visualization. Our results support this
hypothesis only partially. There is a clear advantage in
using higher dimensions over 1D. However, there is al-
most no improvement in adding an extra dimension to
a 2D visualization.

– In the context of our visualization, we confirmed the
hypothesis that relevance feedback methods can im-
prove separation between relevant and non-relevant
documents. Figure 2 shows an example of how these
methods can have a significant influence on the em-
bedding structure.

– The suggested visualization method in its current
state (no robust threshold selection procedure) works
— on average— as well as or better than a ranked list
for finding relevant documents. In another study [4]
most of the users loved this visualization: they found it
intuitive and fun to use. That study also found no dif-
ference in precision between ranked list and 3D visu-
alization.We provide additional support that suggests
visualization is no worse than a ranked list.

– The “best case” analysis suggests that the visualiza-
tion has a very high potential. It seems worthwhile
to attempt a deeper investigation in how to make the
threshold selection process more robust.

8.1 Future work

In this study we considered only two classes of docu-
ments: relevant and non-relevant. This was caused by the
lack of data of any other kind. We are looking into ex-
tending our approach into situations when the user places
the relevant documents into multiple classes. That task is
modeled after the interactive TREC task of “aspect re-
trieval”.

We assumed that the user has already found some of
the relevant documents (e.g., by means of the ranked list).
We plan to look into the problem of helping the user to
establish these first relevant documents. One way is to
check the “clumpiest” areas of the visualization.

The document distance metric that we employed in
this study (sine of the angle between the documents vec-
tors, Sect. 4.2) causes the spring-embedding to generate
very “tight” visualization structures that are highly sensi-
tive to the threshold parameter. We are looking at adopt-
ing an alternative distance function that will not have this
problem.

We plan on a user study to analyze if people take ad-
vantage of the spatial clues (such as proximity) that are
used by the search strategy in our simulations. We are
also interested in what other kind of information besides
simple proximity people receive from the visualization.
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