Int J Digit Libr (1997) 1: 68-88

INTERNATIONAL JOURNAL ON

Digital Libraries

© Springer-Verlag 1997

The Lorel query language for semistructured data*

Serge Abiteboul', Dallan Quass, Jason McHugh, Jennifer Widom, Janet L. Wiener

Department of Computer Science, Stanford University, Stanford, CA 94402, USA

{abitebou,quass,mchughj,widom,wiener } @db.stanford.edu
http://www-db.stanford.edu

Received: 1 August 1996 / Accepted: 15 November 1996

Abstract. We present the Lorel language, designed for
querying semistructured data. Semistructured data is
becoming more and more prevalent, e.g., in structured
documents such as HTML and when performing simple
integration of data from multiple sources. Traditional
data models and query languages are inappropriate, since
semistructured data often is irregular: some data is
missing, similar concepts are represented using different
types, heterogeneous sets are present, or object structure
is not fully known. Lorel is a user-friendly language in
the SQL/OQL style for querying such data effectively.
For wide applicability, the simple object model underly-
ing Lorel can be viewed as an extension of the ODMG
data model and the Lorel language as an extension of
OQL. The main novelties of the Lorel language are: (i)
the extensive use of coercion to relieve the user from the
strict typing of OQL, which is inappropriate for semi-
structured data; and (ii)) powerful path expressions,
which permit a flexible form of declarative navigational
access and are particularly suitable when the details of
the structure are not known to the user. Lorel also
includes a declarative update language. Lorel is imple-
mented as the query language of the Lore prototype
database management system at Stanford. Information
about Lore can be found at http://www-db.stan-
ford.edu/lore. In addition to presenting the Lorel
language in full, this paper briefly describes the Lore
system and query processor. We also briefly discuss a
second implementation of Lorel on top of a conventional
object-oriented database management system, the O;
system.

Keywords: Lorel language — Lore system — Semistruc-
tured data.

* This work was supported by the Air Force Wright Laboratory
Aecronautical Systems Center under ARPA Contract F33615-93-1-1339,
by the Air Force Rome Laboratories under ARPA Contract F30602-
95-C-0119, and by equipment grants from Digital Equipment and IBM
Corporations

U Permanent address: INRIA-Rocquencourt, F-78153 Le Chesnay,
France.

Correspondence to. S. Abiteboul

1 Introduction

As the amount of data available on-line grows rapidly,
we find that more and more of the data is semistructured.
By semistructured, we mean that although the data may
have some structure, the structure is not as rigid, regular,
or complete as the structure required by traditional
database management systems. (See Abiteboul 1997 for a
survey on semistructured data.) Furthermore, even if the
data is fairly well structured, the structure may evolve
rapidly. Traditional relational database management
systems require strict table-oriented data, and they are
based on the notion that a schema is defined in advance
and adhered to by all data managed by the system. While
object-oriented database management systems permit
much richer structure than relational systems, they still
require that all data conform to a predefined schema.
Management of semistructured data requires typical
database features such as a language for forming ad-hoc
queries and updates, concurrency control, secondary
storage management, etc. However, because semistruc-
tured data cannot conform to a standard database
framework, trying to use a conventional DBMS to
manage semistructured data becomes a difficult or im-
possible task. At Stanford, the goal of the Lore project
(for Lightweight Object Repository') is to provide con-
venient and efficient storage, querying, and updating of
semistructured data. This paper presents Lore’s query
language Lorel (for Lore language). Although we have
implemented Lorel in a “home grown” DBMS designed
specifically for semistructured data, the data model un-
derlying Lorel can be defined as an extension to the
ODMG model and the language as an extension to OQL.
(see Cattell 1994 for a specification of the ODMG model
and OQL.) Thus, Lorel can be implemented on top of a
conventional object-oriented DBMS, yielding a flexible

" The Lore system is “lightweight” in two senses: the object model
supported by Lore is lightweight, and the system itself is lightweight in
that currently it does not support multiuser updates or other “heavy-
weight” DBMS features

system suitable for managing both structured and semi-
structured data.

Semistructured data arises in a number of common
situations. Some data sources are designed with non-rigid
structures for convenience. A concrete example is the
ACeDB genome database (Thierry-Mieg and Durbin
1992), while a somewhat less concrete but certainly well-
known example is the World-Wide Web. The Web im-
poses no constraints on the internal structure of HTML
pages, although structural primitives such as enumera-
tions may be used. Another frequent scenario for semi-
structured data is when data is integrated in a simple
fashion from several heterogeneous sources and there are
discrepancies among the various data representations:
some information may be missing in some sources, an
attribute may be single-valued in one source and multi-
valued in another, or the same entity may be represented
by different types in different sources.

When querying semistructured data, one cannot ex-
pect the user to be fully aware of the complete structure,
especially if the structure evolves dynamically. Thus, it is
important not to require full knowledge of the structure
to express meaningful queries. At the same time, we do
want to be able to exploit regular structure during query
processing when it happens to exist and the user happens
to know it. For this reason we use OEM, a self-describing
data model where schematic information in the form of
labels is intermixed with the data and can be queried.

In the remainder of this introductory section we first
present some examples of semistructured data and que-
ries over that data in English and in Lorel. We then
further explain the relationship of Lorel and its under-
lying data model to OQL and ODMG. We finally discuss
related work and preview the remainder of the paper
before delving into the details.

1.1 Examples

We give two example queries to demonstrate the
simplicity and power of Lorel on semistructured data.
Intuitively, an OEM database can be thought of as a
graph (see Fig. 1) and a Lorel query can be viewed as
specifying paths in the graph. Details of OEM and Lorel

category ndme address neg

Fig. 1. An OEM graph El Camino Real Palo Alto

92310

69

are given in later sections of the paper. For these
examples, we assume a Guide database that collects
information on local restaurants from a variety of
sources (newspaper reviews, regional guidebooks, per-
sonal web pages, etc.). The first example shows how
Lorel handles type coercion, which is important when the
underlying data is untyped, irregularly typed, or may
have missing fields. The second example shows the use of
“wildcards” and regular expressions in Lorel, which are
important when the structure of the data is irregular or
unknown.

Example 1. Find the addresses of all restaurants in the
92310 zipcode. The Lorel query directly follows from the
English statement:

select Guide.restaurant.address
where Guide.restaurant.address.zipcode =
92310

It is not necessary to know if the zipcode is represented as
an integer or a string value because Lorel will coerce it
accordingly, and if some zipcodes are strings and others
are integers the expected result will still be retrieved.
Furthermore, an address that does not contain a zipcode
will not cause an error, but will simply fail the where
condition. In most query languages, such as SQL and
OQL, a type error will ensue if the types do not match or
if a field is missing. In addition, in Lorel it is not
necessary to worry about the cardinality (set versus
singleton) of components in the path expressions, unlike
in OQL. If a restaurant has several addresses, or several
zipcodes for the same address, the expected result still is
returned; i.e., we get any address with any 92310 zipcode.

Example 2. Find the names and zipcodes of all “cheap”
restaurants. This time, we do not assume that the zipcode
is a part of the address, but it may instead be a direct
subobject of the restaurant. Also, we do not know if the
string “‘cheap’ will be part of a category, price, descrip-
tion, or other subobject of restaurant. We are still able to
ask the query in Lorel as follows:

restayrant

Mountain ~ Menlo Park

View

Vietnamese Saigon cheap fast food McDonald’s

70

select Guide.restaurant.name,
Guide.restaurant(.address)?. zipcode
where Guide.restaurant.% grep “cheap”

The “? after .address means that the address is optional
in the path expression. The wildcard “% will match any
subobject of restaurant, and the comparison operator
grep will return true if the string ‘““cheap” appears
anywhere in that subobject’s value. There is no equiva-
lent query in SQL or OQL, since neither allow regular
expressions or wildcards.

1.2 Lorel and OQL

The data model underlying Lorel is called OEM (for
Object Exchange Model). OEM is a simple and flexible
object model, introduced initially in the Tsimmis project
at Stanford (Papakonstantinou et al. 1995) Roughly
speaking, a database conforming to OEM can be thought
of as a graph with complex values at internal nodes,
atomic values at leaf nodes, and labeled edges.? Although
the Lorel language could be presented “‘from scratch”
based on OEM, as we have done with a previous version
of Lorel (Quass et al. 1995a), for clarity and wider
applicability we have chosen instead to define Lorel
formally as an extension to OQL based on an OEM
extension to the ODMG data model. For users familiar
with OQL, the additional features introduced by Lorel
for handling semistructured data are simple to learn. On
the other hand, knowledge of OQL is not at all necessary
to use Lorel, since the most common Lorel queries are
expressed easily in a compact and intuitive form remi-
niscent of simple SQL.

Lorel
compilation
OQL + translation
heterogeneity |~~~ "7 OQL
access access
translation

(0) 211Y S

Fig. 2. Relationship between Lorel and OQL

2 Some minor changes to the original model have been introduced to
facilitate Lorel, e.g., labels were on vertices instead of edges in the
original model, and we have added distinguished names as entry points
into the database

To define the semantics of Lorel over an OEM da-
tabase in terms of OQL and ODMG, we add a new type
to the ODMG model to represent OEM objects. Then, a
core part of the formal Lorel language definition is to
extend equality (and other base predicates and functions)
in OQL to handle OEM objects. The extension relies
heavily on coercion at a number of levels to relax the
strong typing of OQL. At the same time, Lorel extends
OQL with powerful and flexible path expressions, which
allow querying without precise knowledge of the struc-
ture. Path expressions are built from labels and wildcards
(place-holders) using regular expressions, allowing the
user to specify rich patterns that are matched to actual
paths in the database graph.

The relationships between Lorel/ OEM and OQL/-
ODMG are depicted in Fig. 2. Lorel can be translated
syntactically to an extension of OQL that includes het-
erogeneous objects, described in Sect. 3, and path vari-
ables and wildcards, described in Sect. 5. (Consequently,
many of the convenience features included in Lorel are
actually syntactic sugaring over such an extension of
OQL.) The query processor in the Lore system performs
exactly this mapping before accessing an OEM data
store; the process is depicted by the solid arrows in Fig. 2,
and the Lore system implementation is described in
somewhat more detail in Sect. 9. We can also encode
OEM objects in the ODMG model, in which case Lorel
can be mapped to pure OQL. This process is depicted by
the dashed arrows in Fig. 2. Section 8 discusses how this
approach is used to implement Lorel on top of an
ODMG-conforming database management system, the
O, system (Bancilhon et al. 1992).

1.3 Related work

There have been many proposals to extend query
languages with path expressions. Lorel is unique in that
it extends OQL (along with Christophides et al. 1994)
and handles data that is semistructured. A first version of
Lorel (now dubbed Lorell) was introduced in Quass et al.
1995a and implemented in the initial version of the Lore
system. Lorell was designed and defined from scratch,
including a full denotational semantics for the language
given in Quass et al. 1995b. As mentioned earlier, we
decided to base the new version of Lorel (dubbed
Lorel96) on an existing query language, since this
approach provides a well-understood semantics and has
wider applicability. The syntax of simple queries is
almost identical in Lorell and Lorel96. However, the
syntax for more complex constructs has changed, e.g., for
aggregation, path variables, and construction of complex
query results. In addition, because we now define Lorel in
terms of OQL, coercion takes on an importance in
Lorel96 that it did not have in Lorell. A detailed
comparison of Lorell with more conventional languages
such as OQL (Cattell 1994), XSQL (Kifer et al. 1994),
and SQL (Melton and Simon 1993) appears in Quass et
al. 1995a; most comparisons carry over directly to
Lorel96.

Another OEM-based language called MSL has been
designed for mediator specification in the Stanford
Tsimmis project (Papakonstantinou et al. 1996a,b). MSL
is a rule-based language that was designed with a dif-
ferent goal than Lorel, namely, to specify the integration
of data drawn from multiple sources. We plan to try to
characterize the relative expressiveness of MSL and
Lorel.

UnQL, a language closely related to Lorel, was also
designed for querying semistructured data. UnQL is
based on a model similar to OEM (Buneman et al. 1995).
A primary feature of UnQL is a powerful construct
called traverse that allows restructuring of trees to arbi-
trary depth. Such restructuring operations are not ex-
pressible in Lorel, which was designed primarily as a
simple to use query language.

In Christophides et al. 1994, 1996, extensions to OQL
are proposed that are somewhat similar in spirit or goals
to Lorel. In Christophides et al. 1994, a more rigidly
typed approach is followed, but because heterogenecous
collections are introduced, the model still has a strong
similarity to OEM. However, the language proposed in
Christophides et al. 1994, called OQL-doc, does not use
coercion the way it is used in Lorel, and the treatment of
path expressions is quite different. Optimizing the eval-
uation of generalized path expressions is considered in
Christophides et al. 1996. Their optimization is based on
two object algebra operators, one dealing with paths at
the schema level and one with paths at the data level.
Since we do not have a strict schema, we cannot directly
use their optimization techniques. However, we describe
briefly in Sect. 9 the concept of a “data guide,” which
may serve in the role of a schema for an OEM database.
We plan to consider adapting the optimization tech-
niques of Christophides et al. 1996 to OEM using the
data guide.

Also related to our work are several query languages
for the World Wide Web that have emerged recently,
e.g., W30QL (Konopnicki and Shmueli 1995), which fo-
cuses on extensibility, WebSQL (Mendelzohn et al.
1996), which provides a formal semantics and introduces
a notion of locality, and WebLog (Lakshmanan et al.
1996), which is based on a Datalog-like syntax. Addi-
tional relevant work includes query languages for
hypertext structures, e.g., (Berri and Kornatski 1994;
Consens and Mendelzon 1989; Mendelzon and Wood
1995; Minohara and Watanabe 1993) and work on in-
tegrating SGML (Goldfarb and Rubinsky 1990) docu-
ments with relational databases (Blake et al. 1994) or
object-oriented databases such as OpenODB (Yan and
Annevelink 1994) or O, (Christophides et al. 1996), since
SGML documents can be viewed as semistructured.

In the area of heterogeneous database integration,
which as we have suggested is a common scenario for
semistructured data, most work has focused on inte-
grating data in well structured databases. In particular,
systems such as Pegasus (Rafii et al. 1992) and UniSQL/
M (Kim 1994) are designed to integrate data in object-
oriented and relational databases. At the other end of the
spectrum, systems such as GAIA (Rao et al. 1994),
Willow (Freedman 1994), and ACL/KIF (Genesereth

71

and Fikes 1994) provide uniform access to data with
minimal structure.

Note that environments such as CORBA (OMG
ORBTF 1992) and OLE2 (Microsoft Corporation 1994)
operate at a different level from Lorel. These approaches
provide a common protocol for passing messages be-
tween objects in a distributed object environment. In
distributed settings, Lorel could certainly be built on top
of and take advantage of environments such as CORBA
and OLE2.

We believe that the powerful and user-friendly fea-
tures of Lorel, together with a clean semantics inherited
from OQL, a declarative update language, and a working
prototype implementation, make Lorel unique among
the languages cited above in the context of managing
semistructured data.

1.4 Outline of paper

Section 2 specifies the Object Exchange Model (OEM)
and explains how it can be viewed as an extension to the
ODMG model. Sections 3-6 together specify the Lorel
query language. Section 3 discusses the first important
concept of Lorel, namely its extensive use of coercion.
Sect. 4 and 5 introduce the second important concept,
path expressions. Simple path expressions are described
in Sect. 4, while more complex expressions are introduced
in Sect. 5. Section 6 describes how results of Lorel queries
are constructed. Lorel’s declarative update language is
specified in Sect. 7. Section 8 briefly discusses a prototype
implementation of Lorel on top of an object-oriented
DBMS. Finally, Sect. 9 briefly covers the Lore system,
describing its overall architecture and features as well as
explaining query processing in somewhat more detail.
Section 9 also covers the status of the implementation,
availability of the system, and plans for future work.
Appendix A contains a grammar for the full Lorel
language. Note that not all constructs of Lorel are
described in the body of the paper; rather, the paper
focuses on those aspects of Lorel that are designed
specifically for semistructured data.

2 The Object Exchange Model

In this section we present the Object Exchange Model
(OEM) (Papakonstantinou et al. 1995), a data model
particularly useful for representing semistructured data.
Data represented in OEM can be thought of as a graph,
with objects as the vertices and labels on the edges. In
addition, we will show how to extend the ODMG data
model to capture OEM.

In the OEM data model all entities are objects. Each
object has a unique object identifier (oid) from the type
o0id. Some objects are atomic and contain a value from
one of the disjoint basic atomic types, e.g., integer,
real, string, gif, html, audio, java, etc. All
other objects are complex; their value is a set of object
references, denoted as a set of (label,oid) pairs. The la-
bels are taken from the atomic type string.

72

In Fig. 3, we show an example OEM database. Each
line shows the label used to reach an object and the ob-
ject’s oid. If the object is atomic, its value is also given on
that line. If the object is complex, and has not been de-
scribed earlier, subsequent indented lines describe its
object references or “‘subobjects.” For example, the ob-
ject with oid &77 has three references: (category, &79),
(name, &80), and (price, &55). The object with oid &79
is an atomic object of type string whose value is “fast
food”.

Guide &12
restaurant &19
category &17 "gourmet"
name &13 "Chef Chu"
address &14
street &44 "E1 Camino Real"
city &15 "Palo Alto"
zipcode &16 92310
nearby_eating_place &35
nearby_eating place &77
restaurant &35
category &66 "Vietnamese”
name &18 "Saigon"
address &23 "Mountain View"
address &25 "Menlo Park"
nearby_eating_place &19
zipcode &54 "92310"
price &55 "cheap”
restaurant &77
category &79 "fast food"
name &80 "McDonald’s"
price &55

Fig. 3. Textual representation of objects in an OEM database

We adopt the ODMG feature of distinguished (ob-
ject) names. There are many facets to the concept of
name:

— A name can be viewed as an alias for an object in the
database. For instance, Guide is the name of the object
in Fig. 3 that contains a collection of restaurants, i.e.,
object &12.

— As seen in the example queries, a name serves as an
entry point to the database. Indeed, the only way
objects can be accessed in queries is via paths origi-
nating from names.

— As in the ODMG model, we require that all objects in
the database are reachable from one of the names.
(The rationale is that if an object becomes unreach-
able, no query will ever manage to access it, so the
object might as well be garbage collected.) Hence,
names also serve as roots of persistence: an object is
persistent if it is reachable from one of the names.
OEM can casily model relational data, and, as in the
ODMG model, hierarchical and graph data. (Al-
though the structure in Fig. 3 is close to a tree, object
&35 is “shared” by objects &12 and &19 and there is
even a directed cycle via objects &19 and &35.)
However, we do not insist that data is as strongly
structured as in standard database models, allowing us
to model, e.g., semistructured information sources,
data that originates from the integration of heteroge-

neous sources, and documents that do not conform to
a precise schema. Observe in Fig. 3 that, for example:
(1) restaurants have zero, one, or more addresses; (ii)
an address is sometimes a string and sometimes a
complex structure; (iii) a zipcode may be a string or an
integer; and (iv) the zipcode occurs in the address for
some restaurants and directly under restaurant for
others. Lorel is designed to handle incompleteness of
data, as well as structure and type heterogeneity, as
exhibited in this example database.

We now give a formal definition of an OEM database,
treated as a graph.

Definition: An OEM schema consists of a finite set of
names R. An OEM instance of R consists of: (i) a finite
labeled graph (V, U V., E) where ¥, and V, are disjoint sets
of oid’s corresponding respectively to atomic and com-
plex objects, and the edges in E are labeled by strings; (ii)
a name function from R to V,UV,; and (iii)) a value
function val that maps the objects in ¥, to atomic values.
The instance must also satisfy the following two condi-
tions:

1 Atomic vertices have no outgoing edges.
2 Each vertex is reachable from object name(N) for
some name N in R. []

We say that an object o; € V, UV, is an [subobject of
object 0y € V, UV, if there is an edge in E from o0, to o)
labeled /.3

Figure 1 presented earlier provides an example of an
OEM database as a graph. It corresponds to the data
given textually in Fig. 3.

2.1 Extending the ODMG data model

We now show how we can extend the ODMG data model
to represent semistructured data by “typing” OEM
objects as ODMG objects. This approach provides
additional intuition to readers familiar with the ODMG
model. It also allows us to use OQL as a basis for
defining the Lorel language. Finally, it suggests an
implementation of Lorel on top of a traditional object
database system, which we discuss further in Sect. 8.

The difficulty in typing OEM objects is clearly the
heterogeneity of the OEM data. To deal with the heter-
ogeneity, we think of a complex OEM object as a tuple
consisting of fields «a;, ay, ..., a,, where a; ...a, are all
labels currently present in the database. (We could al-
ternatively think of a complex object as a tuple with in-
finitely many fields, one for each possible string label.
Such objects could still be represented finitely, since at
any one time only a finite number of fields is nonempty
for each object.)

3 Note, however, that the subobject relationship is 7ot one of con-
tainment—an object can be a subobject of many other objects

An important consequence of this encoding is that all
complex objects in the database are of the same type,
namely OEM, formally specified below. In particular, all
names in an OEM database are of this type. The value of
the g, field for a particular OEM object o is the (possibly
empty) set of a; subobjects of o, i.e., the set of objects
referenced from o via an g;-labeled edge. If o does not
reference any objects using an a;-labeled edge, it still has
an q; field but the value of that field is empty.

For example, in the database shown in Fig. 3, com-
plex objects are typed by representing them as tuples with
restaurant, category, name, address, near-
by, street, city, and zipcode fields. For the ob-
ject with oid &12, the restaurant field would contain
the set {&19, &35, &77}; all other fields would be empty.

In the type definitions below, we use the symbol *“+
to denote the union of types. The OEM type is as follows:

type OEM = OEMcomplex + OEMstring+
OEMint + ... + OEMnil
type OEMcomplex =
struct(a, : set(OEM), ..., a, : set(OEM))
type OFEMstring = string
type OFEMint = integer

type OEMnil = ()

where ay, ..., a, is the list of distinct labels occurring in the
database. Only integer and string atomic values are
shown explicitly in order to simplify the presentation.
There is a single object of type OEMnil, namely the
oemnil object, whose purpose will become clear in Sect. 4.
The definition above is not quite a valid ODMG type
since the ODMG model does not support the union of
types. We consider the “coding” of OEM objects as pure
ODMG objects for implementation in an ODMG
database in Sect. 8.

For an object X and a label /, the expression X./
denotes the set of / subobjects of X. If X is an atomic
object or if / is not a label occurring in the database (two
cases where X has no [/ field), X./ is the empty set.
Observe that X./ always denotes a set of objects. Having
an expression always result in the same type regardless of
the structure of the underlying data is a key idea in ex-
tending OQL to handle semistructured data.

3 Coercion

In this and the following three sections we describe in
detail the novel aspects of the Lorel query language,
namely coercion and powerful path expressions, and we
explain how query results are constructed. For readabil-
ity, we present these features primarily in terms of how
they extend the OQL language. Note that since we are
focusing only on features designed specifically for
handling semistructured data, many other useful features
of the Lorel language—some inherited from OQL and
others not—are not covered; see Appendix 11 for a
specification of the full Lorel language.

73

One of the main issues in defining Lorel as an ex-
tension to OQL is to force comparisons between objects
and/or values to “do the intuitive thing” (rather than
return a type error) when comparing objects and values
of different types. In this section we illustrate the need for
coercion by an example, define precisely the coercion we
use, and introduce a new comparison operator that is
very useful for semistructured data. We assume here
some rudimentary knowledge of OQL syntax and se-
mantics, although most queries are self-explanatory.

Let us consider carefully a query asking for the ad-
dresses of all restaurants with zipcode 92310, ignoring for
the moment that zipcode could be nested within address.
Using pure OQL syntax (although Lorel permits simpler
expression of the same query), the query is:

select X.address
fromGuide.restaurant X, X.zipcode Y
where Y =92310

Strictly speaking, X is an object (e.g., object &35) and ¥
is a zipcode subobject of X (e.g., object &54). So,
although the query corresponds to our intuition, in OQL
there would be a type error in equating Y, an object, and
92310, an integer. In Lorel, this query is legal and returns
the desired result.

A guiding principle for Lorel is that a query that
makes sense should never result in a run-time error on
any OEM data. To write a query one should not have to
know the precise structure of complex objects, nor
should one have to bother with the precise types of
atomic objects. This flexibility is achieved: (i) by ex-
tending the base predicates (e.g., =) and base functions
(e.g., +) of OQL to perform extensive coercions
(Sects. 3.1 and 3.2), and (ii) by defining a new value-
based equality operator (Sect. 3.3). Readers familiar with
object-oriented languages may think of the extended
predicates and functions as calls to methods attached to
the type OEM (see Sect. 8).

3.1 Comparing values and atomic objects

In general, certain predicates and functions expect
arguments of particular atomic types. Sometimes they
accept more than one type; e.g., the comparator < works
for integers and for reals. In the context of semistruc-
tured data, we prefer to accept conditions such as Z = 1.0
and Z > 0.9 as true if Z is an object of value 1 or even
of value ““1”. In this section, we consider coercion when
comparing atomic objects and values. Coercion used to
compare complex objects or collections of objects is
considered in the next section.

We focus first on the basic comparison operators
(e.g., =, <,#). When comparing atomic objects and val-
ues, we want to coerce the two operands to values that
are comparable whenever possible. Let us assume that X
is an integer OEM object. To compare X to an integer,
say 555, we must first coerce the object X to its value by
dereferencing it. To compare X to a real, we must first
dereference X, then coerce its integer value to a real. The

74

process is guided by the type of the operands. For an
integer object X, the comparison to an arbitrary atomic
value Y proceeds as follows:

let X’ be the value of X;
case Y of
integer: compare X’ and Y;
real: compare int-to-real(X’) and Y
string: if Y cannot be coerced to real then false
else compare int-to-real(X”’) and
string-to-real(Y)

If there are additional coercible atomic types they are
included in the case statement.

In general, coercion rules should be provided for the
basic atomic types and the corresponding predicates and
functions. They also could be provided for application-
specific atomic types, e.g., coercion of dollars to francs,
months to days, gifs to jpegs, etc. Table 1 shows (omit-
ting dereferencing) the coercion that takes place for
atomic types string, integer, and real, for the
basic comparison operators (=,<,#). Note that the
symmetric cases are omitted. Coercion for the basic
comparison operators is not trivial because of the need to
coerce both values to comparable atomic types.* For
example, in the comparison “4.3” < 5, both the string
“4.3” and the integer 5 must be coerced to real in order to
perform the comparison. Also observe that equality is no
longer transitive; for example, “05” = 5 and 5 = **5,” but
“057 £ <57

Coercion for other (non-arithmetic) comparison op-
erators can be much simpler. For instance, Lorel also
includes the string-based comparators like, grep,
and soundex, which expect operands of a precise atomic
type (string). The rule in this case is simply to coerce both
operands to the expected atomic type, if possible.

Not all atomic types are comparable, e.g., we cannot
compare gif images and audio clips. In the case of
comparing values of incomparable atomic types, the
comparison does not return an error—it simply returns
false. Furthermore, even when the atomic types are
comparable the coercion may fail, e.g., the string “apple”
cannot be compared to an integer. In these cases the
comparison also returns false.

Besides comparators such as those mentioned above,
we also need to use coercion for the functions of the
language, such as the arithmetic functions (addition,
multiplication, etc.). Coercion for functions is handled
similarly.

Table 1. Coercion for basic comparison operators

arg?2 . .
g string real int
argl
string - string — real both — real
real — int — real

4 This particular table was the outcome of a lively Lore meeting at
Stanford. An interesting issue (not addressed in this paper) is the de-
velopment of access techniques, e.g., indexing (Rajaraman 1996) or
hashing, to support such comparisons

3.2 Comparing objects and sets of objects

In this section, we consider the use of coercion in
comparing atomic objects, complex objects, and sets of
objects. In Lorel, a variable X can be assigned to either
an atomic value, an atomic object, a complex object, or a
set of objects. Table 2 presents the coercion rules for
equality. The coercion rules for inequality are similar.
Again, the symmetric cases are not shown.

Note that some of the cases in Table 2 were covered in
Sect. 3.1. For instance, to compare a value and an atomic
object, we first dereference the object. This leads to
comparing two atomic values, which is handled by the
coercion rules of Table 1. Let us consider the new cases.

Object against object. In this case, equality is exactly as in
OQL: by oid comparison. Note that different atomic
objects may contain identical atomic values, and users
often want to compare objects using value equality. For
instance, in querying ‘“what are the restaurants that have
a nearby restaurant with the same zipcode,” the intension
in comparing zipcodes is more likely by value than by
object equality over zipcode. We consider another
equality operator, ==, in the next section that forces
value equality when comparing objects. The issue of
value versus object equality does not arise for inequality
operators (such as <), since inequality operators are not
defined on objects. So, for instance, if < is used between
two objects, a coercion of the objects to values is
performed before the comparion occurs.

Value, atomic object, or set of objects against a complex
object. We do not know which subobject of the complex
object should be used in the comparison. Thus, the
comparison fails and returns false.

Set of objects against set. In this case standard set
equality is used: for each element of one set there must be
an equal element in the other set.

Value, or atomic object against set of objects. This is the
most interesting case. Consider the following example
query, again expressed in OQL syntax:

Table 2. Coercion for equality =

arg2 atomic set complex
argl value object of objects object
value coerce dereference existential false

with =

atomic object = existential false
object with =
set set false
of objects equality
complex object =
object

select X.address
fromGuide.restaurant X
where X.name = “Chef Chu”»

The condition X.name = “Chef Chu” seems to be
another example of a type error since technically X .name
is a set (all name subobjects of X). However, the user may
believe that name is a single-valued attribute or may not
care whether this is the case or not. In Lorel, we interpret
this where clause as:

where exists Z in X.name : Z = “Chef Chu»

The comparison of Z to a string now follows the coercion
rules of Table 1. This approach captures the intension of
users who expect a single name field, while gracefully
handling restaurants with multiple names. Introducing
the existential quantification can be viewed as a form of
coercion from a set to an element. The coercion involved
when comparing an object to a set of objects is similar.

3.3 More on equality

As mentioned earlier, in semistructured environments,
users are interested primarily in the values of objects.
Thus, value equality is often more appropriate than oid
equality in Lorel. In Lorel we have chosen to retain oid
equality for the comparison of objects with objects since
it may sometimes be useful to test whether the same
OEM object occurs in two ““locations” (i.e., detect the
sharing of a subobject). To handle value equality we
introduce a new operator, denoted ““==." This operator
is not a substantial increase in complexity—a naive user
of Lorel could use only this form of equality, ignore =,
and almost certainly get the desired result.

Let us illustrate the use of == by an example. Con-
sider the following query:

select X.name
from John.name JN, John.child X, X.name XN
where JN == XN

The intended meaning is “‘retrieve the children of John
bearing his name.” We will see a simpler way of
expressing this query below. Note that JN and XN are
the names of John and a child of John, respectively. The
operator == expects atomic values on both sides of
JN == XN, so coercion is performed to obtain the object
values, which results in comparing the two strings and
not the oids. Note that had we used = instead of == in
the query, we would not get the desired answer (assuming
names are stored as separate atomic objects and not
shared).
A better way to express the previous query is:

select X.name
fromJohn.child X
where John.name = X.name

This is a case of the comparison of two sets. Since the
== predicate expects atomic values, the sets are coerced
into atomic values using existential quantification as
follows:

75

select X.name

from John.child X

where exists JN in John.name :
exists XN in X.name : JN = XN

where JN == XN itself involves coercion to string values.
The coercion rules for operator == are summarized
in Table 3.°

4 Simple path expressions

When querying semistructured data, especially when the
exact structure is not known, it is convenient to use a
form of “navigational” querying based on path expres-
sions. The idea is to specify paths in the OEM graph
based on the sequence of labels on edges. In this section,
we describe simple path expressions, which allow users to
obtain the set of objects reachable by following a
sequence of labels starting from a named object in the
OEM graph. A more powerful form of path expressions
based on wildcards and regular expressions is described
in Sect. 5.

A simple path expression is a sequence Z.ly....l[,,
where /,..., [, are labels and Z is an object name or a
variable denoting an object. A data path is a sequence
0o, 11,01,...,1,,0,, where the o,’s are objects and, for
each i, there is an edge labeled /; between o;_; and o;.
Starting from an object Z = oy there may be several data
paths that “match’ the simple path expression Z./;.... [,.
Path expressions are an extremely convenient and user-
friendly feature of Lorel. However, as we will see, simple
path expressions are a syntactic convenience. Indeed, we
explain the semantics of simple path expressions in this
section by describing how they can be reduced in a query
to one or more OQL-style object-component references.

We first illustrate this reduction with an example.
Consider the object named Guide and the simple path
expression Guide.A.B.C. This path can be interpreted
navigationally as: start from object Guide, follow an 4
edge, then a B, and finally a C edge. Since there are
possibly many A4, B, and C labeled edges, the path ex-

Table 3. Coercion for equality = =

arg?2 atomic set complex
argl value object of objects object
value coerce dereference existential false
with ==
atomic value = existential false
object with ==
set existential false
of objects with ==
on both sides
complex value =
object

3 Note that some languages assign different meanings than Lorel to
= and ==. We chose these assignments in order to keep the meaning of
= as it is in OQL

76

pression can be matched to a number of data paths in the
OEM graph. Alternatively, we can interpret this path
expression using OQL-style object-component referenc-
ing: Guide.A denotes the set of objects R with an A4 edge
from Guide to R, Guide.A.B denotes the objects Z such
that for some R in Guide.4, there is a B edge from R to Z,
and similarly for Guide.A.B.C. The following concrete
example illustrates the notion. The Lorel query, shown
on top, is equivalent to the OQL query, shown on the
bottom, with the path expression reduced.

select Z
fromGuide.restaurant.zipcode Z
select Z

fromGuide.restaurant R, R.zipcode Z

The precise reduction of a simple path expression
depends upon whether the path expression appears in
the from, select, or where clauses. We consider each
case in turn.

4.1 From clause

The case of a path expression appearing in the from
clause was illustrated by the previous example. Indeed, as
the example suggests, the general intuition for reducing
path expressions in the £ r om clause is to insert a variable
after each label. The actual algorithm is somewhat more
complex since Lorel gives a particular semantics to
common prefixes of multiple path expressions.
Consider the following from clause:

fromGuide.restaurant.address. zipcode Z,
Guide.restaurant.name N

Intuitively, we want to view Guide.restaurant as a set. In
SQL, the name of a relation is used as a variable that
ranges over the relation. In the same spirit, we want to
think of Guide.restaurant as a variable that ranges over
the restaurants, so that two occurrences of this path
expression are then bound to the same variable. The
previous from clause is thus translated to:

fromGuide.restaurant R,
R.address A,
A.zipcode Z,

R.name N

The general case follows directly from this example.

4.2 Select clause

We now consider simple path expressions in the select
clause. Two cases arise: either the entire path expression
also occurs in the from clause or it does not.

If a path expression in the select clause also occurs
in the from clause (possibly as a prefix of a longer path
expression), then after translating the from clause we
already have a variable that denotes the meaning of the
path expression. It therefore suffices to replace the path

expression by the corresponding variable. More precise-
ly, the largest prefix of a path expression in the select
clause that also occurs in the from clause is replaced by
the variable introduced in the £ r om clause for that prefix.
For example, the query:

select Guide.restaurant
fromGuide.restaurant.address.zipcode Z
where Z =92310

is translated to:

select R

fromGuide.restaurant R,
R.address A,
A.zipcode Z

where Z = 92310

Now suppose that path expression p = X.[;....[, in
the select clause shares a common prefix with a path
expression in the from clause only up to label /;,
1 <i < n. Then for each assignment to the variables in
the from clause, p returns the set of objects resulting
from the path expression v;./;1;....[,, where v; is the
variable assigned in the from clause to v;_1./;, and v;_; is
defined similarly (by recursion). This set can be expressed
in OQL by translating the remainder of p after label i to a
nested select clause returning the result of v;./; 1. ... [,.
For example, the query:

select Guide.restaurant.address.zipcode
fromGuide.restaurant

is translated to:

select (select Z
fromR.address A,
A.zipcode Z)
fromGuide.restaurant R

This query returns the set of zipcodes associated with
each restaurant. Observe that for a given restaurant, the
zipcodes or even the addresses of the restaurant may be
empty sets, but the query does not return an error.

4.3 Where clause

Finally, we consider path expressions occurring in the
where clause, which is the most challenging case.

As in the select clause, if a path expression in the
where clause is a prefix (not necessarily strict) of some
path expression in the from clause, we replace the path
expression by the corresponding variable from the from
clause. Now suppose the path expression is not such a
prefix, and consider a simple example:

select Guide.restaurant

fromGuide.restaurant

where Guide.restaurant.address.zipcode =
92310

This query compares a set of zipcodes to an inte-
ger. Thus, by the coercion rules introduced in Sect. 3 we
get:

select R
fromGuide.restaurant R
where exists A in R.address :
exists Z inA.zipcode : Z =92310

The query will return the restaurants that have at least
one address with at least one zipcode matching 92310.

When generalizing this treatment of simple path ex-
pressions, a difficulty arises from the fact that the same
simple path expression may occur more than once in the
where clause without occurring in the from clause.
Following our general philosophy that identical path
expression prefixes should match the same data paths, we
would like to have all occurrences relate to the same
existentially quantified variable. For instance, consider
the query:

select Guide.restaurant.name

fromGuide.restaurant

where Guide.restaurant.address.zipcode =
92310

or

(Guide.restaurant.address.street =
“Palm”

and

Guide.restaurant.address.city =
“Palo Alto”)

that returns the names of all restaurants having an
address with a zipcode of 93210, or that are located on
Palm in Palo Alto. One possibility is to place all
existential quantifiers at the beginning of the where
clause, as in the following query:

select R
fromGuide.restaurant R
where exists A in R.address :
exists Z inA.zipcode :
exists S inA.street :
exists CinA.city :
(Z=92310 orxr
(S=“Palm” and C =“Palo Alto”))

But this solution is not satisfactory for semistructured
data, since it would discard a restaurant R that has an
address with zipcode 92310 in cases where the address
has no street. In the above query, R would not be selected
since “exists S in A.street” would fail.°

To overcome this difficulty, the newly introduced
variables are also allowed to take the value oemmnil. The
presence of this value in any condition makes the con-
dition false: oemnil = oemnil is false and so is not(oemnil
= oemnil). This approach guarantees that existential
quantification will not “block” the evaluation of the
condition, nor will it make the condition true by ‘“‘mis-
take” because of the nil objects. Now the (correct)
translation of the previous query is:

¢ This problem explains why the notion of partial object assignments
was introduced to define the semantics of Lorell (Quass et al. 1995a).
The remainder of this subsection essentially shows how to achieve the
effect of partial object assignments in OQL

77

select R

fromGuide.restaurant R

where
existsAin (X.addressunionset(oemnil)) :
existsZ in (A.zipcodeunionset(oemnil)) :
exists S in (A.street union set(oemnil)) :
exists C in (A.cityunion set(oemnil)) :
(Z=92310 or
(S =“Palm” and C = “Palo Alto”))

We conclude this section with three final topics: the
implementation of simple path expressions; the sharing
of path expressions between the select and where
clauses; and allowing queries without a from clause.

4.4 Implementing simple path expressions

Although oemnil is needed for the general case, in many
cases we can avoid using it. It usually suffices to “push”
each existential quantifier to the innermost point in the
wher e clause such that it encompasses all occurrences of
its corresponding variable. For example, the query in the
previous section can be translated instead to:

select R
fromGuide.restaurant R
where exists A in R.address :
((exists Z inA.zipcode :
Z=92310) or
((exists S inA.street :
S =“Palm”) and
(exists CinA.city:
C=“Palo Alto”)))

The existential quantifier for address needs to be placed
surrounding all three conditions involving address, but
each of the other existential quantifiers need surround
only one condition. In this case, a restaurant R having an
address 4 with a zipcode Z of 92310 would succeed in the
where clause even if 4.street or A.city were missing.

Unfortunately, this approach fails in certain unusual
cases, as shown by the following two queries that are not
equivalent:

select A.H
from someroot.somelabel A
where (A.B.C=5
or A.D.E=6) and
(A.B.F=7
or A.D.G=8)
select A.H
from someroot.somelabel A
where existsb inA.B : existsd inA.D :
((existscinb.C:c=5) orx
(existseind.E : e=6)) and
((existsf inb.F:£f=7) ox
(existsgind.G:g=8))

The absence of a D edge always makes the bottom query
false, whereas the top one is true if there are appropriate
A.B.C and A.B.F paths. Note that adding a union with

78

oemnil for each exists clause in the bottom query
would yield the correct answer. It is possible to use a
simple test to: (i) verify whether an expression is free of
the pathological behavior of the last example; and (ii) if it
is, push existential quantification as shown above and
avoid the use of oemmnil.

4.5 Select and where clauses

A path expression common to the select and the
wher e clauses will use the same variable only if this path
expression also occurs in the from clause. Consider for
instance:

select Guide.restaurant.price
fromGuide.restaurant
where Guide.restaurant.price > 25

This query is translated to OQL as follows:

select (select PfromR.priceP)
fromGuide.restaurant R

where exists Q inR.price : Q> 25

A subtlety is that there is no connection between the
prices in the select and where clause. All prices for a
restaurant that has at least one price over 25 are
retrieved, even those prices that are less than 25. To
keep only those prices above 25, one must write:

select (selectPfromR.price P where P > 25)
fromGuide.restaurant R

where exists Q inR.price : Q> 25

Observe the different roles of the two clauses: the where
clause filters restaurants, whereas the embedded query in
the select clause filters prices.

4.6 Omitting the from clause

Queries in Lorel need not have a from clause. If a from
clause is not provided in the query, it is generated from
the select clause by introducing a path expression in
the from clause for each path expression in the select
clause.” If the from clause is omitted, the select clause
can only consist of paths originating from database
names. For example:

select Guide.restaurant.name
where Guide.restaurant.category = “gourmet”

becomes

"We could also use path expressions in the where clause to generate
the from clause, but in practice we have found that doing so is unnec-
essary. Note also that instead of generating the from clause only in cases
where it is missing entirely, we could take a more general approach
where we add missing components to the from clause based on path
expressions appearing elsewhere in the query. For simplicity, we have
decided against this more general approach

select Guide.restaurant.name
fromGuide.restaurant
where Guide.restaurant.category = “gourmet”

which brings us back to familiar ground. By using simple
path expressions and omitting the from clause, we find
that straightforward queries are extremely easy to express
in Lorel, and we shall express them in this manner in
the remainder of the paper when it is appropriate to do
so.

5 General path expressions

In this section, we extend the notion of simple path
expressions to a more powerful syntax for path expres-
sions, called general path expressions. (Note that our
general path expressions are not the same as the
generalized path expressions of Christophides et al.
1996.) General path expressions allow both regular
expressions and label completion to be used in paths,
which provides a powerful mechanism for finding objects
in the database. Disregarding the details of the syntax for
the moment, examples of general path expressions are:

Guide.restaurant(.address)?.zipcode
Guide.restaurant.#@P.comp %.name
Guide.restaurant (.nearby) *{R}.name

The first expression specifies the paths starting from
Guide, following a restaurant edge, then a zipcode, with
an optional address in between.

Ignoring the term @P, the second expression specifies
paths starting from Guide with a restaurant edge, fol-
lowed by an arbitrary number of edges with unspecified
labels (symbol #), followed by an edge having a label
beginning with “comp” (comp%), and finally termi-
nating with an edge labeled name. The path variable P is
bound by @QP to each data path that matches “#” in this
path expression.

Ignoring the term {R}, the last expression specifies all
paths going through a restaurant edge, then an arbitrary
number (symbol) of nearby edges, and finally a name
edge. For each data path matching this path expression,
the (object) variable R is bound by {R} to the object
immediately before the name label. Note that {R} is just
a useful syntactic way to attach variables to objects in the
middle of long paths.

Using general path expressions we can, e.g., obtain
the names of restaurants with zipcode 92310 either in the
address or directly as a field of the restaurant. Note that
in this query we also employ several of the syntactic
conveniences introduced in Sect. 4.

select Guide.restaurant.name

where
Guide.restaurant(.address)?.zipcode
=92310

We first consider the exact syntax for specifying general
path expressions, then we turn to wildcards. The last two
subsections deal with the use of path and object variables
within general path expressions.

It is important to note that while simple path ex-
pressions can always be translated to OQL, general path
expressions cannot.

5.1 Regular expressions for paths

A general path expression (gpe), like a simple path
expression, starts with an object name or a variable.
General path expressions extend simple path expressions
by allowing the object name or variable to be followed by
one or more gpe-components, rather than just a sequence
of labels as in simple path expressions. The syntax of a
gpe-component is given by:

1. If 1 is a label, then ./ is a gpe-component.
2. If sy and s, are gpe-components, then the following are
also gpe-components:

s12 s1ls2 (s1) (s1)? (s1) + (s1)*

3. If X is a string object, then .unquote(X) is a gpe-
component.

In Case 2, the symbol | is used for disjunction, ? means 0
or 1 occurrences, + means 1 or more, and * means 0 or
more. The unquote(X) function in Case 3 takes the value
of an object X (which must be coercible to a string) and
uses it as a label in the path expression. So, for instance,
if X contains the string ‘“‘restaurant,” then Guide.un-
quote(X) can be used instead of Guide.restaurant.

The only difficulty with our use of regular expressions
here is that because of the Kleene closure (%), a general
path expression may match an infinite number of data
paths if the data is cyclic. Now, if we only care about the
objects at the extremities of the paths, there are a finite
number of them. However, if we also care about the
paths themselves (e.g., because of the path variables
considered further on), the infinite number of paths be-
comes an issue. In Lorel, we choose to avoid dealing with
infinite sets of paths by deciding that a data path is not
allowed to cross the same object twice when matching a
gpe-component terminating with a * or + in a general
path expression. This acyclicity condition may appear
artificial but it seems general enough for the applications
we have considered so far, and it is easy to implement
using a cycle detection mechanism. An alternative
method would be to compute a finite representation of
the infinite set of data paths matching a given path ex-
pression, which is possible because of the regularity of
this set (Courcelle 1983). However, this approach would
seriously complicate the implementation.

5.2 Wildcards

The regular expressions specified above already allow
some flexibility in querying. However, when querying
semistructured data, one often does not know all of the
labels of the objects or their precise relative orderings. It
is therefore also useful to have a concept of “wildcards.”

The first wildcard is “% ,” which matches 0 or more
characters in a label. One can use any combination of

79

letters, digits, or % in place of a label (i.e., in ./) in the
definition of a gpe-component. For example, suppose we
know that restaurants have a label “zip” or “‘zipcode,”
and some other label that contains a description per-
taining to price. We can express the query “Find the
names of cheap restaurants with zip(code) 92310 as
follows:®

select Guide.restaurant.name
where Guide.restaurant.zip % =92310 and
Guide.restaurant.% = “cheap”

The second wildcard is “#”. The # symbol in a path
expression, .#, is shorthand for the expression “(.%)*,”
which is useful since it matches any data path of length 0
or more. In practice we find that # is used very, very
frequently in queries.

5.3 Path variables

Another important feature of general path expressions is
the ability to attach variables to data paths using path
variables. The value of a path variable is a data path in
the OEM graph, i.e., a list of objects and labels. As such,
the value of a path variable cannot be output in the query
result. However, using path variables one can test data
paths for equality, and a function, namely path-of, turns
a data path into a single string containing the labels in
the data path separated by dots.

The path-of function allows one to ask queries to
“discover” the structure of the data. For instance, one
could ask:

select distinct path-of (P)
fromGuide.#@P.zipcode

(where P is a path variable) to obtain the set of paths in
the database that lead to zipcode. One would obtain:

restaurant
restaurant.address
restaurant.nearby
restaurant.nearby.address

Perhaps the most practical use of path variables is to
obtain the names of labels. Suppose that we want to
obtain all labels leading to objects containing the string
“cheap.” We use the query:

select distinct path-of (L)
fromGuide.#.%@L X
where X="'“cheap’’

This query will return label L if there is a path from Guide
to some object X with value “cheap” and final label L.
Here, L is a path variable for a path of length one, so it
can be thought of as a label variable. Note that
“Guide. #@L X~ would instead bind L to the entire path
of labels originating from Guide.

8 For even more flexibility, this query could use one of Lorel’s built-in

string matching predicates such as 1ike or grep in place of =

80

One last use of path variables that we will consider is
as “path distinguishers,” to force identical path expres-
sions to match distinct paths in the OEM graph, as in the
following query:

select R

fromGuide.restaurant R

where R(.#.nearby)@P =R(.#.nearby)@Q
and P <>Q

This query returns all restaurants R that have two distinct
paths to the same nearby restaurant.

5.4 More on object variables

Except in the sample general path expressions at the
beginning of this section, so far object variables have
always appeared at the end of a path expression. We now
show how object variables can be introduced in the
middle of a path expression, a simple feature provided
primarily for syntactic convenience. The query:

select N
fromGuide.restaurant{R}.name N
where R.category = “gourmet”

is equivalent to:

select N
fromGuide.restaurant R, R.name N
where R.category = “gourmet”

Using object variables within path expressions is an
alternative way of distinguishing between two path ex-
pressions that would otherwise be syntactically identical
and thus be assigned the same variable. For example, the
following query finds all restaurants with addresses in
both Palo Alto and Menlo Park:

select N

fromGuide.restaurant{R}.name N

where R.address {Al}.city =“Palo Alto” and
R.address {A2}.city =“Menlo Park”

Without 41 and 42, a single existential variable would be
used for address, which would always result in an empty
query result (assuming a single address always has a
single city).

In summary, then, a general path expression is a se-
quence Z.q....q,, where qi,...,q, are qualified-gpe-
components and Z is an object name or a variable de-
noting an object. A qualified-gpe-component is an ex-
pression of the form:

gpe_component[QP] [{Y}]

where P is an optional path variable and Y is an optional
object variable. We restrict the use of path and object
variables so that path variables are not allowed to appear
in path expressions in the select clause, and the same
path or object variable may not be defined in more than
one path expression in a query.

6 Constructing results

A select-from-where query in Lorel has the same
semantics as a select-from-where query in SQL or
OQL: it results in a bag (multiset), or in a set if the
keyword distinct is used. In Lorel, the result is always a
collection of OEM objects, and duplicate elimination is
by oid. For a “top-level” query (i.e., a query that is not a
nested subquery) or a query used at the top level in an
assignment (see Sect. 7), the final collection is packaged
into a single OEM object. We now explain how results
are constructed in more detail.

As in SQL and OQL, for each assignment of the
variables in the from clause that passes the condition of
the where clause, a value is generated according to the
expressions in the select clause. Each of these values is
then coerced into an OEM object. The coercion is ex-
plained in detail below. The coercion may result in the
creation of new objects and edges in the OEM graph.
Thus, the query result may refer to original database
objects as well as to new objects created by the coercion.

As mentioned above, the result of a top-level query is
a single OEM object that is generated to hold the query
result. The default name answer identifies this object,
and edges link it to elements of the answer. For instance,
the query:

select X
fromGuide.restaurant X

would generate the following answer object:

answer &155
restaurant &19
restaurant &35
restaurant &77

Observe that only &155 is a new object. The result of this
query can be reused in later queries, although renaming is
necessary (see Sect. 7.1) so that answer is not overwritten.
We discuss below how the label restaurant is chosen for
the edges leading to the elements of the answer.

Each value in the result of the select clause is co-
erced to an OEM object according to the to_oem coer-
cion function specified in Table 4. Let us examine each
line in Table 4. As in the previous example, the function
to_oem does nothing to an OEM object. From an atomic
value, it creates a new OEM object of the appropriate
type and value using the function new_oem. We will re-
turn to this function when dealing with updates in Sect. 7.
The interesting cases are: (iii) when each value returned
by the select clause is a collection, in which case the
function creates a new complex object that holds the
collection with default labels (discussed below) leading to
the subobjects, and (iv) when the select clause returns
struct values, in which case the function creates a
complex object and uses the attributes of the struct as
labels leading to the subobjects. Because a select
clause in Lorel containing more than one expression is
interpreted as an implicit struct construction, case (iv)
arises frequently.

Note that the coercion also applies to the result of
nested subqueries. For example, if a query Q contains a
nested subquery Q' in its select clause, the result of O
is coerced to a set of OEM objects before coercing the
result of 0. Observe also that this coercion can be ex-
tended to transform an arbitrary (portion of an) ODMG
database to our Object Exchange Model. An OEM ob-
ject is created for each ODMG object, and the values of
the objects are coerced according to the rules in Table 4.

Asanexample, the following query illustrates the use of
multiple expressions in a select clause. The query re-
turns the names and addresses for each restaurant in Guide.

select X.name, X.address
fromGuide.restaurant X

The result of the query on our sample database is:

answer &100
restaurant &101
name &13 “Chef Chu”
address &14 ...
restaurant &102
name &17 “Saigon”
address &23 “Mountain View”
address &25 “Menlo Park”
restaurant &103
name &80 “McDonald’s”

Lorel determines the appropriate label for each element
of the result at run-time. There are three cases: 1. If the
object already exists in the database, then the last label
on the data path that was matched by the query (causing
the object to be selected by the query) is chosen. 2. If a
new object is based on an existing object, e.g., by
projecting some of its subobjects (as in the new object
&101 above), then the label leading to the existing object
is chosen. 3. If neither case 1 nor case 2 holds, then we
use the label “default” for the new object.

7 Updates

We have now seen the novel features of Lorel for
querying semistructured data. This section introduces
Lorel’s declarative update language. Using the update
language, it is possible to create and delete database
names, create a new atomic or complex object, modify
the value of an existing atomic or complex object, and
bulkload an OEM database. As mentioned earlier, object
deletion occurs implicitly when an object becomes
unreachable, so there is no explicit deletion operation.

7.1 Assigning names to objects

Names are entry points into the database and are created
using the name statement:

name <name> := <expression>

Names also may be created while bulkloading the
database, as discussed in Sect. 7.4 below. The expression

81

returns a single object that is assigned to the name.
Coercion is performed to coerce the expression into a
single OEM object if necessary, using the function to-oem
specified earlier in Table 4. Expressions may be queries,
new object creations, or the null keyword. If the name
does not yet exist, this statement creates a new name
called <name>. If the name already exists then it is
reassigned to the returned object.

For example, the following statement creates an entry
point to the Saigon restaurant.’

name myFavorite := element
(Select Guide.Restaurant
where Guide.Restaurant.name = “Saigon”)

The same name may later be reassigned as follows:

name myFavorite := element
(Select Guide.Restaurant
where Guide.Restaurant.name =“Chef Chu”)

Names are deleted by assigning them to null:
name myFavorite:=null

We note again that object deletion is by unreachabi-
lity (garbage collection), so a name’s assignment to null
may result in the deletion of some objects.

7.2 Object creation

For object creation, we use the function new_oem:
new_oem(val—type, value) — object

This function creates a single object with the specified
type and value. (Objects also may be created during bulk
loading, of course.) The possible value types for an object
are the atomic types, e.g., integer, real, string,
gif, etc.,, and the complex object type complex.
Complex object values are specified as struct’s, where
each field describes a label and a set of OEM objects for
that label. Lorel also includes a second function,
load_oem, which is used for creating ‘“binary large
objects” such as gif images and audio. Load oem is
identical to new_oem, except that the name of a file
containing the value is given in place of the value itself.
Here are two examples of new_oem:

new_oem(int,5)

new_oem(complex,
struct(a:{new_oem(int,5)},

b:{X,¥Y}))

The first example constructs an integer OEM object with
value 5. The second example creates a new complex
object, say o, puts an a edge between o and a new object
of value 5, and puts b edges between o and the objects
named X and Y.

° Element is an OQL keyword that extracts and returns the single
member of a singleton set

82

Table 4. Function to_oem coerces
values to a single OEM object

Case Result of select expression

Coercion function

i OEM object o

ii atomic value v
il collection V
iv struct (ay : vy, ...,

A V)

no coercion needed

new_oem(type, V)

where type is the type of v
new_oem(complex,struct(default: {to_ oem(v)|v € V}))
new_oem(complex,struct(a; : wy,...,, :Ww,)) where
w; = {to_ oem(v) | v € v;} if v; is a collection

w; = {to_ oem(v;)} otherwise

We allow shorthand notation in the creation of ob-
jects when the omitted information is redundant:

1. When the value type can be deduced from the value it
may be omitted. For example, 5 is inferred to be an
integer.

2. Values are coerced to objects using the function
to_oem in Table 4 if needed.

3. The struct constructor may be omitted.

Thus, the two examples above may be written more
compactly as:

new_oem(5)
new_oem(a:5, b:{X,Y})

Note in particular that the operator new_oem itself may
be omitted and ““5” understood as “‘new_oem(int, 5)”
after coercion.

7.3 Updates to objects

The values of objects may be modified using the update
statement. We first consider updating single named
(complex or atomic) objects and then look at updating
many objects simultaneously with one construct.

Suppose that Price is a named atomic (integer) object.
Its value may be modified using the statement:

update Price :=7

This statement changes the value inside the object
identified by Price. After the statement, Price continues
to identify the same object. By contrast,

name Price :=7

would create a new object containing the value 7 and
then assign it to Price. After the statement, Price would
identify the new object.

Updates also may increment (add to) or decrement
(delete from) the value. The following example adds 1 to
the Price value:

update Price +=1

Similarly, to decrement a value we use — =.

Complex objects also may be modified by changing,
adding to, or deleting from the subobjects with a given
label. For instance, the following update indicates that a
new branch of my favorite restaurant has opened in
Sunnyvale.

update MyFavorite.address +=“Sunnyvale”

The general form of the update statement for complex
objects is:

update <object-selector>.<label>
(+]=]:)=<expression>

and the semantics for updating complex objects is defined
as follows. The <object-selector> determines an
object o to be updated. It is usually a database name, but
could also be the unique object result of a query (e.g.,
element(...)). The <expression> identifies a set O of
objects. If the operator is +=, then new edges are created
from o to each object in O and given the label <label>.
If the operator is —=, then existing edges with the label
<label> from o to objects in O are removed. If the
operator is : =, all edges from o with label <l1abel> are
removed and new edges with label <label> are
introduced between o and each object in O.

Observe that we can change the type of an object
simply by assigning it a value of a different type, an
important convenience feature for semistructured data.

Now let us consider a way of modifying many objects
simultaneously. We can do so using a statement of the
form:

update P := <expression>
from <from-clause>
where <where-clause>

where P is a variable bound in the from clause. The
from and where clauses are the same as in the Lorel
select statement. The binding of the variables in the
from and where clauses is done before evaluating the
update, and the variables may be used in a query in the
<expression>. Logically, the update

P:=<expression>

is performed for each binding in the from clause that
satisfies the where clause. We can also modify the
values of multiple objects using += and —= with this
construct.

For example, the following query adds the restau-
rant’s city as a direct subobject of the restaurant object
whenever the city is Palo Alto or Menlo Park:

update X.city +=12
fromGuide.restaurant{X}.address.city Z
where Z = “Palo Alto” or Z = “Menlo Park”

Finally, we observe that it takes two operations
to update a label. For example, the following two

statements transform all the restaurant labels to eatery
labels.

update Guide.eatery :=select Guide.restau-
rant
update Guide.restaurant := {}

7.4 Bulk loading

Lorel provides a “1oad <filename>” statement, which
reads the load file <filename> and creates the objects
described in it. In the load file, objects may be of any
type. If the object is atomic, then both its type and value
are given together. If the object is complex, then it is
described by its subobjects, which may include other new
objects created by the load file and named objects that
existed prior to the load. Cyclic data is supported. A
(persistent) name may be assigned to any new object as
part of the load. Lorel’s load statement can also add
additional subobjects to existing named objects. The load
file syntax and further details are given in Haas and
Wiener (1996).

8 Implementation on top of an OODB

In this section, we briefly consider a prototype imple-
mentation of Lorel on top of a standard ODMG
database. We first reconsider the type OEM defined in
Sect. 2. Since we have already discussed in Sects. 36 the
primary aspects of translating Lorel to OQL extended
with heterogeneous objects, we only touch on a few
additional issues here.

OEM objects can be implemented using the following
ODMG Object Definition Language (ODL) type defini-
tion:

interface OEM;
interface OEMcomplex: OEM
{ attribute set
(struct(label:string,
values:set (OEM)))complex-value; };
interface OEMstring: OEM
{ attribute string atomic-value;}
interface OEMint: OEM
{ attribute int atomic-value; }

interface OEMnil: OEM;

Changes from the type definition in Sect. 2 are due to
minor restrictions of ODL: (i) the internal structure of an
object is a tuple and cannot simply be an atomic value,
which forces us to introduce the attributes “‘atomic-
value,” and (ii) we need to represent a complex OEM
object as a set of pairs (label, set of values).

The type extent for the type OEM is empty. Certain
methods apply to all OEM objects and are therefore
defined in type OEM, although they only have subtype
instances. These are methods to obtain the value(s) of an

83

OEM object, to compare OEM objects, to update them,
etc. For example, the following method can be used to
extract subobjects from complex OEM objects:

set (OEM) field(in string label);

If X is a complex OEM object, the expression
X .field(“‘address”) returns the set of address subobjects
of X. If X is not complex, or if it has no address
subobjects, then the empty set is returned.

The comparators also are defined as methods. For
instance, the following methods in the class OEM are
used for comparing OEM objects:

boolean value-equal (in OEM val)
boolean equal-to-int(in int val)
boolean equal-to-string(in stringval)

Note for instance that method equal-to-int is
defined as false in class OEM but redefined in class
OEMint as

self.atomic-value =val
and in class OEMreal as
self.atomic-value=int-to-real(val).

Updates also are implemented using methods. We do
not consider updates that modify the type of objects since
such updates are not permitted in the ODMG model.
Object creation simply uses the new function with the
type (OEMreal, OEMint, etc.) as the first argument. For
atomic objects, the new function also takes the initial
value as an argument. Complex OEM objects (which are
initialized to empty) take no additional arguments.

Other update methods are the following:

boolean assign-real(in real new-value)
boolean assign-int (in int new-value)

boolean add-edges(label:string,
added-set:set (OEM))
boolean method remove-edges (
label:string,
removed-set:set (OEM))

All of these methods are defined in the class OEM. When
one of the last two methods is applied to an object that is
not complex, it has no effect on the database and simply
returns false. Since we are not considering updates to an
object’s type, we say that an improper update (e.g.,
assigning a real to a complex object) also has no effect on
the database and returns false. So, in particular, assign-
real is redefined only in class real/ (with the obvious
meaning).

Our current implementation on top of the O, system
does not yet include query optimization. We conclude
this section by noting that the performance of such an
implementation depends heavily on two features: clus-
tering and indexes. For clustering, the system should at
least be capable of clustering an object and its subobjects
together, recursively. Indexes are important for manag-

84

ing complex objects with many subobjects. For example,
an index can be used for speeding up the evaluation of
the method field described above.

9 The Lore system

We have implemented Lorel as the query language for
our prototype database management system Lore. Be-
cause we are interested in exploring the many facets of
managing semistructured data, Lore has been built
entirely from scratch. As we have shown in the previous
section, Lorel could instead be implemented on top of a
conventional object-oriented DBMS. Here we discuss the
architecture and query engine that comprise the Lore
system. A comprehensive discussion of the Lore system is
beyond the scope of this paper.

The basic architecture of Lore is depicted in Fig. 4.
While much of this section will focus on the query pro-
cessor, we also briefly describe the textual interface, the
HTML Graphical User Interface, and the object man-
ager.

The current Lore system has two user interfac-
es. There is a simple textual interface, primarily used by
the developers for debugging. The graphical interface,
the primary interface for end users, provides powerful
tools for browsing query results; a data guide feature
for examining the structure of the data and formulating
simple queries “by example;” a way of saving frequent-
ly asked queries; and mechanisms for viewing the
more exotic atomic types such as video, audio, and
java.

The object manager component, which appears
just above the persistent storage component in the
Lore architecture, functions as the interface between
the query processor and the low-level file constructs. It
supports basic primitives such as fetching an object,
comparing two objects, performing simple coercion, and
iterating over the subobjects of a complex object. In
addition, some performance features, such as a cache of
frequently accessed objects, are implemented in this
component.

The query processor, which resides between the user
interface and the object manager, follows these basic
steps when answering a query:

1. The query is parsed.

2. The parse tree is preprocessed to translate it into an
OQL-like query.

3. A logical query plan is constructed.

4. Query optimization occurs.

5. The optimized logical plan is translated into a physical
query plan.

6. The physical plan is executed.

As an example, consider the following simple Lorel
query:

select Guide.restaurant.address
where Guide.restaurant.category = “gourmet”

Textual HTML
Interface GuUl
@ Query Processing @
Parsing

Preprocessor

Logical Query Plan Generation
Query Optimization

Physical Query Plan Generation
Execution of Physical Query Plan

&

Object
Manager

Fig. 4. Lore architecture

The query is parsed, then translated into an OQL-like
query using the techniques described throughout this
paper. The OQL-like query is:

selectyY
fromGuide.restaurant X, X.address Y
where exists Z in X.category : Z = “gourmet”

Then, a logical query plan is generated. A plan for our
example query is shown in Fig. 5. Although Lorel is
based on an object-oriented data model, our query
execution strategy is based primarily on familiar rela-
tional operators. The relational “tuples” we operate on
are Object Assignments, or OAs. We use a recursive
iterator approach in query processing, as described in,
e.g., Graefe (1993). We now explain how OAs are
constructed and operated upon by the nodes in our
logical plan.

An OA is a simple data structure containing slots
corresponding to range variables in the query, along with
some additional slots depending on the form of the
query. For example, an OA structure for the example
query is:

0Ag OA, OA,

Guide OA.restaurant OA | .address
OA; OA4

OA| .category Aggr

Intuitively, each slot within an OA holds the oid of a
node on a data path currently being considered by the
query engine. For example, if OA4; has the oid for a
restaurant ““Saigon”, then OA4, and OA; can hold the
oids for one of Saigon’s address subobjects and one of its

category subobjects, respectively. Note that at a given
point during query processing, it is not necessarily the
case that all slots of the current OA contain a valid oid.
Indeed, the function of query execution is to build
complete OAs.

We now briefly explain each of the operators in Fig. 5.
The Scan operator, which is used in several leaf nodes, is
similar in functionality to a relational scan. Here, how-
ever, instead of scanning over all tuples based on the
name of a relation, our scan returns all oids that are
subobjects of a given oid with respect to a given gpe
component. The Scan operator is defined as:

Scan (StartingOASlot, gpe_component,
TargetOASlot)

Scan starts the search from the oid stored in the slot
StartingOASlot, and at each iteration places into the
TargetOASlot the oid of the next subobject that
satisfies the gpe_component. The gpe_component is
a string describing which labels Scan should match, and
is similar to the syntax for gpe_components described in
Sect. 5. Scan is called repeatedly for a given Startin-
gOASlot until the TargetOASlot no longer holds a
valid oid. When dealing with the currently supported
regular expressions, the Scan operator uses a stack of
objects that satisfy the gpe_component. For regular
expressions, the path taken through the database to an
object can be reconstructed using the Scan stack. In order
to handle the full range of regular expressions, a finite
state automaton would be needed within the Scan
operator. As a simple example, consider the following
Scan that appears in our example plan:

Scan (OAl, “address”, OA2)

This scan iterator will place into slot OA4», one at a time,
all address subobjects of the oid in slot OA4,. Note the
special form for the lower left Scan:

Scan (Root, “Guide”, OAO) .

Project
OA,

J L

Select
(OA, = TRUE)

Aggregation
Groupby OA; , Op:Exists,
Target OAy4

i1

Select
(OA3 = "gourmet")

Scan
OA, .address OA,

1l

Scan
OA.cafegory OAz

Scan
OA restaurant OA]

Scan
Root.Guide OAD

Fig. 5. Sample Lore query plan

85

Instead of using an OA slot as the first argument, the
value Root, which is a system-known oid from which all
names can be reached, is used.

Each child of a Join node fills in information in the
current OA. Like a relational nested-loop join operator,
one function of the Join node is to coordinate its left and
right children. For each partially completed OA that the
left child returns, the right child is called exhaustively
until no more new OAs are possible. Then the left child is
instructed to retrieve its next (partial) OA. The iteration
continues until the left side produces no more OAs.

The Select and Project nodes are nearly identical to
the corresponding relational operators. The one differ-
ence is that while relational select and project deal with
relation and attribute names, in Lore query plans these
operators implicitly operate upon the objects identified
by the oids within the current OA. Thus, the Project
operator is used to limit which subobjects should be re-
turned by specifying a set of OA slots, while the Select
operator applies predicates to the objects identified in the
OA slots.

The Aggregation node (shown in Fig. 5 as the right
child of the first Join node) is used in a somewhat novel
way. Besides functioning as the standard grouping and
aggregation operation, it also serves as an evaluation
mechanism for quantified variables. The aggregation
node groups the OAs received from its child based on the
specified slot (OA4; in the example), then applies the ag-
gregation operator, in this case exists. It adds to the
specified slot in the current OA (OA4 in the example) the
result of the aggregation, which here is the value frue if
the existential quantification is satisfied and false other-
wise. Filtering of OAs whose quantification is true occurs
in the final Select node. Note that the exists operator uses
lazy evaluation to quit when it finds the first satisfying
OA, while other aggregation operators need to look at all
OAs in each group.

There are some fairly obvious optimizations that can
be done to the logical plan in Fig. 5, such as pushing the
top Select down the right subtree and moving selection
conditions into scans. In the current Lore query proces-
sor, only a few query optimization techniques are im-
plemented and the physical query plan is very similar to
the logical plan. Thus, we essentially evaluate the plan
shown in Fig. 5 directly. Implementation of query opti-
mization and “‘real” physical plans is under design.

The Lore system includes several notable features in
addition to the Lorel language. Of particular interest are
the data guide and external objects:

— The data guide for a given OEM database is an OEM
object that encapsulates the structure of the graph in
terms of edge labels, without repeating identical paths
(Nestorov et al. 1997) Essentially, the data guide
provides a structural summary of the current data-
base, which in a semistructured environment can be
extremely useful in understanding how the data is
structured and formulating queries. In our graphical
user interface, the data guide also can be used to form
simple queries in a “by example™ style.

86

— External objects allow Lore to dynamically fetch and
integrate information stored in external data sources
during query processing, and cache the information
for later use. Any object in Lore may be a placeholder
for an external object, allowing Lore to serve both as a
storage repository for semistructured data and a que-
ry-driven integration engine.

9.1 System status

As of Fall, 1996, the query processor and the rest of the
Lore system are functional and robust for a subset of the
Lorel language. Language features whose implementa-
tion is still underway include path variables, external
predicates and functions, complex select clauses, full
aggregation, and the declarative update language. In
addition, the complete functionality of general path
expressions is not yet implemented, although a substan-
tial and very useful subset is. While Lore currently
maintains indexing structures, the query plans are not
“intelligent” enough to make use of them yet. As noted
above, currently little query optimization takes place, so
there is a considerable amount of work to do in this area
of query processing. Finally, although Lore was designed
initially as a “lightweight” DBMS to be used primarily in
single-user or read-only mode, as we find more and more
uses for Lore we are feeling the need to add “‘heavy-
weight” features such as transactions, concurrency
control, and recovery.

A Lore server with a number of sample databases
is available for public use. Users can submit queries
in the subset of the Lorel query language currently
frozen and can experiment with features such as re-
sult browsing, data guides, and external objects.
Please visit us at http://www-db.stanford.edu/
lore.

Acknowledgement. Serge Abiteboul was supported by CESDIS-NASA.
Many thanks to all the members of the Lore research project, past and
present, including Roy Goldman, Kevin Haas, Qingshan Luo, Svetlozar
Nestorov, Anand Rajaraman, Hugo Rivero, Shuky Sagiv, and Jeff
Ullman, and to the rest of the Stanford Database Group for many lively
discussions on Lorel.

References

Abiteboul, S.: Querying semi-structured data. In: Proceedings of the
International Conference on Database Theory. Delphy, Greece, 1997
(to appear)

Bancilhon, F., Delobel, C., Kanellakis, P., (eds): Building an object-
oriented database system: the story of O,. San Francisco: Morgan
Kaufmann 1992

Beeri, C., Kornatski, Y.: A logical query language for hypermedia
systems. Inf. Sci. 77 (1994)

Blake, G., Consens, M., Kilpeldinen, Larson, P., Snider, T., Tompa,
F.: Text/relational database management systems: harmonizing
SQL and SGML. In: Proceedings of the First International Con-

ference on Applications of Databases. Vadstena, Sweden, 1994, pp
267-280

Buneman P., Davidson, S., Suciu, D.: Programming constructs for
unstructured data. In:Proceedings of the 1995 International Work-
shop on Database Programming Languages (DBPL), 1995

Cattell, R. G. G.: The Object Database Standard: ODMG-93. San
Francisco: Morgan Kaufmann 1994

Christophides, V., Abiteboul, S., Cluet, S., Scholl, M.: From structured
documents to novel query facilities. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. Min-
neapolis, Minnesota, May 1994, pp 313-324

Christophides, V., Cluet, S., Moerkotte, G.: Evaluating queries with
generalized path expressions. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. Montreal, Can-
ada, June 1996, pp 413422

Consens, M. P., Mendelzon, A. O.: Expressing structural hypertext
queries in graphlog. In: Proceedings of the Second ACM Conference
on Hypertext. Pittsburgh, Pennsylvania, November 1989, pp 269—
292

Courcelle, B.: Fundamental properties of infinite trees. Theor. Comput.
Sci. 25(1983)

Freedman, M.: WILLOW: technical overview. Available by anonymous
ftp from ftp.cac.washington.edu as the file willow/Tech-Re-
port.ps. September 1994

Genesereth, M., Fikes, R.: Knowledge interchange format reference
manual. 1994. Available as http://logic.stanford.
edu/sharing/papers/kif.ps

Goldfarb, C. F., Rubinsky, Y.: The SGML handbook. Clarendon Press,
Oxford, 1990

Graefe, G.: Query evaluation techniques for large databases. ACM
Comput. Surveys 25:73-170 (1993)

Haas, K., Wiener, J. L.: How to bulk load a Lore database. Working
document, Stanford University Database Group, July 1996

Kifer, M., Kim, W., Sagiv, Y.: Querying object-oriented databases.
In: Proceedings of the ACM SIGMOD International Conference
on Management of Data. San Diego, California, June 1992, pp 393~
402

Kim, W.: On object oriented database technology. UniSQL product
literature, 1994

Konopnicki, D. Shmueli, O.: W3QS: A query system for the World
Wide Web. In: Proceedings of the Twenty-First International Con-
ference on Very Large Data Bases. Zurich, Switzerland, September
1995, pp 54-65

Lakshmanan, L. V. S., Sadri, F., Subramanian, I. N.: A declarative
language for querying and restructuring the Web. In: Proceedings of
the Sixth International Workshop on Research Issues in Data Engi-
neering (RIDE 96), New Orleans, February 1996

Melton, J., Simon, A. R.: Understanding the new SQL: a complete guide.
San Francisco: Morgan Kaufmann, 1993

Mendelzohn, A., Mihaila, A., Milo, T.: Querying the world wide web,
1996. Draft

Mendelzon, A. O., Wood, P. T.: Finding regular simple paths in graph
databases. SIAM J. Comput. 24, 1995

Microsoft Corporation. QLE2 Programmer’s Reference. Redmond,
Washington: Microsoft Press, 1994

Minohara, T., Watanabe, R.: Queries on structure in hypertext. In:
Foundations of data organization and algorithms, (FODO ’93),
Berlin Heidelberg New York: Springer 1993, pp 394411

Nestorov, S., Ullman, J., Wiener, J., Chawathe, S.: Representative
objects: Concise representations of semi-structured hierarchical
data. In: Proceedings of the Thirteenth International Conference on
Data Engineering, Cambridge, UK, April 1997 (to appear)

OMG ORBTEF. Common Object Request Broker Architecture. Object
Management Group, Framingham, Mass, 1992

Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object exchange
across heterogeneous information sources. In: Proceedings of the

Eleventh International Conference on Data Engineering, Taipei,
Taiwan, March 1995, pp 251-260

Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion
in mediator systems. In: Proceedings of the Twenty-Second Inter-
national Conference on Very Large Data Bases, Bombay, India,
1996

Papakonstantinou, Y., Garcia-Molina, H., Ullman J.: Medmaker: a
mediation system based on declarative specifications. In: Proceed-
ings of the International Conference of Data Engineering (ICDE *96),
1996, pp 132-141

Quass, D., Rajaraman, A., Sagiv, Y., Ullman. J., Widom, J.: Querying
semistructured heterogeneous information. In:Proceedings of the
Fourth International Conference on Deductive and Object-Oriented
Databases (DOOD), Singapore, December 1995, pp 319-344

Quass, D., Rajaraman, A., Sagiv, Y., Ullman. J., Widom, J.: Querying
semistructured heterogeneous information. Technical report,
Stanford University Database Group, 1995. Document is available
as ftp://db.stanford.edu/pub/papers/querying
-full.ps.

Rafii, A., Ahmed, R., Ketabchi, M., DeSmedt, P., Du, W.: Integration
strategies in the Pegasus object oriented multidatabase system. In:
Proceedings of the Twenty-Fifth Hawaii International Conference on
System Sciences, Vol. II, January 1992, pp 323-334

Rajaraman, A.: Indexing semistructured data for flexible comparisons.
Working Document, Stanford University Database Group, March
1996

Rao, R., Janssen, B., Rajaraman, A.: GAIA technical overview.
Technical Report, Xerox Palo Alto Research Center, 1994

Thierry-Mieg, J., Durbin, R.: Syntactic definitions for the ACeDB data
base manager. Technical report, MRC Laboratory for Molecular
Biology, Cambridge, England, 1992

Yan, T., Annevelink, J.: Integrating a structured-text retrieval system
with an object-oriented database system. In: Proceedings of the
Twentieth International Conference on Very Large Data Bases,
Santiago, Chile, September 1994, pp 740-749

A Syntax

The complete Lorel syntax appears in Figs. 6 and 7. Note
that not all the constructs in the language have been
discussed in the body of the paper, since the paper
focuses on the innovative features in Lorel.

In the grammar “{}*” means 0 or more repetitions,
“{}+” means | or more repetitions, and “[]” means
optional. The exception is Rule 25, where [] is used to
delimit a character class and the following + means that
a sequence of one or more characters can be drawn from
the class.

Rule 19 has a higher precedence than Rule 23,
meaning that a path expression consisting of multiple
label expressions separated by dots is parsed as multiple
qualified paths, rather than a single qualified path con-
sisting of multiple paths.

Note that some “factoring” of the grammar has oc-
curred to facilitate parsing, e.g., the introduction of
safe_query and safe_set_query.

(1) query

(2) set_query

(3) atomic_query

(4) value_query

(5) query_list

(6) sfw_query

(7) select_expr

(8) from_expr

(9) predicate

Fig. 6. Lorel syntax

87

set_query
| atomic_query
| value_query

sfw_query

| path_expr

| set_query intersect set_query
| set_query union set_query

| set_query except set_query

| (set_query)

var
| element(set_query)

satomic_query

| constant

| pathof(path_var)

| external function name(query_list)
| (query) arith_op (query)

| — query

| abs(query)

| aggr_function(set_query)

query
| (query){, (query)}*

select [distinct]

select_expr {, select_expr }*
[Exom from_expr {, from_expr}*]
[where predicate]

query [as select_identifier]

| select_identifier : query

| new_oem(select_expr {, select_expr }*)
[as select_identifier]

path_expr [[as] var]
| var in path_expr

not predicate

| predicate and predicate

| predicate ox predicate

| safe_query comp_op safe_query

| safe_set_query

| exists(set_guery)

| boolean_constant

| exists var in
safe_set_query : predicate

| for all var in
safe_set_query : predicate

| safe_query in safe_set_query

| safe_query comp_op quantifier
safe_set_query

| external predicate name
(query_list)

| (predicate)

88

(10) safe_set_query

| path_expr category: “gourmet”,
name: “Coupe Chou”,

(11) safe_query (query) address: newOEM (

| atomic_query street: “E1l Camino Reae”,

| path_expr city: “Palo Alto”,

| variable zipcode: 92310),

| constant nearby_eating_place: { X,Y});
(12) select_identifier identifier update Y.nearby_eating place +=1Z;

(13) arith_op

(14) comp_op

(15) aggr_function
(16) quantifer

(17) constant

(18) boolean_constant
(19) path_expr

(20) qualified_gpe_

(set_query)

| unquote (path_var)
+|—=|#*]|/|mod

<|l<=|=|<>|>=|>
| 1ike | grep | soundex

min | max | count | sum | avg
some | any | all

nil

| integer_literal

| real_literal

| quoted_string_literal

| boolean_constant

true | false

var {qualified_gpe_component} +

gpe_component [@ path_var] [{var}]

component

(21) path_var identifier
(22) var identifier
(23) gpe_component . label _expr

(24) regexp op

(25) label_expr

| gpe_component | gpe_component
| gpe_component gpe_component
| (gpe_component) [regexp_op)

LA

#
| [A-Za-z0-9%_ 1+
| unquote(path_var)

name 7

:=newOEM (

name Palo_Alto_Businesses :

newOEM (Restaurant:{X,Y,Z});
:= NULL;

name X.,Y,Z

Fig. 7. Lorel syntax continued

B Update example

The example database can be constructed using the
following updates:

name X := newOEM (
category: “fast food”,
name: “Mac Donald”) ;

name Y := newOEM (
category: “Vietnamese”,
name: “Saigon”,
address: { “Mountain View”,

“Menlo Park”});

