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Abstract
Despite the millions of electronic theses and dissertations (ETDs) publicly available online, digital library services for ETDs
have not evolved past simple search and browse at the metadata level. We need better digital library services that allow users to
discover and explore the content buried in these long documents. Recent advances in machine learning have shown promising
results for decomposing documents into their constituent parts, but these models and techniques require data for training and
evaluation. In this article, we present high-quality datasets to train, evaluate, and compare machine learning methods in tasks
that are specifically suited to identify and extract key elements of ETD documents. We explain how we construct the datasets
by manual labeling the data or by deriving labeled data through synthetic processes. We demonstrate how our datasets can
be used to develop downstream applications and to evaluate, retrain, or fine-tune pre-trained machine learning models. We
describe our ongoing work to compile benchmark datasets and exploit machine learning techniques to build intelligent digital
libraries for ETDs.
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1 Introduction

Despite the large number of electronic theses and disser-
tations (ETDs) publicly available online, this rich body of
scholarly work is insufficiently utilized. Partly to blame is the
lack of innovation in digital library services for ETDs. Not
much has changed since the release in 2002 of DSpace [67],
the open source institutional repository platform ubiquitous
with ETDs. Twenty years later, digital library services for
ETDs have not moved beyond simple search and browse at
the metadata level. Users can download a PDF of the ETD,
but all other interactions with the content must occur outside
of the digital library.

Digital libraries lack computationalmodels, tools, and ser-
vices for discovering and accessing the knowledge buried in
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Fig. 1 We present datasets for metadata extraction, figure and table
extraction, and document structure extraction. For each, we give exam-
ples of how we are using the dataset to train, evaluate, or compare

machine learning models used for extracting metadata and other key
document elements. Identifying these elements facilitates developing
value-added user services for ETD libraries

ETDs and other long documents. Accordingly, one phase of
our research involves deconstructing ETDs into smaller doc-
ument elements. ETDs contain novel ideas and findings that
make a significant contribution to their subject areas. They
often contain extensive bibliographies and reviews of the lit-
erature, as well as useful graphs, figures, and tables. Key
document elements of these long documents can be identified
and extracted computationally to improve access and discov-
erability and to facilitate the creation of richer user interfaces.
Using machine learning methods for document classifica-
tion and understanding, individual document elements can
be automatically classified and summarized, allowing users
to easily assess their relevance.

Machine learning techniques for document analysis and
understanding offer opportunities to build intelligent digi-
tal libraries [22]. The user interfaces of traditional digital
libraries usually only show basic bibliographic metadata and
a download link to a PDF of the ETD. A more intelligent
digital library can allow its users to interact directly with the
contentwithin the digital library. Interactive outlines or tables
of contents can be created by applying document layout anal-
ysis to expose an ETD’s logical structure, allowing users to
quickly find the entry point that best matches their particu-
lar information need or interest. Individual chapters can be
described and summarized automatically. Figures and tables
can be extracted and displayed separately. Machine learn-
ing techniques for metadata extraction, topic modeling, and

entity recognition can enable both inter- and intra-document
search and browsing.

Beginning with Virginia Tech in 1997, graduate programs
all over the world allow (and often mandate) electronic
submission of an ETD as a requirement for graduation.
These ETDs are typically made publicly accessible through
institutional repository programs administered by university
libraries. This is in keeping with the long-held university
library practice of binding and housing paper copies of thesis
anddissertation collections in the stacks. Tobolster their elec-
tronic collections, some universities now provide electronic
access to historical ETDs by scanning (digitizing) these print
volumes. For instance, Virginia Tech’s ETD collection is a
mix of born-digital and scanned print volumes dating back
to 1903. Generally, ETDs written before 2000 are scanned
versions of physical copies.

Scanned ETDs present challenges different from those
of their born digital counterparts. PDFs created from word
processing software or LaTeX may have some structural
information embedded in their coding. But scanned ETDs
are basically just images. Like the physical copies they
were created from, the logical structure of a scanned ETD
is only communicated by typesetting conventions—blocks
of text form sections, boldface or larger texts indicate sec-
tion headings, and so on. Fortunately, there are a number of
machine learning techniques for decomposing the contents
of scannedETDs.However, each of these techniques requires
data for analysis, for developing a set of training examples,
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and for measuring the predictive accuracy of machine learn-
ing models. In this paper, we present several datasets for
evaluating and comparing the abilities of different machine
learning methods at tasks specifically suited to building dig-
ital libraries for ETDs.

This article builds upon and extends the research pre-
sented in two previously published JCDL papers, which are
referenced below as [12] and [34]. TheETD500 dataset intro-
duced in [12], consists of 500 annotated ETD cover pages
with human-validatedmetadata. The ScanBank dataset intro-
duced in [34], contains 10 thousand scanned page images
manually labeled for the presence of figures and tables.

Our current research extends beyond the scope of meta-
data extraction andfigure and table extraction to include topic
modeling, entity recognition, and chapter-boundary detec-
tion. In the sections that follow, we present our suite of
ground-truth datasets developed for building digital library
services tailored to ETDs, including two new datasets: Chap-
terParse and ETDText. Some of the datasets described below
were created by manual labeling of the data. Others were
derived through a synthetic process. For each task, we
describe how we developed the dataset, and give examples
of how we are using the dataset in developing digital library
services for ETDs.

2 Related work

The past decade has seen great advances in scholarly big data,
wherein hundreds of millions of scholarly papers have been
mined [36]. Comprehensive frameworks were developed to
segment scholarly papers into different levels of elements
(e.g., GROBID [47] and CERMINE [74]). Table and figure
extraction software also was developed, such as PDFFig-
ures [14], PDFFigures2 [15], TableBank [41], DocBank [42],
and DeepFigures [64]. These either rely on the underlying
document structure of a PDF file [13–15, 74], or exclusively
cater to the analysis of born-digital documents [41, 42, 64].
However, most off-the-shelf frameworks work poorly for
ETDs.

In this section, we briefly review datasets for identify-
ing or segmenting relevant document elements of scholarly
documents, focusing on metadata extraction and figure/table
extraction.

2.1 Metadata extraction datasets

Automatically extracting metadata from academic docu-
ments is a long-standing problem. Metadata fields include,
but are not limited to, title, authors, year, venues, volume,
number (or issue), DOI, and abstracts. The Dublin Core
describes 15 key metadata fields [38, 81] and was later
expanded to 55fields according to theDCMIMetadata Terms

specification.1 The Text Encoding Initiative (TEI) consor-
tium collectively develops and maintains a standard for the
structural representation of documents in digital form.2 The
Open Archives Initiative Object Reuse and Exchange (OAI-
ORE) defines standards for the description and exchange of
aggregations of Web resources [48], with a more general
scope than scholarly documents. Metadata extraction pro-
vides textual information for structured search (e.g., via a
relational database) or full-text search (e.g., via an inverted
file). Metadata can also be used to link data across multiple
databases and repositories (e.g., [82]).

Automatic metadata extraction is challenging because
scholarly documents could be written with a variety of for-
mat settings. Although ETDs are usually written in relatively
commonstyles, the layout varies a lot across years anduniver-
sities. Figure2 shows several examples of ETD cover pages
with varying page layouts. Unlike periodicals, ETDs are usu-
ally published as a standalone document, so they do not have
venue, volume, and number (issue) information.Many ETDs
do not have publisher information or DOIs, although many
are assigned persistent identifiers through the Handle.Net
Registry.3 We briefly review representative contributions of
datasets used for metadata extraction from scientific articles.
Nasar et al. provided a systematic survey [51].

An early effort to extract metadata from academic docu-
ments used heuristic rules (e.g., [71]) that only worked well
for documents in a very specific domain. Later, machine
learning methods were applied to this task, such as the Hid-
den Markov Model (HMM) [61]. Around 1999, the CORA
dataset was introduced; it contains two subsets. The first sub-
set is used formetadata extraction and contains 935manually
annotated headers of computer science research papers. The
second subset is used for parsing reference strings; it includes
about 500 manually tagged reference strings from computer
science papers. The dataset was used to develop a metadata
extraction framework using support vector machines [24].

2.2 Figure and table extraction datasets

In PDFFigures2 [15], Clark and Divvala proposed a novel
approach to figure and table identification that analyzes the
structure of individual pages. Their model was evaluated on
twodatasets of computer science papers. TheCS-150dataset,
originally introduced by Clark et al. [14], consists of 150
papers from top-tier conference proceedings. The CS-150
dataset contains 458 labeled figures and 191 tables. The CS-
Large dataset consists of 346 papers originating from over
300 different venues. The CS-Large dataset contains 952 fig-

1 See https://www.dublincore.org/specifications/dublin-core/dcmi-
terms/.
2 See https://tei-c.org/.
3 See http://handle.net/.
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Fig. 2 Examples of ETD front pages. First row, from left to right: Uni-
versity of Illinois Urbana-Champaign (1955), University of California,
Berkeley (1968), California Institute of Technology (1971), University
ofPittsburgh (1971); Second row, from left to right:VirginiaPolytechnic

Institute and State University (1987), Massachusetts Institute of Tech-
nology (1994), East Tennessee State University (2005), Pennsylvania
State University (2019)

ures and 282 tables. There are labels and bounding regions
for each caption, figure, and table.

Siegel et al. proposed DeepFigures [64], a method for
extracting figures and tables from scholarly PDFs. Data from
arXiv4 [16] and PubMed5 were used for locating figures in
scientific papers, which were then used for training a deep
learning model, consisting of ResNet [27] in conjunction
with the Overfeat architecture [60], to predict coordinates
of the bounding boxes around figures.

Li et al. [41] proposed TableBank, an image-based table
detection and recognition framework. Their contributionwas
aweakly supervisedmachine learning (ML)model trained on
a dataset of Microsoft Word and LaTeX documents crawled
from the Web. The authors included documents of differ-
ent languages. The method modified the document source
code, allowing them to generate a ground-truth dataset of
figures and tables, with known bounding boxes. The authors

4 See https://arxiv.org/help/bulk_data.
5 See https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist.

took a step further and built a recurrent neural network that
converted a detected table (in an image format) into a table
markup format (i.e., a table parsed into text). In other words,
it converted an image of a table into a structured machine-
readable format; this was called table structure recognition.

Hansen et al. [25] employed an object detection model
called Faster R-CNN, which allows them to make region
assignments for tables in a PDF document that are better than
DeepFigures. They introduced a dataset with 31,639 man-
ually labeled PDF pages with image bounding boxes. Like
DeepFigures, FasterR-CNNandTableBankwere trained on
born-digital documents, hence their performance is expected
to decrease for scanned documents.

Recently, Lee et al. [40] proposed the Newspaper Nav-
igator dataset, used to extract and analyze visual content
from 16 million historic newspaper pages from “Chroni-
cling America.” This work used a manually labeled dataset
of historic newspaper pages that contained labels for seven
classes (headlines, photographs, illustrations, maps, comics,
editorial cartoons, and advertisements). A pre-trained Faster
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R-CNN model was fine-tuned on this dataset to enable the
extraction of the targeted visual content. The documents
used in this work were archived newspapers, which have
visual structures different from those of scholarly documents,
including ETDs.

2.3 Document structure parsing datasets

In 2009, a relatively large dataset was developed from
PubMed articles to train GROBID [47], a machine learning
library for extracting, parsing, and restructuring PDF doc-
uments into structured TEI encoded XML documents. The
dataset was used for training a series of nested conditional
random field models based on approximately 1,000 training
samples for header information (e.g., metadata) and 1,200
training samples for cited references. The GROBID training
data and source code are available on GitHub.6

TEAM-BEAMwas a systemdeveloped in 2012 to provide
a flexible tool to extract a wide range of metadata from scien-
tific articles [35]. It employed aMaximum Entropy classifier
trained on three proprietary datasets: eprints (2,452 PDFs
with the metadata in multiple domains), Mendeley (20,672
papers annotated by Mendeley users in multiple domains),
and PubMed (9,581 papers representing a range of different
article types).

Around 2015, another dataset called GROTOAP2 was
compiled, consisting of 13,210 ground truth documents
with labeled fragments of scientific articles in PDF for-
mat [73]. The documents were obtained from the PubMed
Open Access Subset. GROTOAP2 was used for training and
evaluation of CERMINE [74], a system for extracting meta-
data and content from scientific articles. CERMINEalso used
data from CiteSeer and PMC for citation parsing.

The previous datasets were all based on real documents.
Recently, the Document Domain Randomization (DDR)
method was proposed, which simulates document pages
by randomly selecting structural and semantic content of
the document [44]. Using DDR, the authors synthesized
15K document images rendered with random figures, tables,
algorithms, and equations chosen from VIS30K [10]. The
methods can potentially be used to generate pages used to
train layout parsers of different types of documents.

Recognizing the layout of unstructured digital documents
is an important step in parsing the documents into a struc-
tured machine-readable format. PubLayNet [85] is a dataset
containing over 360K document images, with typical layout
components, including titles, text, lists, tables, and figures.
The dataset was generated by automatically matching the
XML representations and the content of over 1 million PDF
articles publicly available on PubMed Central. The dataset
can be used to build a pre-trained model for layout parsing

6 See https://github.com/kermitt2/grobid.

(e.g., [83]). Other datasets used for layout parsing include
arXivdocs [55], unarXvie [58], and DocBank [42].

Although many benchmark datasets have been proposed,
most are best suited for conference proceedings and jour-
nal articles (e.g., PubMed papers). As such, they are not
useful for processing book-length documents with chapters.
The only system for chapter segmentation we know of is
ITCore (Intelligent TextbooksCore) [8, 9], which generates a
TEI representation of textbooks using a rule-based approach
based on information discovered from analyzing the table
of contents. However, in our preliminary experiments [31],
ITCore was unable to accurately or consistently segment the
chapters from the ETDs. We hope our contribution of new
datasets will fill a key gap, by supporting information extrac-
tion from ETDs and similar book-length documents.

3 Our ETD datasets

In this section, we describe four new datasets we have assem-
bled for various machine learning tasks specifically suited
for digital library services related to theses and dissertations
(recall Sect. 1). We describe the properties of each dataset
and how each dataset was generated. Table 1 summarizes the
datasets we contribute.

3.1 ETD500

3.1.1 Sample selection

ETD500 was created for two tasks: extraction of metadata
from ETD cover pages and page-level segmentation. In a
previous study [11] we built a small dataset containing only
100 ETDs, drawn from only two universities: Massachusetts
Institute of Technology (MIT) and Virginia Polytechnic
Institute and State University (Virginia Tech). To increase
diversity and size, we created a new dataset called ETD500,
consisting of 500 scanned ETDs, including 450 ETDs from
15 U.S. universities and 50 ETDs from six non-U.S. uni-
versities (Fig. 3). The new dataset includes the 100 ETDs
randomly selected from MIT and Virginia Tech libraries.
The remaining ETDs were randomly selected from Pro-
Quest’s collection. The ETDs were published between 1945
and 1990. There are 375 STEM (science, technology, engi-
neering, and mathematics) and 125 non-STEM works. Their
authors earned 468 doctoral, 27 master’s, and 5 bachelor’s
degrees.

3.1.2 Data preprocessing and labeling

Metadata extraction:To supportmetadata extraction,we first
need to locate and annotate accurate metadata from ETD
cover pages. First, we convert the cover page of each PDF
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Table 1 A summary of datasets
provided by this paper

Dataset Count Description Format Reference

ETD500 500 Annotated metadata of ETD
cover pages

XML/PDF/PNG [12]

92,375 ETD pages manually
labeled into 14 categories.
Positions and sizes of the
text and the bounding
boxes extracted by
Amazon Textract

TXT/JSON this paper

ScanBank 10,182 Synthesized ETD pages JSON [34]

3,375 Manually annotated
bounding boxes of figures
in synthesized ETD pages

JSON [34]

ChapterParse 1,459 Chapter boundaries of
ETDs

JSON this paper

ETDText 339,485 Text extracted for
born-digital ETDs

TXT this paper

ETDTextR 339,485 Text extracted for
born-digital ETDs with
figures and tables
removed

TXT this paper

Fig. 3 ETD500 dataset used for
extracting metadata from ETD
cover pages. (i) Distribution of
ETDs by university; (ii)
Distribution of ETDs by STEM
vs. non-STEM subjects

to a TIFF image. Then we obtained the OCRed text by
applying Tesseract-OCR [68] directly to the TIFF images.
Unfortunately, faithfully extracting text from scanned ETDs
is still a challenge for most open-source and commercial
OCR tools (see [23] for a comparisonof variousOCR tools on
a label extraction task). Therefore, we generated ground truth
metadata by manually correcting the extraction results from
Tesseract-OCR, which outputs recognized text and coor-

dinates of bounding boxes surrounding the text. Then we
manually annotated up to seven metadata fields, including
title, author, advisor, year, program, institution, and degree
for each ETD cover page [12]. To support related tasks,
we also keep several auxiliary datasets together with the
final dataset. An auxiliary dataset was created by parsing
the respective fields from metadata provided by the univer-
sity library. However, we observed that this dataset contained
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errors or inconsistent values. Therefore, we revised each field
by aligning its value with what is printed on the ETD cover
page. The final ground truth also preserved the positions of
annotated metadata, by aligning the output of Tesseract and
annotated metadata using Levenshtein distance.

Page labeling: To support our page-level segmentation
task, we manually labeled 92,375 pages from 500 ETDs into
14 different categories for the pages (Table 2). The pages
of each ETD were labeled according to one of the 14 labels
and stored in a text file that mapped each label to the corre-
sponding page number. A page was labeled as “Title” if it
included the dissertation title, the author’s name, etc., but not
a descriptive section. In some ETDs, there is an abstract for
each chapter, so those pageswere labeled “ChapterAbstract”.
If a page did not fit into any of the 13 other categories, it was
labeled “Other”.

OCR was performed on all pages using AWS Textract,
a cloud-based service that reads and extracts texts from
scanned documents. Because Textract accepts images in
JPEG or PNG format, all pages were converted from PDF to
PNG images using Adobe Ghostscript. Textract outputs an
array of block objects representing the detected texts.A block
contains information about a recognized text span, such as its
ID, type, bounding box, and confidence score. For each ETD,
we saved a text file containing the detected texts and a JSON
file containing the bounding box coordinates, extracted from
the block.

• Height: The height of the bounding box as a fraction of
the total height of the document page.

• Width: The width of the bounding box as a fraction of
the overall document page width.

• Top: The top coordinate of the bounding box as a fraction
of the overall document page height.

• Left: The left coordinate of the bounding box as a fraction
of overall document page width.

3.2 ScanBank

In this section, we describe our datasets for identifying and
extracting figures and tables from scanned ETDs.7

Over the past decade, deep learning techniques have
significantly boosted the accuracy of object detection and
classification in natural images [37, 39]. Document objects
such as figures and tables contain important information.
Their automatic identification and extraction from PDF files
is key to enhancing computational access to scholarly works.
This facilitates important operations such as semantic pars-
ing, searching, and summarizing.

There are many challenges to accurately identify figures
in scanned ETDs. The image resolution and scanning qual-

7 For brevity, we often use the term figure for a figure or a table.

ity may vary across the collection. OCR output is often
error-ridden. Many older ETDs were typewritten. In very old
documents, figures and tables may have been hand drawn or
rendered in a separate process and literally cut-and-pasted
into typewritten documents. Additionally, since ETD collec-
tions are cross-disciplinary, the documents in them present a
variety of layout styles.

Unlike born-digital PDFs, scanned PDFs began as hard
copies and were later digitized into PDFs using scanning
tools such as flatbed scanners. The scanning process intro-
duces artifacts in PDFs. For example, the content of some
pages might be slightly rotated or tilted due to errors in
the placement of the paper on the scanner. Other types of
noise, such as salt-and-pepper noise, blurring, and perspec-
tive transformations, are also possible. The content of the
PDFs could have been typed using a typewriter—some very
old theses were even handwritten. Therefore, the overall
appearance of a scanned PDF can vary significantly from
a born digital PDF. As a result, the feature distribution of
the data on whichDeepFigureswere trained is significantly
different from that of the scanned ETD PDFs. This leads to
a worse performance for DeepFigures for scanned ETDs,
according to our experiments (described in Sect. 4.2).

3.2.1 Manually labeled dataset

We propose a new non-born-digital benchmark standard
dataset called ScanBank for training and evaluating machine
learning methods specific to extracting figures from scanned
ETDs.

To create ScanBank, we retrieve the PDFs andmetadata of
all ETDs fromMIT’s Theses collection.8 The collection con-
tains over 50,000 undergraduate, master’s, and Ph.D. theses
dating as far back as the mid-1800s that have been scanned
by MIT Libraries. We choose this collection for three rea-
sons. First, many of these ETDs were initially submitted as
paper copies and scanned into PDF. Second, the ETDs are
organized by department, which facilitates sampling over
different fields of study. Third, each ETD has associated
metadata that can be used for sampling across years.

We randomly sampled the ETDs with the following con-
straints. The publication date needed to be before 1990 (to
ensure that it was scanned). At most, one ETD must come
fromeach subcommunity (doctoral,master’s, andbachelor’s)
within each department. After accounting for empty subcom-
munities, our sample contained a total of 70 ETDs.

Next, we convert each page from PDF to an image file.
Thus, if an ETDhad 100 pages, wewould create 100 separate
imagefiles. Thenwe scaled the resolution to 100 dots per inch
so that each image resembles a lower quality scan.We did not

8 See https://hdl.handle.net/1721.1/7582.
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Table 2 ETD page categories and page counts

Category Pages Criteria

Chapters 71,200 Pages providing detailed description of a particular topic

Appendices 9891 Pageswith “Appendix" as a heading or containing figures, tables,
raw data, and other additional information that does not belong
to the main body

ReferenceList 3385 Pages containing a list of biographical details of in-text citations
appearing in the main text

TableofContent 1114 Pages containing the list of chapters and page numbers

TitlePage 911 Pages that include the ETD title, author name, etc., but do not
include a descriptive section

Abstract 777 Pages that (1) start with the word “Abstract” or “Summary”; (2)
contain only one abstract or a summary for the whole thesis

ListofFigures 586 Pages that include a list of figures and page numbers

Acknowledgement 543 An acknowledgement section is where the author thanks those
who have helped and supported personally and professionally
during the thesis or dissertation process

ListofTables 477 Pages containing the list of tables and page numbers

CurriculumVitae 124 A page that contains a curriculum vitae

Dedication 77 Pages where the author dedicated the thesis or dissertation to
another person

ChapterAbstract 66 Certain ETDs have an abstract for each chapter, so we labeled
those pages as “ChapterAbstract”

GeneralAbstract 4 If there are two abstracts in the ETD and the abstract on the page
was written without using jargon (e.g., for a lay person)

Other 3220 Pages that do not fit into any of the other 13 categories

change the original aspect ratio of the pages when converting
them to images.

A total of 10,182 images of pages were obtained in the
70 sampled ETDs. We used the VGG Image Annotator
(VIA) [20, 21] to manually label these images with bounding
boxes around figures. The VIA tool provides a graphical user
interface for manual labeling of images. We used rectangu-
lar bounding boxes whose coordinates can be recorded using
mouse click-and-drag in the VIA tool. Each bounding box
contains the coordinates of the top left corner of the bounding
box and its actual width and height in pixels.

The following labeling guidelines were used:

1. Some ETDs contained source code snippets. These code
snippets were not labeled.

2. “Table of Contents,” “List of Figures,” and “List of
Tables” were not labeled since they are visually similar
to tabular data.

3. Figure captions were also labeled.
4. The bibliographywas not labeled since it can be classified

neither as a figure nor a table.
5. Math equations (including matrices) were not labeled.
6. For screen-captures (including newspaper clippings that

contain figures), the individual figures within the figures

were labeled. The encompassing figure was not labeled.
No nested or overlapping labeling was done.

When manually labeling the ScanBank dataset, the cap-
tions of the respective figures were included in their respec-
tive boxes to be consistent withDeepFigures. In total, 3,375
figures were labeled across the entire dataset of 10,182 page
images.

The ScanBank dataset is freely available online [33].
This contains a JSON file containing the coordinates of the
3.3K bounding boxes that represent the figures in the 10K
images [33]. Additionally, to limit the size of the downloaded
file, this dataset only contains the URLs of the ETDs that
were used to create the 10K images in this dataset [33]. The
Python source code and instructions, which are includedwith
the dataset, can be executed to download the ETDs and con-
vert them into 10K page images [33].

3.2.2 Synthetically derived dataset

The research thatmost inspired this part of ourwork isDeep-
Figures [64], which generated high-quality labels for figures
using data derived from arXiv and PubMed papers. Unfortu-
nately, the model performs poorly on scanned ETDs, as we
demonstrate in Sect. 4.2. The main idea is that the bound-
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ing boxes around the figures can be marked by altering the
LaTeX. The result is a set of PDF papers with the bounding
boxes surrounding the figures highlighted. Inspired by this
idea, we describe our efforts to synthetically create a dataset
to identify figures from scanned ETDs by augmenting born
digital files to make them look like they were scanned.

Data augmentation [53] is a popular technique in deep
learning that helps train amodel betterwithout collecting new
data. Some of the common data augmentation methods are
affine transformations, random rotations, additive noise (e.g.,
salt-and-pepper, Gaussian), perspective transformations, and
random cropping [72].

Our process applies image-based and LaTeX-based trans-
formations to modify born-digital documents. To start, we
retrieved a collection of arXiv9 papers usingAWS’s S3API10

as mentioned on their bulk access website.11 The arXiv data
consist of the LaTeX source code for research papers. The
authors of DeepFigures [64] used these LaTeX files to
induce labels for the figures and then trained their models
based on these labels. We take an additional step of aug-
menting the data to make resulting PDFs that are visually
similar to scanned papers.

LaTeX-based data augmentations Although image-based
transformations change the overall appearance of a page, they
do not change the inherent structure of the text within the
page.The text is stillwell-formed anddoes not quite resemble
the text from aPDF scanned from a typewritten document. To
achieve such effects, we impose modifications in the LaTeX
source code in addition to the image-based transformations.

• Font size modification. We incorporate this effect by
modifying the following command at the beginning
of each document. \documentclass[sigconf]{acmart}

We replace it with the following command:
\documentclass[sigconf,12pt]{acmart}

• LaTeXmacrosmodification.Weadd the followingLaTeX
source code before the beginning of the document to
change the font type of the document to look more like a
typewriter font and also increase the line spacing to 1.5:
\renewcommand\ttdefault{cmvtt}
\renewcommand{\familydefault}{\ttdefault}
\linespread{1.5}

Figure 4 shows three versions of an example page image.
The original page is shown in Fig. 4 (left). Figure 4 (right)
shows the image after applying LaTeX-based transforma-
tions. Figure4 (middle) shows the image after applying
image-based transformations (discussed below).

9 See https://arxiv.org.
10 See https://docs.aws.amazon.com/AmazonS3/latest/API/.
11 See https://arxiv.org/help/bulk_data.

Image-based data augmentations We use the popular
ImgAug12 open-source software library, which provides
the capability to augment not only images but also the
corresponding bounding boxes around images. Each trans-
formation below is available as a function in ImgAug.

• Random affine rotation. While scanning the hard-copy
of a document, pages may be slightly rotated, and hence
might not be perfectly aligned. Therefore, we rotate each
page of a PDFfile by n degrees, where n is a floating point
number sampled from a standard uniform distribution.

• Additive Gaussian noise. A flatbed scanner works by
reflecting light from the paper and creating an image of
the paper based on the naturally reflected light. Hence,
we use Additive Gaussian Noise tomimic this effect. The
parameters of this noise are heuristically chosen using
trial-and-error.

• Salt-and-pepper noise. Salt-and-pepper noise is often
seen on images caused by sharp and sudden disturbances
in the image signal [57]. We heuristically chose 0.1 as
the probability of replacing a pixel by noise.

• Gaussian blur. Unlike natural (analog) images, digital
images must be encoded with a specified resolution,
resulting in a predetermined number of bytes and some
loss of sharpness. Therefore, we apply Gaussian blurring
to smooth the images using a Gaussian Kernel (σ = 0.5).

• Linear contrast. Although today’s scanners are built
usingmodern technology, they are incapable of capturing
all colors of a natural object. To incorporate this scanning
effect, we add Linear Contrast (parameterized by α = 1).

• Perspective transform. Since scanned pages can some-
times look stretched, we implement Perspective Trans-
form13 in which a part of the image (formed by randomly
selecting 4 points) is stretched.

Random affine rotation and perspective transform might
cause geometric changes in the images which could lead to
a mismatch between the locations of bounding boxes and
locations of the figures. To correct for this mismatch, we
use a feature in ImgAug that transforms the bounding boxes
according to the transformations that are applied.

Figure 4 (middle) shows the image of a page from a
research paper downloaded from arXiv [2] after applying the
image-based data augmentation operationsmentioned above.

The processes for obtaining the labels from these aug-
mented images occurs after incorporating the proposed
modifications.

The source code to create this dataset is included with
ScanBank [32]. The implementation of LaTeX-based aug-

12 See https://github.com/aleju/imgaug.
13 See https://imgaug.readthedocs.io/en/latest/source/overview/
geometric.html.
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Fig. 4 a The left image shows the original page from [2] (page number 7). bThemiddle image shows the same page after applying only image-based
transformations. c The right image shows the page after applying both image-based and LaTeX-based transformations. Note the change in font-size
and font layout

mentations is found in the source at
/deepfigures/data_generation/paper_tar_processor.py. Invo-
cations of functions for image-based augmentations are
found in /deepfigures/settings.py.

3.3 ChapterParse

In this section, we propose a new benchmark standard dataset
called ChapterParse for training and evaluating machine
learning methods specific to identifying and extracting chap-
ter boundaries from ETDs.

3.3.1 Manually labeled dataset

Since no manually labeled dataset was available that char-
acterizes the segmentation of ETD chapters, we constructed
one. This dataset of 150 ETDs specifies an original PDF
and provides a corresponding JSON file containing manu-
ally labeled chapter boundaries. This dataset can be used to
benchmark deep learning chapter segmentation models.

To evaluate such deep learning models, we collected 100
ETDs from arXiv. In addition, we sampled 50 ETDs from
a large collection we crawled from the repositories of U.S.
universities. For these 150 ETDs, the disciplines covered and
the number of documents associated with each discipline are
given in Table 3.

Pages in an ETD were manually traversed, and the chap-
ter starts were recorded. A distinction was drawn between

Table 3 Disciplines in the manually labeled segmentation dataset

Discipline No. of ETDs

Physics 62

Mathematics 31

Computer Science 11

Mechanical Engineering 14

Electrical and Computer Engineering 10

Bio-engineering 6

Statistics 4

Chemical Engineering 1

Education 3

Aerospace Engineering 2

Environmental Engineering 4

Architecture 2

Geography 2

the front material, the chapters, and the end material. The
resulting manually labeled JSON file follows the format of
the JSON created by the chapter segmentation pipeline (dis-
cussed below) for the synthetically generated dataset.

3.3.2 Synthetically derived dataset

Our second, synthetically generated dataset, required LaTeX
source files (as available in arXiv [16]) to generate chapter
boundary details. arXiv is an open-access archive that con-
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Fig. 5 Overview of chapter-segmentation pipeline

tains millions of scholarly works, in the fields of physics,
mathematics, computer science, system science, and eco-
nomics. arXiv also provides access to the source files that
were used to generate each document’s original PDF. For
this reason, our synthetically generated dataset contains only
ETDs from arXiv.

Inspired by previous work [34, 64], we manipulated
ETDs’ source LaTeX files to generate high-quality labels to
identify chapter boundaries. Below we describe the chapter
segmentation pipeline that we developed to derive ground-
truth chapter segmentation data synthetically.

The arXiv repository contains LaTeX source files for each
work. Previous studies (e.g., [46, 58]) have shown that LaTeX
sourcefiles canbeused to accurately analyze document struc-
ture. Unfortunately, arXiv does not provide a standard way
of identifying works by type or genre.

Since we only want theses and dissertations, we employed
a heuristic-based filter for finding ETDs. Specifically, we
noticed that many depositors use the comment field to indi-
cate that a work was a thesis or dissertation. Based on this
observation, we began by retrieving papers with text in the
comment section containing the words “phd,” “masters,”
“dissertation,” or “thesis.” This yielded about 6,000 docu-
ments, butwe quickly found thatmanywere not in fact ETDs.
Many turned out to be only a single chapter from an ETD,
rather than the entire document. Therefore, we distributed the
corpus of 6,000 documents among team members for man-
ual inspection. The manual inspection ruled out nearly half,
leaving us with about 3,300 documents that were found to
be true ETDs. Finally, some of the LaTeX files we retrieved
could not be compiled using our software. Those that could
not be compiled into PDF were discarded, leaving us with
1,986 ETDs. Further processing and checking led to our final
dataset of 1,459 ETDs14 identified in arXiv.

14 See https://doi.org/10.7294/21433161.

LaTeX augmentations Our chapter segmentation pipeline
(CSP) (see Fig. 5) uses source LaTeX files to create two
copies of the original document. One is a copy of the original
PDF, while the other is a modified version of the PDF with
chapter headings altered by changing the LaTeX \chapter

command. We compare the original PDF with the modified
PDF to ensure that our LaTeX modification did not cause
inappropriate side effects.

Figure 6 shows an in-depth algorithm flow of the CSP. For
more information, see the related thesis [50].

A final JSON deliverable is created only if all chapters
are found in the order in which they were collected from the
modified PDF.

Validation Manual validation of the synthetically generated
data was performed in two separate procedures. For the first
procedure, we inspect the page numbers accuracy gener-
ated by the chapter segmentation pipeline. We curated a list
of relevant criteria and inspected outlier ETDs.

1. A high number of chapters: Above 17 chapters.
2. A low number of chapters: Between 2 and 5 chapters.
3. Short documents: Less than 37 pages in length.
4. Long documents: Above 254 pages in length.
5. Last chapter is unusually long: Above 26 pages in length.
6. A high number of chapters when compared to document

length.
7. A low number of chapters but long documents.
8. A high number of chapters for short documents.

For each criterion, ten outlier ETDs were selected at ran-
dom. A total of 80 ETDs were inspected. Each entry in the
JSON file of the chapter boundary was compared to the orig-
inal PDF. No problems were found at this stage.

In our second procedure,we inspect the capture accuracy
for the chapter labels. For this, we randomly sampled a set of
35 ETDs for which the CSP successfully generated a JSON
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Fig. 6 CSP algorithm flow

file with chapter boundary details. We manually labeled the
chapter boundaries for each of those 35 ETDs, recording
the results in JSON files. Table 4 displays the results of
the comparison of the two sets of JSON files. The chap-
ter segmentation pipeline shows perfect capture accuracy for

Table 4 Capture accuracy of CSP

Chapter Type Missing 1 Missing 2 Missing 3+

Front-Matter 8 10 2

Chapters 0 0 0

End-Matter 4 0 0

chapter titles, but misses front-matter and end-matter mate-
rial.

3.4 ETDText

To support downstream text mining tasks, such as entity
extraction, summarization, and citation parsing, we created
the ETDText dataset. In general, there are two types of PDF
documents. Born-digital PDFs are generated directly from
digital source files, such as compiling LaTeX files or con-
verting fromMicrosoftWord documents. ScannedPDFs (aka
non-born-digital) PDFs are generated by scanning physical
copies. Due to these differences, we used different ways to
extract text.

Text Extraction from Born-Digital ETDs To extract text from
born-digital PDFs,we compared two standard libraries, PDF-
Plumber [66] and SymbolScraper [63]. PDFPlumber is a
Python library for extracting detailed information about each
text character, rectangle, and line. SymbolScraper was devel-
oped to extract all symbols and characters and their positions
from PDF documents. The comparison dataset was built by
selecting 100 born-digital ETDs from theworksweharvested
fromU.S. university repositories.We then extracted text from
PDF files.

It is challenging to automatically compare the quality of
the text by directly comparing the extraction results with the
original text. Therefore, we used other metrics to infer text
quality. We compared the number of characters and tokens.
We also inspected a sample of citation strings curated from
extracted text.We chose citation strings because their quality
can affect the citation parsing results, and they usually appear
in blocks, making them easier to be identified and aligned.

The NLTK toolkit word_tokenize() method was used to
tokenize text based on whitespace to count tokens. To cal-
culate the number of characters, we removed all whitespace
from the text, converted them into a list of characters, and
then calculated the length. The distribution of the differ-
ences, as shown in Fig. 7 and Fig. 8, resembles a Gaussian
distribution with a negative mean value, indicating that on
average, SymbolScraper tends to extract fewer tokens than
PDFPlumber while SymbolScraper tends to extract more
characters than PDFPlumber. We also manually inspected
6762 citation strings extracted using these two software pack-
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Fig. 7 A comparison of extracted tokens between PDFPlumber and
SymbolScraper

Fig. 8 A comparison of extracted characters between PDFPlumber and
SymbolScraper

ages and found that SymbolScraper fails to identify white
spaces between two words for 19 citation strings, incorrectly
causing consecutive words to be concatenated into a single
long string. For three citation strings, it also failed to extract
the entire string. Based on the comparison, we chose PDF-
Plumber to extract text from all ETD PDFs.

ETDText preserves all text that could possibly be extracted
from the original PDF.To reduce the noisy text extracted from
the figures and tables, we created another version of ETD-
Text, called ETDTextR, by removing the figures and tables
before extracting the text. In Sect. 4.4, we demonstrate that
the language model trained on ETDTextR exhibited a better
perplexity score than the one trained on ETDText. The text
files were also stored in our repository. Currently, ETDText
and ETDTextR each contain 339,485 text files.

Text Extraction from Scanned ETDs Text from scanned
documents is often extracted using an OCR engine such as
Tesseract [68]. However, OCR engines usually do not sepa-
rate text and non-textual elements such as figures and tables,
whichmay contain textual content. Therefore, directly apply-
ing OCR engines on scanned documents often result in noisy
text strings from figures and tables, which are undesirable in
many tasks, such as document classification and summariza-
tion.

Table 5 Examples of figure/table masking for clean text extraction

Original Image Masked Image

An intuitive approach to extract clean text from scanned
documents is to mask other non-textual or partially textual
elements such as figures and tables, which would otherwise
lead to undesirable noise in the extracted text.Wedeveloped a
text extraction pipeline for scanned documents that performs
OCR-based text extraction on pages with masked figures and
tables.

In Table 5, we show examples of page images before and
after masking. The original image consists of elements such
as figures and tables, which often contain some text in the
form of legends, annotations, or table values. We use a figure
and table extraction module to first mask these elements and
generate masked page images. Next, these images are fed
to an OCR engine to obtain text from individual pages. This
process can further be extended to incorporate other elements
that are not purely textual or might be undesirable in the full
text of the document, such as equations, page numbers, or
headings.
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Fig. 9 An overview of the text extraction pipeline

4 Applications

In the following sections, we describe a few downstream
applications. We begin by demonstrating how we use our
ScanBank dataset to evaluate and compare various deep
learning modes for figure and table extraction. Next, we
explain how identifying figures and tables facilitates extract-
ing clean text from scanned ETDs by masking other non-
textual or partially textual elements. Then we describe how
extracting clean text allows us to build better language mod-
els for ETDs, which are used for information retrieval, text
classification, and summarization.

4.1 Metadata extraction

In this section, we describe how ETD500 is applied to ETD
metadata extraction. Human-labeled categories can be used
for page-level segmentation, which will be done in future
work.

Existing frameworks such asGROBID [47]were designed
to extract, parse, and restructure scientific papers. Our exper-
iments indicate that GROBID did not extract metadata from
scanned ETDs. This is because the layout of ETDs is very
different from conference proceedings and journal papers.
We observed that for most ETDs, the cover page contains
many metadata fields. Therefore, we developed a method to
extract metadata that took an ETD cover page as input and
outputted a JSON file containing metadata fields and their
values. Here, the cover page is usually the page that contains
a line “submitted in partial fulfillment of the requirements
for the degree of” or its variants.

We divided the ETD500 dataset (Sect. 3.1) into a train-
ing set and a test set, consisting of 350 and 150 ETDs,
respectively. We implemented the conditional random field
(CRF) model, which has been commonly used for sequence
labeling. The training data were constructed as follows. For
sequence labeling, we tokenized each metadata field and
tagged each token that is within a target metadata field
using the BOI tagging schema. For example, if a token is

within a university name, we tagged it as B-university and
I-university. Tokens that were not part of any metadata field
were tagged as outside (O).We extracted both text and visual
features.We selected ten text-based features, e.g., whether all
characters in the tokens are uppercase, lowercase, or numeric;
and if the first character is uppercase for a token that is not
at the beginning or end of the document. Visual features rep-
resent the corner coordinates of the bounding box (bbox) of
a text span. We extracted all the x and y coordinates and
selected three visual features. For example, we selected x1
as features that represent the distance from the left margin
to the bottom right corner of bbox. We described both fea-
tures in our previous study [12]. We trained the model by
combining text and visual features and achieved 81.3–96%
F1-measures on the test set for seven metadata fields [12].

4.2 Figure and table extraction

In the experiments reported below, we use our dataset to
evaluate machine learning models for figure extraction from
scanned ETDs. In each experiment, we split the ScanBank
dataset into two equal halves after randomly shuffling it. The
first half will be used as the validation set to fine-tune or
choose the best model during training. The second half will
be used as the test set to evaluate the models.

Evaluating the pre-trained DeepFigures model using
ScanBank: Siegel et al. [64] released their source code and
modelweights used for trainingDeepFigures. In this experi-
ment,we evaluate its performanceonour proposedScanBank
dataset consisting of scanned ETDs. We ran inference for
DeepFigures (using the trained model weights released
in [64]) on the ScanBank validation and test splits.

TheDeepFiguresmodel outputs a set of bounding boxes
for each figure it detects in the page image. We filter out the
bounding boxes whose confidence scores are less than 0.5.
Wematch the predicted bounding boxes with the true bound-
ing boxes to minimize the total Euclidean distance between
the centers of the paired bounding boxes, which is an instance
of the linear assignment problem described in detail in [64].
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Next, we consider a predicted box as correct if its intersection
over union (IOU) with its matched true box is greater than
or equal to 0.8 (true positive), incorrect if less than 0.8 (false
positive) [64]. When a ground truth is present in the image
and the model fails to detect it, we consider it a false nega-
tive. Using these metrics, we calculate the precision, recall,
and F1 scores. The choices of these thresholds are made to
be consistent with the choices made in DeepFigures [64].

The “Validation” and “Testing” datasets are of scanned
ETDs. The performance of DeepFigures with scanned
ETDs is considerably lower than its performance on the CS-
Large and PubMed datasets, indicating that it is not suitable
to accurately extract figures and tables from scanned ETDs.

Evaluating the YOLOv5 model trained with ScanBank: In
prior work [34] we use ScanBank to evaluate the DeepFig-
ures model to extract figures from scanned ETDs. The best
F1 score we obtained was less than 0.588. In this experi-
ment, our aim is to achieve better performance by training
the YOLOv5 model with ScanBank.

YOLO is a popular deep learning framework designed to
detect multiple objects in an input image in a single infer-
ence pass. It is also well known for its low space- and
time-complexity during inference, which makes it an ideal
alternative for deployment on devices where low resource
consumption is vital. The initial version ofYOLO (YOLOv1)
was proposed by Redmon et al. in 2016 [56]. This was the
first work that, instead of repurposing classifiers as object
detectors, framed object detection as a regression problem.
YOLOv1detectsmultiple bounding boxes in a single forward
pass, so it can be trained end-to-end directly for detection.
Many subsequent versions of YOLO were proposed by vari-
ous authors in the following years. In 2020, the fifth version
of YOLO (YOLOv5) was proposed [77], which achieved the
best detection performance among the versions. It has four
different network sizes (small, medium, large, and extra-
large), which allows users to make trade-offs between the
time and space complexity. We adopt the extra-large version
of YOLOv5 containing about 89 million trainable parame-
ters.

Our proposed approach is based on YOLOv5 [77], which
offers better usability with superior performance on the
MS COCO benchmark [43] compared to YOLOv4. The
backbone network (for object detection) of YOLOv5 imple-
ments BottleneckCSP [79]. YOLOv5 chooses PANet [80]
for feature aggregation and adds an SPP [26] block after Bot-
tleneckCSP to increase the receptive field and separate the
most important features from the backbone [6]. In general,
the models in the YOLO family have better performance and
are more compact than models of similar or larger size.

We train on the ScanBank dataset with batch size of 8 and
use eight-fold cross-validation to report its performance.

Before passing the input images to the model, YOLOv5
uses three methods to augment the data: scaling, color space

adjustment, andmosaic augmentation.Mosaic augmentation
was a novel augmentation technique when YOLOv5 was
developed, which works by combining four images into four
tiles with random ratios [69].

The YOLOv5 model predicts bounding boxes as devi-
ations from a list of anchor boxes. Using K-means and a
genetic algorithm, an initial set of anchor bounding boxes is
learned from the training set. These anchor boxes are then
used as references for learning the deviation to get the pre-
dicted bounding boxes [69].

Cross Stage Partial (CSP) networks [79] used in YOLOv5
have significantly lower number of trainable parameters
and require fewer flops since they address the problem of
duplicate gradients from larger convolutional networks [69]
resulting in a faster inference time for YOLOv5.

Detailed results of these experiments are given in [34].

4.3 Document structure parsing

In the experiment reported in the following, we use our Chap-
terParse dataset to train and evaluate various deep learning
models to automatically parse ETDs by chapter.

For the segmentation task, we wanted to compare the per-
formance of using single input models (image or text) with
combined input of image and text. For this, we designed three
deep learning models that share similar model architectures
but use different inputs. This allowed us to compare their
performance. Figure10 shows the architecture of the model
using the combined input of image and text. Single-input
models follow a similar design, but do not use the linear
combination layer.

Each page is considered a frame in a sequence. Using
Python packages pdf2image [4] and PyMUPDF [1], page
images and text are extracted. Images are converted into
features using pre-trained VGG16 [65], and in separate
experiments the text is converted into GloVe [52] and fast-
Text [7] embeddings.

The combined input model was tested on the manually
labeleddataset discussed above.Table 6 shows aperformance
comparison of the two embeddings on manually labeled
ETDs from arXiv.

UsingGloVe, themodel shows slightly better performance
at identifying chapter starts. The model using fastText does
better with the front-matter and end-matter.

4.4 Languagemodels

An important task for natural language processing and under-
standing is languagemodeling. It is often used in tasks where
the output requires text generation [30]. Language modeling
has applications in information retrieval [70], text classifi-
cation [28], and summarization [19]. Language models use
various statistical methods to determine the probability that
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Fig. 10 Segmentation deep learning architecture (combined input)

a next word will occur in a sentence [5]. The model uses
various probabilistic approaches to model the language in
sentences.

There are various ways to create language models.
Attention-based transformers introduced in [78] described a
new way to handle sequence-to-sequence problems. Recur-
rent neural network (RNN)-based encoder–decoders are
typically very time-consuming when dealing with long
sequences, as they work on each element of a sequence, one
at a time. Transformer-based encoder-decoder architectures
rely on the attention mechanism to draw global dependen-
cies between the input and the output [78]. Attention-based
transformers use the self-attention mechanism to determine
the importance of words in a sentence.

Language models like BERT [18], SciBERT [3], and
RoBERTa [45] use transformer-based mechanisms. BERT
[18] is a transformer-based encoder architecture that has
been trained on EnglishWikipedia articles and the BookCor-

pus,15 a large collection of free novelswritten by unpublished
authors. SciBERT [3] is another pre-trained language model
that has been trained using a corpus of 1.14 million com-
puter science and biomedical papers from Semantic Scholar.
Language models need to be trained on the target dataset to
capture the uniqueness of the text and to be exposed to its
vocabulary.

Since existing pretrained language models are often
trained on sentences from news articles, book or movie
reviews, or other general-domain text corpora, they are
inadequate for modeling the language of ETDs. Even pre-
trained models built specifically for scientific language (e.g.,
SciBERT [3]) fail to capture the immense subject-matter
diversity and vocabulary of the multidisciplinary ETD cor-
pus. However, these pre-trained models may be fine-tuned

15 See https://paperswithcode.com/dataset/bookcorpus.
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Table 6 GloVe Embeddings vs.
fastText Embeddings

Model Performance Comparison

GloVe fastText

Page Type Precision (%) Recall (%) F1 (%) Precision (%) Recall F1(%)

FM Chapter-Start 64 47 54 83 49 62

FM PAGE 65 44 52 66 51 57

Chapter-Start 82 77 79 97 64 77

Chapter PAGE 91 97 94 89 99 94

EM Chapter-Start 78 68 73 95 64 76

EM PAGE 83 64 72 85 55 67

with additional training data to incorporate new vocabulary
and thus create a custom language model for ETDs.

We discuss the importance of extracting clean text in
Sect. 3.4. Here, we demonstrate how noisy text negatively
affects the intrinsic quality of a language model. We start
by fine-tuning BERT with text from ETDs. We create two
language models: (LM1) with the text from an entire ETD
and (LM2) with the noisy front-matter removed (e.g., title
page, tables of contents, list of figures, and abbreviations) by
simply skipping the first 450 lines of the ETD.

Table 7 reports the perplexity scores for the two models—
lower is better. Both LM1 and LM2 were fine-tuned using
the same BERT-based model with the same ETDs. The only
difference is that the front matter was removed from LM2.
The difference in the perplexity score is remarkable. This
simple experiment demonstrates the importance of document
layout analysis, chapter segmentation, and figure and table
extraction when building language models.

5 Future work

5.1 Data cleaning and enrichment

To support building existing and future benchmark datasets
for ETD mining, we have collected a corpus consisting of
about 500K ETDs crawled from library repositories at U.S.
universities. ETDs in this corpus cover multiple domains and
years ranging from 1875 to 2021 [76]. The dataset contains
rawmetadata, imported directly from university library OAI-
PMH portals, and PDF files. A preliminary evaluation of the
dataset discovered that the rawmetadata contains incomplete
fields and/or inconsistent values, such as missing publication
year, advisor name, and program names different from what
is shown in the PDF. Complete and accurate metadata are
crucial for data analysis, data linking, and machine learning
model training. Therefore, it is necessary to clean ETDmeta-
data to improve its quality. Additionally, new metadata and
data can be derived from ETDs and save preprocessing time
for future analytical and learning tasks.

Table 7 Comparing perplexity scores of custom trained languagemod-
els, one fine-tuned with the entire text from an ETD and the other with
the front matter omitted

Model Text Perplexity
Dataset Score

LM 1 ETDText 17.26

LM 2 ETDTextR 7.32

Metadata Cleansing and Canonicalization In a preliminary
analysis, we found that approximately 14% of ETDs we col-
lected do not have publication year information in the library
provided metadata. About 25% of ETDs do not have advisor
information, and about 50% do not have department infor-
mation. By combining text and visual information of samples
in the ETD500 dataset, we developed a model that automat-
ically extracts seven key ETD metadata information from
cover pages of ETDs [12]. Metadata extracted by this model
can potentially be used for providing values ofmissing fields.

We also observed that certain fields of metadata may con-
tain multiple values that can be mapped to the same entities.
For example, publication dates may have different meta-
data formats, such as “mm-dd-yy” or “yyyy-mm-dd.” Even
within the same repository, metadata fields may have dif-
ferent strings. Common cases include abbreviations (e.g.,
“jhu” and “JohnsHopkinsUniversity”) and extra spaces (e.g.,
“Texas A&MUniversity” and “Texas A&MUniversity”). It
is infeasible to use a singlemethod to canonically organize all
fields, so we design custom methods for different fields. For
example, canonicalizing the “date” field can be performed by
building a set of regular expressions that match known date
formats and converting them into a standard format. The uni-
versity field can be canonicalized by comparing a university
name with a dictionary of all known university names and
their abbreviations.16

Therefore, one future work is to develop a pipeline that
integrates AutoMeta, i.e., automatically extracts metadata

16 See https://en.wikipedia.org/wiki/List_of_colloquial_names_for_
universities_and_colleges_in_the_United_States.
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from PDF files, and uses it to correct missing fields andmeta-
data errors. The challenge is to fix errors and fill gaps, while
not introducing errors. Developing a rollback mechanism is
also necessary in case metadata fields are inappropriately
altered. Crowdsourcing effort may be involved to evaluate
the automatically extracted metadata and identify challeng-
ing cases that are error prone for automatic corrections.

Enriching Data We will enrich our current data by pro-
viding more data derived from PDFs, such as references,
external links, and data usage. For references, existing cita-
tion parsers, such as ParsCit [17] and Neural-ParsCit [54],
are trained on the CORA dataset [62], which contains only
citation strings in Computer Science. We are working on
a transformer-based model trained on 1 billion synthesized
citation strings in multiple domains [75]. Parsing reference
strings with allow us to enrich metadata by linking ETDs
to millions of papers in public digital library corpus such
as S2ORC [46]. For external links, we are interested in
extracting URLs linking to open-access datasets and soft-
ware (OADS). Mining accessible OADS can be important
for assessment of computational reproducibility of scientific
research. We have developed a supervised model to classify
URLs into OADS-URLs and non-OADS-URLs [59]. The
classifier achieved an F1=0.92 on a manually labeled dataset
curated from ETDs and journal articles. In the future, we will
apply this classifier on all ETDs and extract OADS-URLs.
For data usage, we will enrich metadata by registering ETDs
that are selected for different datasets and papers. For exam-
ple, we will mark ETDs used in the ETD500, ScanBank,
and ChapterParse datasets. This will allow future projects
to access the enriched metadata and other derived data (see
below).

5.2 Classifying and summarizing extracted
document elements

ETDs typically have an abstract and other descriptive meta-
data, such as subject terms and keywords. This metadata
describes the work as a whole. Building on our work aimed
at segmenting ETDs into their constituent chapters, we
employ machine learning techniques for classification and
summarization to provide description at the chapter level.
Chapter-level description serves to improve access and dis-
coverability of individual chapters, helps users find the best
entry point into the document, and facilitates the creation of
intelligent digital library services. Previous work [31] eval-
uates chapter-level classification using traditional machine
learning and deep learning. A limitation of this work is the
lack of effective tools to accurately segment an ETD into
chapters.

The summarization of ETDs presents unique challenges
[29]. First, most state-of-the-art summarization models were

trainedonnews corpora andother highly specializeddatasets.
The writing style of a news article is very different from the
writing style of a scholarly document. ETDs have a variety of
writing styles and formats. Thus, making sure that the model
has been exposed to such specific, yet highly diverse, writ-
ing is imperative. Second, existingmethods fail to capture the
context of the entire document when summarizing. However,
as discussed, context matters, as the document has a unify-
ing theme. We want to create summaries of chapters that
help provide a gist of the research in each of them while pre-
serving the context of the whole document. We are working
toward creating a transformer-based encoder-decoder archi-
tecture built using our ETD language model to help with
chapter-level summarization that is capable of handling long
sequences of text.

5.3 An integrated framework on ETD segmentation

The benchmark datasets that we present in this paper can
help to build an integrated ETD segmentation framework, in
which the input is a single ETD in PDF format, and the output
is a set of files including a JSON file that contains all meta-
data, chapter-level text (including acknowledgments, etc.),
section-level text, sub-section-level text (e.g., paragraphs)
and references (see Table 1). The output should also include
non-text document elements such as figures, tables, math
equations (e.g., [49, 84]). The whole process can be divided
into three steps. In the first step, the ETD pages can be clas-
sified into different types (Table 2) based on the textual and
visual information. In the second step, the content of a page
is parsed using a customized parser, depending on the page
type and textual and non-textual content are extracted. For
example, key metadata can be extracted from the front cover,
and chapter text can be extracted from chapters. Reference
strings are also parsed into individual fields. In the third step,
an XML or JSON file is generated by integrating various
types of content extracted from individual pages with cita-
tion marks that refer to figures, tables, and math equations,
which are saved separately.

6 Conclusion

We have presented datasets for metadata extraction, layout
analysis, and figure extraction fromETDs.We give examples
of how we are using these datasets to compare and evalu-
ate machine learning models for solving problems unique to
ETDs. We propose that the effective integration of tools for
extracting metadata and key document elements will lead to
more intelligent digital library services.

Of course, this work is not without limitations. The two
main limitations of our datasets are size and sampling. These
datasets are relatively small, especially relative to the enor-

123



Building datasets to support information extraction... 193

mous numbers of publicly available ETDs. While they are
sufficient for evaluating and testing many machine learning
models, they may not be large enough to produce training
examples for deep learning models without additional data.
With regard to sampling, we selected from available sources.
In creating some of our datasets, we sampled ETDs from
MIT’s theses collection and from the arXiv.org pre-print
repository. As such, those datasets are heavily biased toward
STEM fields. We chose MIT’s theses collection because of
its large percentage of scanned ETDs, and we chose arXiv
because of the availability of LaTeX source code. It was
impossible for us to produce all of the generated datasets by
using the same sampling methods. This was because some
models were trained by synthesizing data that required an
ETD collection with special characteristics (e.g., authored
with LaTeX). Ideally, we would have created a single dataset
containing ETDs labeled such that they could be used for
multiple tasks. We leave that to future work.
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