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Abstract
The rapid growth of research publications has placed great demands on digital libraries (DL) for advanced information
management technologies. To cater to these demands, techniques relying on knowledge-graph structures are being advocated.
In suchgraph-basedpipelines, inferring semantic relations between related scientific concepts is a crucial step.Recently,BERT-
based pre-trainedmodels have been popularly explored for automatic relation classification. Despite significant progress, most
of them were evaluated in different scenarios, which limits their comparability. Furthermore, existing methods are primarily
evaluated on clean texts, which ignores the digitization context of early scholarly publications in terms of machine scanning
and optical character recognition (OCR). In such cases, the texts may contain OCR noise, in turn creating uncertainty about
existing classifiers’ performances. To address these limitations, we started by creating OCR-noisy texts based on three clean
corpora. Given these parallel corpora, we conducted a thorough empirical evaluation of eight Bert-based classificationmodels
by focusing on three factors: (1) Bert variants; (2) classification strategies; and, (3) OCR noise impacts. Experiments on
clean data show that the domain-specific pre-trained Bert is the best variant to identify scientific relations. The strategy
of predicting a single relation each time outperforms the one simultaneously identifying multiple relations in general. The
optimal classifier’s performance can decline by around 10% to 20% in F-score on the noisy corpora. Insights discussed in
this study can help DL stakeholders select techniques for building optimal knowledge-graph-based systems.

Keywords Digital library · Information extraction · Scholarly text mining · Semantic relation classification · Knowledge
graphs · Neural machine learning

1 Introduction

Digital libraries (DL) play an important role in promoting
scholarly knowledge dissemination and exploration, which
is a critical part of scholarly communication. While the
accessibility of massive scholarly records in DL brings
practical benefits to a variety of research communities for
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scholarship development, this phenomenon presents new
challenges to digital librarians and data curators in manag-
ing scholarly information from various sources. In particular,
existing modes of document-based scholarly communica-
tion create challenges for researchers looking to obtain
comprehensive, fine-grained and context-sensitive scholarly
knowledge for their specific research topics, especially for
multi-disciplinary research [22]. According to [3,4], the cur-
rent keyword-based methods for indexing scholarly articles
cause related documents to be scattered and emphasize con-
centration on selected keywords rather than all aspects of
knowledge in an article. Given these limitations, in order to
optimize scholarly knowledge organization and representa-
tion in DL, some initiatives [22,52] advocate for building an
interlinked and semantically rich knowledge graph structure
using a combination of human curation andmachine learning
techniques.

In the process of building knowledge graphs based on
scholarly publications, one of the key steps requires estab-
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lishing semantic relationships between identified scientific
terms. Given that paraphrasing is a common phenomenon
in natural languages, many identified semantic relationship
instances essentially indicate the same relation by differ-
ent expressions, which can lead to information redundancy
in the constructed graphs over large corpora. To avoid this
issue, the task of classifying scientific relations (i.e., identi-
fying the appropriate relation type for each related concept
pair from a set of predefined relations) is indispensable.
Recently, some researchers in the natural language process-
ing (NLP) community have defined seven regular scientific
relation types based on their empirical annotations on schol-
arly articles [5,15], which include Hyponym- Of, Part-
Of, Usage, Compare, Conjunction, Feature- Of, and
Result. The annotations are in the form of generalized rela-
tion triples: 〈experiment〉 Compare 〈another experiment〉;
〈method〉 Usage 〈data〉; 〈method〉 Usage 〈re- search task〉.

In this age of the “deep learning tsunami,” prior work
has started to take advantage of powerful neural network
techniques to build scientific relation classifiers for the
improvement of performance [31]. With the recent introduc-
tion of transformer models such as Bert (i.e., Bidirectional
Encoder Representations from Transformers) [12] models,
the opportunity to obtain boostedmachine learning systems is
further accentuated. While prior works [7,50] have achieved
high classification performance, the results reported in these
studies are somewhat incomparable because the proposed
methods are usually evaluated on different evaluation cor-
pora. This issue leads to a difficulty in obtaining comparable
results and conclusive insights about the effectiveness of
developed classifiers in real-world practice. In particular, in
the context of academic DLs, digital librarians might find
it hard to select the optimal toolkit to satisfy their needs
for scholarly knowledge organization based on the findings
of prior evaluations (e.g., the underlying data could be dif-
ferent in content, scale, and diversity). Moreover, existing
studies focus primarily on the development of techniques for
scientific relation classification in the context of unscanned
clean corpus [7,15,29], suggesting that researchers tend to
concentrate on the ability of machines to automatically iden-
tify scientific concepts’ relationships from recent scholarly
publications that are born in the digital format. However, in
broader practice, there exists a wide range of DL collections
that were originally published in print and later digitized by
machine scanning and OCR. These texts inevitably involve
unique digitization noise such as OCR errors, which could
challenge the advanced learning-based relation classification
techniques. This gap raises further uncertainties about the
robustness of state-of-the-art classification models to handle
text noise caused by digitization when making predictions.

To address the aforementioned limitations, we focused on
providing a comprehensive examination of state-of-the-art
BERT-based classification models in a comprehensive and

comparable environment considering both clean and OCR-
noise data scenarios. With the goal of helping stakeholders
within DL select the optimal tool for building scholarly
knowledge graphs, we propose a two-stage examination
pipeline to: (1) identify the optimal model setting for clean
texts; and, (2) further investigate the resilience of the identi-
fied optimal model setting for noisy texts with OCR errors,
which is one of the most universal limitations in DL collec-
tions. Regarding the model setting, we particularly focused
on the impact of two key factors: (1) classification strategies
(i.e., predicting either a single relation or multiple relations
at one time); and, (2)Bertmodel variants with respect to the
domain (i.e., generic or scientific texts) and vocabulary case
(i.e., cased or uncased) of their pre-training corpus. As to the
measurement of the optimalmodel’s resilience toOCRnoise,
we started with generating aligned noisy-clean instance pairs
by randomly adding a controlled ratio ofOCRerrors into each
clean instance based on an existing word-level OCR-error
dictionary, whichwas provided byHathiTrust Research Cen-
ter [8]. Given the parallel data, we then compared the optimal
model’s performance differences on noisy versus clean texts.

Considering that real-world DLs may have various data
settings and that such diversity would probably influence
the model’s performance, we assessed the performance of
each model on three corpora including: (1) a single-domain
corpus with sparse relation annotations on scholarly publi-
cation abstracts in the NLP area [15]; (2) a multiple-domain
corpus covering more abundant relations annotated on the
publication abstracts from various artificial intelligence (AI)
conference proceedings [29]; and, (3) a combination of pre-
vious two corpora where the distribution of data domains is
unbalanced and annotations are provided by two different
groups of annotators. The motivation in building this corpus
was to simulate real data settings in digital libraries. With
a similar concern, we prepared two noisy versions of each
clean corpus with an emphasis on the amount of OCR errors,
which included a low-noise version (18%) and a high-noise
version (49%).

Experiments on three different clean evaluation corpora
showed that the uncased Bert model pre-trained on schol-
arly domain-specific texts was the best variant to classify
the type of scientific relations. Regarding the classification
strategies, in general, the strategy of predicting a single rela-
tion each time achieved a higher classification accuracy than
the one identifying multiple relation types simultaneously.
By further examining the optimal resulting classifier’s per-
formances on three corresponding noisy corpora, we found
that the classifier’s predictability clearly decreased between
10% to 20% in F-score, indicating that the decreasing rate is
even higher with the increasing of the amount of OCR errors
in the corpus.

In summary, following our examination pipeline, we
addressed the following research questions in this study:
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• RQ1:What is the performance of eight BERT-based clas-
sifiers for scientific relation classification on clean data?

• RQ2:Which of the seven studied relation typeswere easy
to identify by the selected optimal classifiers?

• RQ3: What kinds of prediction errors are frequently
made?

• RQ4: How do OCR errors impact the overall optimal
classifier’s performances?

• RQ5: Which of the seven studied relation types are more
robust to OCR errors?

2 Related work

2.1 Relations mined from scientific publications

Overall, knowledge is organized in digital libraries based
on two main aspects of a digital collection: (1) metadata;
and, (2) content [20,44]. The latter aspect can be further
divided into free-form content and ontologized content (i.e.,
axiomatically defined formal content). In this context, the
main categories of relations explored in scholarly publica-
tions included two groups.

One group includesmetadata relations such as authorship,
co-authorship, and citations [43,49]. Research in this group
has focused mainly on examining the social dimension of
scholarly communications, such as research impact assess-
ments [9,11,17,33,35,40,46,56], co-author prediction [19,36,
43,47,51] and scholarly community analysis [49]. Popular
data resources that have been explored in this group include
Microsoft Academic Graph [42] and PubMed[37].

The second group includes content-based semantic rela-
tions, either as semantic categories empirically defined on
the basis of the given free-form content [25,27] or as seman-
tic categories formally defined by a systematic conceptual
analysis of the properties of concepts within a subject area
[38,41]. In the framework of automatic systems, free-form
content-based relations have been examined in terms of:
(1) relation identification (i.e., recognize related scientific
term pairs) [15,25]; and (2) relation classification (i.e., deter-
mine the relation type of each term pair, where the relation
types are typically pre-defined) [7,29,50]. With respect to
ontology-defined properties, prior work primarily considers
the conceptual hierarchy based on formal conceptual analy-
sis [38,41].

We attempt to classify free-form content-based seman-
tic relations. Given that digital libraries are interested in the
creation of linked data [18], our attempted task directly facil-
itates the creation of scholarly knowledge graphs and offers
structured data to support librarians in generating linked
data.

2.2 Techniques developed for semantic relation
classification

Both rule-based [1] and learning-based [10,54]methods have
been developed for relation classification. Traditionally,
learning-based methods typically relied on hand-crafted
semantic and/or syntactic features [1,10]. Among various
methods, the strategy of applying distant supervision based
on a knowledge database [21,32,39] has been widely used
and followed for further improvement. The major advantage
of this method is its benefits in solving the challenge of the
lack of hand-labeled ground truth for model training.

In recent years, deep learning techniques have been pop-
ularly studied because they can more effectively learn latent
feature representations for distinguishing between relations.
An attention-based bidirectional long short-term memory
network (BiLSTM) [54] is one of the first top-performing
systems that leveraged neural attention mechanisms to cap-
ture important information per sentence for relation classi-
fication. Another advanced system[30] leverages a dynamic
span graph framework based on BiLSTMs to simultaneously
extract terms and infer their pairwise relations. Aside from
these neural methods considering the word sequence order,
transformer-based models such as Bert [12] that use self-
attentionmechanisms to quantify the semantic association of
eachword to its context have become the current state-of-the-
art in relation classification. In addition to the generic Bert
models trained on books and Wikipedia, recently, Beltagy
et al. [7] have developed SciBert which are Bert models
trained on scholarly publications.

With respect to the classification strategy, prior work
regularly adopted a single-relation-at-a-time classification
(SRC) that identifies the relation type for an entity pair each
time [7,30,54]. To improve the classification efficiency,Wang
et al. [50] designed a Bert-based classifier that could recog-
nize multiple pairwise relationships at one time, which can
be regarded as a multiple-relations-at-a-time classification
(MRC). As opposed to prior work that emphasizes classifi-
cation improvement, we focus on providing a fine-grained
analysis of existing resources for selecting the proper tool to
extract and organize scientific information in digital libraries.

2.3 Relation classification on noisy data

In general, prior work concentrating on the classification
of entity relations on noisy data usually focused on noisy
annotations, either at entity level such as uncorrected entity
boundaries [15,16] or at relation level such as wrong rela-
tion labels [14,24,53]. Such noise usually comes from two
sources: (1) the biases of human annotations caused by dif-
ferences in personal understanding of the fine-grained text
semantics; and (2) the errors of machine labeling based on
distant supervision relying on a generic knowledge base, in
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which the target content’s specific contextual information is
missing.

To address this noise in labeling, some methods focus on
developing an attention-based neural network model based
on the distant supervision learning mechanism, in which
the model can learn to combine the generic structural infor-
mation from existing large-scale knowledge pools with the
corpus-specific semantic information and hence, improve the
robustness of relation classifiers [16,24]. Otherwise, some
studies [14,53] propose to take advantage of a reinforcement
learning strategy: to first select high-quality labeled data, and
then feed the selected instances into a relation classifier for
training.

Although prior work has made remarkable contributions
to improve learning models’ robustness in the face of noisy
labeling, the text data that these studies rely on are still clean.
Given that, our consideration of noisy data is different from
prior work in that we concentrate on content-based noise in
texts with a specific focus on the OCR content of digitized
library collections.

2.4 Impact of OCR errors on downstreamNLP tasks

With the increasing popularity of applying NLP techniques
toDL textual resources formacro-level computation research
[3,23], concerns about the reliability of NLP techniques for
processing digitized library collections have recently been
on the rise [26,45,48]. Based on our literature review, one of
the major issues that challenges NLP techniques’ reliability
on OCR’d texts is their potential inclusion of errors resulting
from the OCR process [26,45,48].

According to [13], common OCR errors include charac-
ter exchange, separated words, joined words, and erroneous
symbols. Given the ubiquity, uneven distribution, and het-
erogeneous nature of OCR errors, it is difficult to fully clean
such text noise even using state-of-the-art OCR correction
techniques. Given that, there exists an uncertainty about the
performance of standard NLP techniques applied on texts
with OCR errors.

Overall, existing work concentrating on the investigation
of the impact of OCR errors on NLP tasks can be divided into
two groups. One is based on quantitative analysis [26,45].
In this group, researchers usually measure and compare the
performance differences of the same NLP tool applied on
the clean versus the OCR’d version of texts. The second
group of studies is based on qualitative analysis. For exam-
ple, [48] conducted a series of interviews with researchers
to collect their feedback on using NLP techniques to analyze
digital archives. Given the scholarly users’ feedback, this
study analyzed and summarized the impact of OCR errors on
NLP techniques. In both groups of studies, a variety of NLP
taskswere investigated, including tokenization, sentence seg-
mentation, part-of-speech tagging, named entity recognition,

topic modeling, document-level information retrieval, text
classification, collocation, and authorial attribution. Accord-
ing to the findings of prior work, there is a consistent negative
influence caused by uncorrected OCR onNLP tasks, some of
which could even be “irredeemably harmed by OCR errors”
[45].

In this study, we extend prior work by exploring the influ-
ence of OCR errors on relation classification from scholarly
publications. Specifically, we aim to provide a systematic
examination of Bert-based relation classifiers for their per-
formances on both clean and OCR-noisy texts.

3 Corpora preparation

The source data for this study include two publicly avail-
able datasets [15,29], each ofwhich contains 500 born-digital
scholarly abstracts with manual annotations of: (1) scientific
terms; and, (2) semantic relation type of each related term
pairs. To provide a comprehensive examination of BERT-
based relation classifiers for recognizing scientific relations,
from scholarly publications, with an emphasis on the real-
world DL scenarios, we prepared both clean and noisy
corpora. The details of each version of corpora are described
below.

3.1 Clean corpora

Regarding the clean corpora, in addition to directly using two
selected raw datasets as two experimental corpora, we com-
bined these two corpora into a third new corpus, which offers
amore realistic evaluation setting because it provides a larger,
more diverse task representation. Table1 shows the statistics
of our experimental corpora, each of which is detailed in the
following subsections.

3.1.1 C1: the SemEval18 corpus

This corpus was created for the seventh Shared Task orga-
nized at SemEval-2018 [15]. The data were collected from
scholarly publications in the ACL Anthology 1: for a total of
500 abstracts, 350 of which were partitioned as training data
and the remaining 150 as testing data. Originally, annotations
in this corpus contained six discrete semantic relations that
were defined to capture the predominant information content.
Since the relation Topic has far fewer annotations than other
types of relations, for our evaluation, we omit this relation
type and consider the following five relation types: Usage,
Result, Model, Part- Whole, and Comparison.

1 https://aclanthology.org/.
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Table 2 Distribution of OCR errors in each noisy corpus

Low noise High noise

SemEval18 18.09% ± 0.073 49.23% ± 0.103

SciERC 17.75% ± 0.070 48.88% ± 0.099

Combined 17.96% ± 0.071 48.97% ± 0.100

3.1.2 C2: the SciERC corpus

Although the second evaluation corpus SciERC [29] has the
same number of annotated abstracts, unlike the SemEval18
corpus, this one contains diverse underlying data domains
where the abstracts were taken from 12 artificial intelligence
(AI) conference/workshop proceedings in five research
areas: artificial intelligence, natural language processing,
speech, machine learning, and computer vision. These
abstracts were annotated with the following seven rela-
tions:Compare, Part- of,Conjunction,Evaluate- for,
Feature- of,Used- for, andHyponym- Of. Similar toC1,
this corpus was pre-partitioned by the corpus creators. They
adopted a 350/50/100 train/development/testing dataset split.
ComparingC2withC1, we found that there are five relations,
excepting Conjunction and Hyponym- Of, in C2 that are
semantically identical to the relations annotated in C1.

3.1.3 C3: the combined corpus

Finally, this evaluation corpus was created by merging C1
and C2. In the merging process, we renamed some relations
that are semantically identical but have different labels. First,
Used- For in C2 and Usage in C1 were unified as Usage.
Further, by observing relation annotations in C1 and C2, we
found that Result in C1 and Evaluate- For in C2 essen-
tially express a similar meaning, but the arguments of these
two relations were in reverse order. For example, “[accuracy]
for [semantic classification]” is labeled as “accuracy” →
Evaluate- For → “semantic classification” in C2, which
can be regarded as “semantic classification” → Result →
“accuracy.” Therefore, we renamed all instances annotated
with relation Evaluate- For in corpus C2 into Result

by flipping their argument order. By combining 1000 total
abstracts with human annotations from two resources, our
third evaluation corpus presents a comparatively more real-
istic evaluation scenario of large and heterogeneous data.

3.2 Noisy corpora with OCR errors

Given that existing work on scientific relation classification
focuses primarily on developing techniques using human-
cleaned plain texts, so far as we know, there appears to be
no prior work that has investigated the influence of OCR
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Fig. 1 An illustrative example of a sentence in three versions: (1) clean; (2) low noise; and (3) high noise. The underlined phrases are human-
annotated scientific terms in the original non-noisy dataset; the highlighted phrase in gray is the erroneous OCR introduced text

errors on scientific relation classification by utilizing NLP
techniques. Given that, onemajor challenge for us to conduct
this study is the lack of available data resources. Ideally,
such datasets should satisfy two demands: (1) contain both
clean and noisy versions of texts that are parallel in terms
of content; and (2) have human-annotated relation types on
clean data as ground truth.

Considering the high cost of directly preparing such a cor-
pus in terms of both time consumption and human labor for
tasks such as manual checking of text alignment and labeling
relation types, we proposed an alternative strategy for this
study that took advantage of the above off-the-shelf clean
corpora with human annotations and replaced parts of their
content with uncorrected OCR texts.

To employ this strategy, we adopted an existing token-
level OCR-error dictionary [8] that lists a wide range of
frequently uncorrected OCR’d tokens and their correspond-
ing corrections. According to [8], these token pairs were
collected from large-scale digitized English-language liter-
ature (178,381 volumes) published from 1700 to 1922. The
total vocabulary size of this dictionary is 43,955. In order to
provide a fine-grained analysis of the impact of OCR errors
on Bert-based classifiers’ performances with respect to the
amount of text noise, rather than replacing all overlapping
words between each scholar abstract and dictionary, we set a
parameter to control the ratio of replacement.Moreover, con-
sidering the real-world uncorrected OCR in scanned texts
usually has an irregular distribution, to simulate this pat-
tern, for each scholarly abstract, we randomly selected a ratio
value from a pre-set value group and our replacement was
based on a random sampling of token candidates in the inter-
sectionof dictionary and the abstract content. In our empirical
implementation, we prepared two levels of noisy corpus: (1)
low noise corpus where the value of the replacement ratio
per text is randomly chosen from the group {0.4, 0.5, 0.7};
and (2) high noise corpus where the ratio value per text is any
of {0.9, 1.0}. Table2 shows the distribution of OCR errors
in each corpus. On average, corpus with low text noise has
around 18% OCR errors in each text, while the corpus with
high noise has around 49% errors per abstract.

In order to have a better understanding of our prepared
noisy corpora, we provide an illustrative example in Fig. 1.
As expected, sentences with high text noise have more OCR
errors than ones with low noise. As we can see, text noise
can vary even for the same words/phrases. For example, in
the low noise sentence, the word “architecture” was replaced
by “d’architettura,” while in the high noise sentence, this
word was changed to “arcbitecture.” Given that many clean
words in the dictionary havemultiple versions ofOCRerrors,
our random selection of one version for each word token’s
replacement is helpful in keeping the heterogeneous nature
of OCR errors similar to a real-world scenario.

4 BERT-based scientific relation classifiers

Bert [12] is a family of pre-trained language representa-
tions built on cutting-edge neural technology; it provides
NLP practitioners with high-quality out-of-the-box language
features that improveperformanceonmanyNLP tasks. These
models return contextualized word embeddings that can be
directly employed as features for downstream tasks. Further,
with minimal task-specific extensions over the core Bert

architecture, the embeddings can be fine-tuned to the task at
hand with relatively little expense, in turn facilitating even
greater boosts in task performance.

In this study, we employ Bert embeddings and fine-tune
them with two classification strategies: (1) single-relation-
at-a-time classification (SRC); and (2) multiple-relation-at-
a-time classification (MRC). In the remainder of this section,
we first describe the Bert models that we employ and then
introduce our fine-tuned SRC and MRC classifiers, respec-
tively.

4.1 Pre-trained BERT variants

Bert models as pre-trained language representations are
available in several variants depending on: (1) model con-
figuration parameters such as model size and pre-training
tasks; and, (2) pre-training data settings such as language,
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vocabulary case and text domain. In this study, we selected
the following four core variants based on the combination
of two key factors of the pre-training corpus, each with two
categories: (1) text domain (i.e., generic or scientific); and
(2) vocabulary case (i.e., cased or uncased).
BERTBASE

2 The first two models we use are in the category
of pre-trained BertBASE. They were pre-trained on billions
of words from the text data comprising the BooksCorpus
(800M words) [55] and English Wikipedia (2,500M words).
Our two selected models are: (1) a cased model (where the
case of the underlying words were preserved when training
BertBASE); and, (2) an uncased model (where the underly-
ing words were all lowercased when training BertBASE).
SCIBERT3 The next two models adopted in this study are in
the category of pre-trained scientific Bert called SciBert.
They are language models based on Bert but trained on a
large corpus of scientific text. In particular, the pre-training
corpus is a random sample of 1.14M papers from Semantic
Scholar [2] consisting of the full text of published papers,
18% from the computer science domain and 82% from the
broad biomedical domain. Like BertBASE, for SciBert, we
use both its cased and uncased variants.

4.2 Fine-tuned BERT-based classifiers

We implement the aforementioned Bert models within two
neural system extensions that, respectively, adopt different
classification strategies.
Single-relation-at-a-time classification (SRC) Classifica-
tion models built for SRC generally extend the core Bert

architecture with one additional linear classification layer
that has K ×H dimensions, where K is the number of labels
(i.e., relation types) and H denotes the dimension of theword
embedding space. The label probabilities are further normal-
ized by using a softmax function, and the classifier assigns
the label with the maximum probability to each related con-
cept pair.
Multiple-relations-at-a-time classification (MRC) This
strategy is amore recent innovationon the classificationprob-
lem in which the classifier can be trained with all the relation
instances in a sentence at a time or predict all the instances
in one pass, as opposed to separately for each instance. In
this case, however, the coreBert architecture’s self-attention
mechanism is modified to efficiently consider the represen-
tations of the relative positions of scientific terms [50], which
makes the encoding of the novel multiple-relations-at-a-time
problem affordable. To obtain the classification probabili-
ties, similar to the SRC strategy, the MRC is extended with a
linear classification layer. However, at this time, this layer
focuses on simultaneously calculating the probability per

2 https://github.com/google-research/bert.
3 https://github.com/allenai/scibert.

Fig. 2 Classifier statistics

label assigned to each related term pair in a sentence. Finally,
the label assignment per pair is the same as the one in SRC
based on a softmax function.

5 Experiments

5.1 Experimental setup

Figure2 provides a brief summary of classifiers investigated
in this study. In total, we built 24 classifiers on clean corpora
and 6 classifiers on the corporawithOCRerrors. Each corpus
had been split into training/dev/testing set by the original
dataset creators. To obtain the optimal classifiers on each
corpus, we tuned the learning rate parameter η for values {2e-
5, 3e-5, 5e-5}. For other parameters such as the number of
epochs, we used default values in SciBert andBertmodels.

With respect to the evaluation of classifiers’ perfor-
mances, we employed standard classification evaluation
metrics including: Precision (P), Recall (R), F1-score (F1),
and Accuracy (Acc).

5.2 Classification results and analysis

5.2.1 RQ1: what is the performance of eight BERT-based
classifiers for scientific relation classification on clean
data?

Table3 provides an overview of classification results of eight
classifiers trained and tested on the clean corpus based on
either SRC andMRC classification strategy. Our comparison
primarily focused on the following three key aspects of the
classifiers.
The classification strategy, i.e., SRC vs. MRC. Given the
Acc and F1 shown in Table3, we observed that SRC out-
performed MRC on two datasets except SemEval18. One
characteristic of the SemEval18 dataset is that it has a sig-
nificantly lower number of annotations than the other two
datasets. Given that, we infer that the novel MRC strategy
is more robust than SRC because its performance level was
unaffected by a drop in the number of annotations.
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Word embedding features, i.e.,BERT vs. SCIBERT. Regard-
ing the word embedding features encoded by different
Bert-based models, SciBert outperformed Bert on all
three corpora with higher accuracy and F1 scores. Since our
experimental corpora are all scholarly data, as an expected
result, word embeddings encoded by domain-specific Bert
models can better capture the token-level semantic associa-
tions to support relation classification in the in-domain corpus
than the embedding features encoded by the generic Bert

models.
Vocabulary case in BERT models, i.e., cased vs. uncased.
Weobserved that the uncasedBertmodels (SciBert: 82.91,
Bert: 81.24) showed a higher classification accuracy than
their cased counterparts (SciBert: 81.71, Bert: 80.05) on
average. Further, the uncased models had an overall lower
standard deviation in accuracy (SciBert: 2.04, Bert: 2.84)
than the cased models (SciBert: 4.60, Bert: 4.14); com-
parisons on F1 are along similar lines. Hence, our results
indicate that uncased Bert models can achieve more stable
performances than cased variants.

In conclusion, with respect to the classification strategy,
we observed that SRC outperformed MRC (see averaged
scores in the last row in Table3). Nevertheless, the advanced
MRC strategy demonstrates consistently robust performance
that remains relatively unaffected by the size of smaller
datasets compared to the SRC (e.g., SRC vs. MRC results
on the SemEval18 corpus). On the other hand, with respect
to Bert word embedding variants, from the averaged scores
in the last column in Table3, the SciBert uncased model
performed as the optimal model for encoding text features
on scholarly articles. To further verify our findings, we con-
ducted a set of statistical tests on the classification results.
Considering that multiple datasets were employed in our
examination and the distribution of the difference between
any two samples’ means may not be normally distributed,
we decided to use Wilcoxon signed-rank test to explore the
significance of prediction differences between any two vari-
ants of model setting. With a row-wise comparison of any
two Bert word embedding variants’ performance (based
on F1 and Acc in Table 3, respectively) over three datasets
across two classification strategies, we observed that uncased
SciBERT-based classifiers significantly (p < 0.05) out-
performed cased and uncased BERT-based classifiers. To
explore the performance difference between SRC and MRC,
we conducted a column-wise comparison over three datasets.
Similarly, this comparison was based on F1 and Acc, respec-
tively. The test results showed that there was a statistically
significant (p < 0.05) difference between SRC and MRC
on the testing data from SciERC and Combined corpora.
Although the classification results showed that MRC pro-
vided more benefits to BERT-based classifiers than SRC in
SemEval18, such performance differences lacked statistical
significance.
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Table 4 Per-relation
classification results of the best
BERT variant under SRC and
MRC strategies on SemEval18

Relationship type SemEval18 SRC MRC

P R F1 P R F1

Usage 87.22 89.71 88.45 90.53 87.43 88.95

Result 78.26 90.00 83.72 100.00 75.00 85.71

Compare 85.71 85.71 85.71 75.00 85.71 80.00

Model- feature 66.67 75.76 70.92 70.83 77.27 73.91

Part- whole 79.25 60.00 68.29 70.83 72.86 71.83

Top precision (P), recall (R), and F1 scores are in bold

Table 5 Per-relation
classification results of the best
Bert variant under SRC and
MRC strategies on SciERC

Relationship type SciERC SRC MRC

P R F1 P R F1

Used- for 93.30 91.37 92.32 88.75 90.24 89.49

Conjunction 87.97 95.12 91.41 80.69 95.12 87.31

Hyponym- of 92.31 89.55 90.91 80.00 82.93 81.44

Evaluate- for 82.29 86.81 84.49 84.44 83.52 83.98

Compare 72.73 84.21 78.05 83.87 68.42 75.36

Part- of 66.04 55.56 60.34 65.52 60.32 62.81

Feature- of 59.02 61.02 60.00 73.68 47.46 57.73

Top precision (P), recall (R), and F1 scores are in bold

Table 6 Per-relation
classification results of the best
Bert variant under SRC and
MRC strategies on the
combined corpus

Relationship type combined SRC MRC

P R F1 P R F1

Conjunction 92.56 91.06 91.80 85.07 92.68 88.72

Usage 91.30 88.98 90.13 87.96 87.71 87.84

Hyponym- of 89.39 88.06 88.72 83.12 78.05 80.50

Compare 86.89 89.83 88.33 73.85 81.36 77.41

Result 76.36 75.68 76.02 84.69 74.77 79.43

Part- of 75.86 66.17 70.68 68.33 61.65 64.82

Feature- of 58.02 75.20 65.51 60.28 68.00 63.91

Top precision (P), recall (R), and F1 scores are in bold

5.2.2 RQ2: which of the seven studied scientific relation
types were easy or challenging to be identified by the
selected optimal classifiers?

Given the optimal classifier per classification strategy for
each corpus (i.e., SciBert-based models, either cased or
uncased), we further examined these classifiers’ ability to
identify each type of relation labeled in the ground truth data.
Tables4, 5, and 6 show the results on SemEval18, SciERC,
and Combined corpus, respectively.
Overview of relation type sensitivity Overall, results in
the three tables show that the Usage (Used- For) relation
is easier to identify than other relation types under both
classification strategies. One possible explanation for this
observation is that Usage is the predominant type in all cor-
pora, and therefore, classification models can readily learn
the latent linguistic patterns of this relation type compared
to the other types.

For challenging relations, we found that Feature- Of
(Model- Feature) and Part- Whole (Part- Of) were
more difficult to identify, with lower F1 scores compared
with other relation types in all three tables. Our observa-
tions could be explained by two aspects. First, there is a high
level of language expression diversity in these two types of
relations, which poses a difficulty for the Bert-based clas-
sification models to capture the linguistic patterns of these
two relation types. For example, by looking into instances
labeled by Part- Whole (Part- Of), we found that the key
signal of this relation type included varies forms such as 〈A〉
“is composed of” 〈B〉, 〈A〉 “...in” 〈B〉, and 〈A〉 “, a central
instance of” 〈B〉. Moreover, the comparatively lower num-
ber of annotations of these two relation types in the corpora,
especially for the SciERC corpus, decreases the generaliz-
ability of models when predicting these two relation types
and thus, leads to low F1 scores on unseen testing examples.
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Impact of classification strategies on per-relation type clas-
sification By looking into classification strategies for the
SemEval18 corpus (see Table 4), we found that the SRC
classifier andMRC classifier obtained the same classification
rank order forUsage,Model- Feature and Part- Whole,
but the opposite order for Result and Compare. In par-
ticular, the SRC classifier performed better at identifying
COMPARE, while theMRC classifier was able to better rec-
ognize RESULT. As to SciERC (see Table 5), notably, the
ability of classifying Hyponym- Of dropped significantly
from the SRC to the MRC strategy, suggesting that the lin-
guistic pattern of Hyponym- Of is hard to be captured when
this relation type is mixed with other types together.
Impact of heterogeneous human annotations on per-
relation type classification The combination of SemEval18
and SciERC as the Combined corpusmakes this corpusmore
heterogeneous and realistic. Given that, we further explored
whether the mix of the two groups of human annotations
from different corpus sources showed any influence on the
classifier’s ability to identify each relation type.

Interestingly, differing from the results shown in Table4
(SemEval18) and Table5 (SciERC) where the F1 score of
predicting Usage (Used- For) ranked first in both SRC and
MRC strategies, we observed that Conjunction was the
easiest relation type to classify in the Combined corpus for
both SRC and MRC classifiers (see Table6). Moreover, the
F1 score of Conjunction in Table5 is higher than the one
in Table6. Since there is no Conjunction relation in the
SemEval18 corpus, we can infer that testing examples of
this relation type should be the same as the ones in the Sci-
ERC corpus. Given that, our results suggest that there may
exist inconsistencies in the two groups of human annotations
of the relation Usage, which influenced the model’s learn-
ability of this relation type. On the other hand, the uniform
annotation of Conjunction from the SciERC corpus could
benefit the model’s ability to capture the consistent latent
linguistic pattern for this relation type in the Combined cor-
pus, and hence, allowed it to be classified more effectively.
Nevertheless, we can see that the classification F1 for Usage
was nearly the average of the scores from each individual cor-
pus, respectively. This offers a potential indicator of expected
classification behavior on a heterogeneous corpus frommore
than one source.

5.2.3 RQ3: what kinds of prediction errors are frequently
made?

Confusion matrix of SRC and MRC classification A closer
look at misclassifications in the Combined corpus is depicted
in the confusion matrices in Fig. 3 for the SRC classifier
and Fig. 4 for the MRC classifier. Results in both figures
show that classifiers tend to predominantly misclassify other
relation types such as Usage (e.g., Result, Part- Of, and
Feature- Of), especially in the MRC classification. One

possible reason is that the Usage relation has the largest
number of annotated instances, which caused the classifiers
to be biased to this relation type. In general, unbalanced dis-
tribution of training samples (see the details in Sect. 3) is one
of the main causes in confusion learned in machine learning
systems. At the same time, the strategy of making predic-
tions on multiple relation types simultaneously can boost
such biases to learning models.

In particular, Feature- Of, Part- Of, and Usage are
highly likely to be confused with each other in both clas-
sification strategies, suggesting that these three relationships
have closer semantic associations than other relation types,
and therefore making it difficult for the machine to dif-
ferentiate between these three relation types. We further
verified this finding by referring to the annotation guide-
lines of SemEval18 and SciERC. For example, in SciERC’s
guideline, the instance 〈B “belongs to” A〉 is semantically
similar with the instance 〈B “ is a part of” A〉. However,
the former relationship was defined as Feature- Of, while
the latter one was a case of Part- Of. We also found that
Hyponym- Of (around 6%) is more likely to be misclassi-
fied as Feature- Of (in addition to Usage), but not vice
versa. This one-sided relationship loosely demonstrates that
the machine might learn a relation hierarchy between these
two relation types, i.e., Hyponym- Of subsumes Feature-
Of, but not the other way around.

In conclusion, our findings show that errors in the clas-
sification of scientific relations by the optimal Bert-based
classifier can be caused by three factors: (1) unbalanced data
distribution; (2) semantic ambiguity of pre-defined relation
types; and, (3) hierarchical semantics of pre-defined relation
types.
Word distance distribution To offer another pertinent angle
on the classifier error analysis, we computes the distribution
of word distances between related scientific term pairs for
each type of relation on the Combined corpus. The result
is depicted in Fig. 5. In general, the majority of box plots
shown in Fig. 5 are skewed with a long upper whisker and
a short lower whisker. This pattern indicates that the dis-
tance between paired scientific terms is typically closed in
the text. As opposed to other relations, the word distance of
Conjunction is much shorter, which makes sense because
term pairs with this relationship are typically connected by
a single connection term such as “and” and “or.” This con-
sistent pattern could be another reason why Conjunction is
comparatively easier to be classified than other relations. Fur-
ther, the average word distance of Feature- Of, Part- Of,
Hyponym- Of, and Compare is closer to the lower quar-
tile than the other relations. Such varied distribution may
bring challenges for a classifier to identify these relations.
Notably, the similar median value and spread range between
Feature- Of and Part- Of could account for why they are
challenging for the classification models to identify.
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Fig. 3 The confusion matrix of
SRC classification on the
combined corpus

Fig. 4 The confusion matrix of
MRC classification on the
combined dataset

5.2.4 RQ4: how do OCR errors impact the overall optimal
classifier’s performances?

Following the analysis of classification results on clean cor-
pora presented in the earlier sections, we found that the
uncased SciBert built under SRC was optimal to identify
scientific relations in general. In order to provide compara-
ble results across corpora, in this section, we applied this

optimal model and further analyzed its classification perfor-
mance on the noisy version of all evaluation corpora. Our
goal was to explore if there is any consistent pattern of the
impact of OCR noise on predictions.

Tables7, 8, and 9 show the classification results on
SemEval18, SciERC, and Combined corpus, respectively.
Our analysis primarily focused on two aspects: (1) the impact
of OCR errors from various combinations of noisy training
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Fig. 5 Distributions of word
distances between scientific
term pairs in abstracts in
combined corpus

and testing splits in classifications; and, (2) other potential
data factors, such as corpus size, associatedwith the impact of
OCR errors. The details of each aspect are described below.
Impact of OCR noise in testing data Results in three tables
showed that the growth of OCR errors in testing data led to
a rapid drop off in the classifier’s predictability performance
regardless of the amount of text noise in the training data. For
example, the classifier trained on the clean texts per corpus
(see Tables7/8/9) had a loss of F1 scores at around 5% for
the testing data with a low amount of OCR errors, and around
20% for the one with high a high amount of text noise. Given
the same training data, our observation shows that the loss of
predictions increases in accordance with the growth of OCR
errors in texts.
Impact of OCRnoise in training dataRegarding the number
ofOCRerrors in the training data, in each corpusweobserved
that the increasing of text noise in training data helped the
classifier in improving its robustness, with a lower loss of F1
score, when making predictions on testing examples, espe-
cially for the training set with a high amount of text noise. As
shown in the three tables, classifiers trained on the clean data
had a performance loss of around 20%F1, while for themod-
els built upon high noise training data, the loss decreased to
6% F1 score on average. Our observations indicate that OCR
errors in texts have an obvious impact on the performance
of BERT-based classifier for identifying scientific relations
within sentences. Interestingly, text noise in the training data
has a regularization effect on the transformer-based neural
network model during its learning process, which essentially
benefits the model to improve its generalization ability to
process the noisy unseen data.
Impact of the size of OCR noise among corpora. By further
comparing the classification results among three corpora, we
found that the predictability of classifiers on the SemEval18
corpus wasmuchworse, with lower F1 scores than the classi-
ficationmodels’ performances on the other two corporawhen
the training data are noisy. For example, the predication dif-

Table 7 Classification results of uncased SciBert on noisy SemEval18
corpus in SRC

Testing Training
Clean Low noise High noise

F1 Loss F1 Loss F1 Loss

Clean 79.42 – 75.11 – 64.82 –

Low noise 73.16 5.26 ↓ 72.21 2.90 ↓ 62.72 2.10 ↓
High noise 56.35 23.07 ↓ 58.35 16.76 ↓ 58.26 6.56 ↓
Top F1 scores are in bold

Table 8 Classification results of uncased SciBert on noisy SciERC
corpus in SRC

Testing Training
Clean Low noise High noise

F1 Loss F1 Loss F1 Loss

Clean 79.49 – 77.51 – 77.10 –

Low noise 75.16 4.33 ↓ 77.92 – 74.94 1.70 ↓
High noise 60.11 19.38 ↓ 69.94 7.57 ↓ 70.93 5.94 ↓
Top F1 scores are in bold

Table 9 Classification results of uncased SciBert on noisy Combined
corpus in SRC

Testing Training
Clean Low noise High noise

F1 Loss F1 Loss F1 Loss

Clean 80.27 – 78.64 – 77.10 –

Low noise 72.84 7.43 ↓ 77.41 1.23 ↓ 74.94 2.16 ↓
High noise 57.43 22.84 ↓ 69.29 9.35 ↓ 70.93 6.17 ↓
Top F1 scores are in bold

ference could be around 10% for each type of testing setwhen
the training data is high noise. Given that the SemEval18 cor-
pus has a smaller corpus size than the other two corpora, our
observation suggests that large corpus size could alleviate the
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Fig. 6 Per-relation type classification results on clean, low-noise and
high-noise SemEval18 corpus

Fig. 7 Per-relation type classification results on clean, low-noise and
high-noise SciERC corpus

Fig. 8 Per-relation type classification results on clean, low-noise and
high-noise on Combined corpus

impact of text noise on BERT-based classificationmodels for
identifying scientific relations.

5.2.5 RQ5: which of the seven studied relation types are
more robust to OCR errors?

Given that the majority of state-of-the-art scientific clas-
sification techniques are developed using clean corpus, to
investigate the vulnerability of such techniques to text noise
with respect to each type of relations, we examined the abil-
ity of our optimal classifiers trained on the clean corpus to
identify each relation type from texts with or without OCR
errors. Figures6, 7, and8 show the results on three corpora,
respectively.

In general, results for three corpora showed that the diffi-
culty of the classifier to identify each relation type tends to
be consistent regardless of the amount of noise in the testing
texts. Comparatively, Compare, Part- Of (Part- Whole),
and Hyponym- Of are three top relation types for which the
classifier’s performances were more sensitive to the large
amount of OCR errors in terms of a high loss of F1 scores
comparedwith other relation types, which suggests that these
three types of relationships between scientific concepts are
easily broken by text noise. In contrast, the predictability of
each classifier on Usage and Result (Evaluate- For) is
more robust against text noise than on other relation types.
Given that, we infer that there might exist a strong seman-
tic association between Usage and Result relations, which
could overcome the disturbance of OCR errors to some
extent.

By looking further into the influence of text noise by OCR
error amount, we found that the difference in the classifier’s
ability to identify most relation types between the clean and
low-noise texts is much smaller than the difference between
low versus high noise texts. The only exception lies in the
Part- Of (Part- Whole) relation. This result indicates that
our optimal classifier can be robust to a small ratio of text
noise (i.e., around 10%) when making predictions on the
majority of pre-defined relations except Part- Of (Part-
Whole).

5.3 Use case of scientific relation classification for
scholarly knowledge graph construction

As a practical illustration of the relation triples studied in
this work, finally, we built a knowledge graph from the
human annotations in the Combined corpus. Figure9 pro-
vides an illustrative example of the visualization of the
resulting knowledge graph, which includes: (1) a graph at
corpus-level (shown in the upper right); and, (2) two graphs
at concept-level, e.g., ego-network for the concept node
“machine translation” (shown in the upper left) and “words”
(shown at the bottom).

Looking at the corpus-level graph, we observed that
generic scientific terms such as “method,” “approach,”
and “system” were the most densely connected nodes, as
expected since these generic terms are usually found across
research areas. In the zoomed-in ego-network of “machine
translation,” we can see that Hyponym- Of is meaningfully
highlighted by its role linking “machine translation” and its
sibling nodes (i.e., other research tasks) including “speech
recognition,” and “natural language generation” to the parent
node “NLP problems.” The concept “lexicon” is usually used
in (i.e.,Usage) research on “machine translation” and “oper-
ational foreign language.” The Conjunction link connects
the term “machine translation” and “speech recognition,”
both of which aim at translating information from one source
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Fig. 9 A knowledge graph constructed from the relation triples in the
Combined corpus. Ego-network for the term “machine_translation” and
“words” are presented as two illustrative examples. The node size is

determined by node weighted degree. Colors denote the modularity
classes based on the graph structure. The graph was generated using
Gephi (https://gephi.org/)

to the other one. Regarding the ego-network of “words”, we
found that this term mainly involve two types of semantic
relations: (1) being Part- Of other natural language compo-
nents such as “corpus,” “song_lyrics,” and “sentences”; or,
(2) working as features (i.e., Feature- Of) in NLP compu-
tations such as obtaining “part_of_speech_information” and
capturing word-level “co-occurrence_patterns.”

In addition to looking singly into the semantic associ-
ation across the node as well as into link representations
in the ego-network, and by further considering the net-
work structure, we can infer the semantic hierarchy of some
associated scientific concepts. For example, both “machine
translation” are connected with “ranking tasks” and “NLP
problems” by the relation Hyponym- Of, and “ranking
tasks” is used for solving (i.e., Usage) “NLP problems.”
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This triangle structure suggests that “ranking tasks” is amore
fine-grainedhypernym to “machine translation” than the term
“NLP problems.” Additionally, by comparing the structure
of the ego-network of “machine-translation” with the one
of “words,” we observed the “machine-translation”-centered
graph is more dense than the “words”-centered graph. In
essence, this observation indicates that the term “words” is a
more generic concept than “machine_translation” because it
tends to be associated with diverse independent concepts.

In summary, given the pair of related scientific concepts
with the identified relation type, we can construct a knowl-
edge graph to represent the semantic association among
scientific concepts either at macro-level in terms of the whole
corpus or at micro-level with regards to the fine-grained con-
nections related to a specific concept.

6 Discussion

6.1 BERT-basedmodel recommendations for
scientific relation classification

Based on the findings in this study, we provide the follow-
ing recommendations to stakeholders of digital libraries for
applying the optimal technique to automatically classify sci-
entific relations from scholarly articles:

– Compared with the generic domain, using corpus that
specifically consists of scholarly publications to pre-train
Bert models benefits building classifiers in recognizing
the relationship between scientific concepts.

– With respect to the classification strategy, SRC outper-
forms MRC in general.

– Overall, uncased Bertmodels outperform cased ones in
terms of higher accuracies and more stable performances
in predictions.

– Given noisy texts containingOCRerrors, if the amount of
text noise is small, such as around 10%–20%, the optimal
classification model (i.e., built with uncased SciBert in
SRC classification) trained on the clean corpus could be
robust against this text noise when making predictions.

– For noisy texts with an uncertain amount of OCR errors,
employing noisy data to train the classifiers would be
helpful in building the models’ generalization ability to
process the texts regardless of the amount of OCR errors.

– In SciBert-based SRC classification, the large corpus
size with abundant relation annotations is helpful in: (1)
improving the prediction accuracy; and (2) alleviating the
influence of text noise in the training data for building a
classifier.

– Regarding relation type annotations, the large number of
annotations for a relation type in the training set can help

the classificationmodel to improve its learnability on this
relation type.

– For each pre-defined relation, the fixed syntactic structure
in expressions benefits the classifier in discriminating
between different relation types.

– Text noise is less influential on the classifier when pre-
dicting concrete scientific relations such as Usage and
Result (Evaluate- For) compared with other rela-
tions, while this situation is contrary for some relations
indicating concept hierarchies such as Compare and
Hyponym- Of.

6.2 Study limitations and challenges

With a systematic review of our evaluation process, sev-
eral research challenges and resulting study limitations arise,
which can be summarized in three aspects: (1) human
annotation collection; (2) noisy corpus preparation; and (3)
evaluation methods. Each aspect is described as follows.

6.2.1 Human annotation collection

Cost and resource of annotations As mentioned in prior
work [15,29], one commonchallenge in researchon scholarly
information extraction (including both entity and relation
extraction from scholarly records) is the high cost and lim-
ited resources for collecting human annotations as ground
truth for training and/or testing learning-basedmethods. This
is mainly because annotations on scientific information not
only cost time and human labor similar to that involved
in information extraction tasks in generic domains (e.g.,
newswire), they also require a higher level of annotators’
expertise in the specific scientific domain of the target schol-
arly articles, for which it is comparatively more difficult to
find adequate annotators. In addition, the expense of such
annotations should be high.Due to these challenges, the num-
ber of human annotations on scientific information is usually
limited, and the number of research areas involved by exist-
ing accessible human annotations is barely sufficient.

Influenced by the aforementioned issues, our evaluation
mainly focused on the corpora covering AI-related research
areas, which potentially leads to some uncertainties in the
performance of Bert-based classifiers for identifying sci-
entific relations in other research areas such as biology and
physics.

Quality of annotations as ground truth Following our
findings, the ambiguity of relation type definitions is one of
the key factors leading to the classifiers’ misclassifications.
There are two main aspects contributing to such ambigu-
ity. First, the meaning of some relation types’ definitions
makes it difficult for humans to have a clear understanding
of these relation types when annotating the data. For exam-
ple, in the annotation guidelines of SciERC dataset [29], 〈B〉
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“belongs to” 〈A〉was defined as an instance of Feature- Of,
while 〈B〉 “is a part of ” 〈A〉 was defined as a case of Part-
Of. In essence, both instances are quite similar in terms of
the semantic meaning. Second, different annotation systems
may lead to inconsistent human annotations. For example, for
two relations having a hierarchical semantic association, i.e.,
Hyponym- Of and Part- Of, the guideline of SemEval18
dataset only considers Part- Of, while SciERC’s guidelines
ask the annotators to label both relation types. Given this
guideline difference, annotators are likely to annotate the
real Hyponym- Of relationship in the SemEval18 dataset
by the tag Part- Of.

In addition to annotation ambiguity, there also exists
annotation biases in the corpora, such as the unbalanced dis-
tribution of relation labels, which can lead to the preference
of classifiers to recognize some well-represented relations
(e.g., Usage). Due to these challenges leading to the uncer-
tainty of annotation quality, there may exist a potential risk
of underestimating the ability of Bert-based classifiers for
identifying scientific relations in our evaluations.

6.2.2 Digitization-based noisy corpus preparation

In order to investigate the impact of text noise caused by
digitization on relation classification techniques, building an
ideal noisy corpus typically requires two elements: (1) the
corpus should have both clean and real-world OCR’d texts
that are parallel in terms of content; and, (2) the clean corpus
should have a high quality. However, it is not always possible
to satisfy these two demands. One major reason is that the
original version of digitized scholarly records were usually
published in printed pages, which means such resources lack
an off-the-shelf electronic version of texts.Given that, getting
access to the fully clean texts of these scholarly resources is
difficult. Besides, the aforementioned challenges of human
annotation also exist in this data preparation process.

Although our presented strategy for constructing a noisy
corpus in this paper can be an alternative method to address
the above challenges, adding commonword-level OCRnoise
into the clean texts based on a dictionarymay not fully reflect
the data patterns of the real-word digitized library collections.
This limitation might involve the artifacts of engineering in
our noisy corpus for further investigations.

6.2.3 Evaluation methods

Following the standard practice of prior work [7,50], we used
existing popular pre-trained BERT models as off-the-shelf
tools and further fined-tuned these models with each of our
corpora to build classifiers for scientific relation classifica-
tion. Our investigation primarily concentrated on the benefits
of fine-tuned BERT-based models brought to the classifiers.
There exist some open questions regarding the characteris-

tics of BERT’s or SciBERT’s pre-training settings and their
influences on the downstream application. Example ques-
tions could be: (1) how is the quality of the corpus used to
pre-train BERT; and, (2) how does the influence of this factor
onBERT-based classifiers for identifying scientific relations?
These issues are worthwhile to be explored in future. In addi-
tion, in this study, wemainly focused on the corpora covering
AI-related research areas. The assessment of classifiers for
identifying scientific relations in other domains need to be
further studied.

6.3 Potential future work

To further assist digital library designers and librarians who
want to build structural semantic representations over schol-
arly articles using scientific relation classifiers, there are three
main avenues that are worthy of future exploration.

6.3.1 Rethinking human annotation guidelines

Challenges in guaranteeing the quality of human annotations
show that the process of defining scientific concepts and their
relationships is still an open question, which can be further
explored by experts. Researchers who are interested in this
field can conduct their following studies in two directions.

On the one hand, a formal understanding of the semantic
relationships among terms in a specific research domain is
critical to improve the clarity of annotation guidelines on this
domain’s scholarly information extraction. In particular, we
suggest the consideration of semantic relation types should
not only contain the semantic associations between scholarly
terms, but also require the hierarchical structure of relation
types.

On the other hand, it would be helpful if the strategy for
designing annotation guidelines could follow the ultimate
application goal. In practice, building a scholarly knowledge
graph can be used for organizing general scholarly knowl-
edge within a single or across multiple research domain(s)
or managing knowledge with a specific focus, such as the
evolution of scientific works’ contributions. With different
applications of scholarly knowledge graphs, the correspond-
ing annotation rules on scientific terms and pre-defined
relation types might be different. For example, annotations
on the general scientific concepts shown in Fig. 9 such as
“method,” “approach,” “system,” and “algorithm” are limited
to informativeness for indicating the specific contributions of
each research work.

6.3.2 Benchmark corpus frommultiple domains

While scholarly records in digital libraries usually cover vari-
ous domains, publicly accessible corpora used for developing
scholarly information extraction techniques primarily in sev-
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eral specific domains such as biology [28,34] and computer
science [15,30]. Given that scholarly publications in different
domains may cover various relation types, and increasingly,
language expressions such as word choice and writing style
could be different, there is a demand for building a bench-
mark corpus consisting of scholarly records in a wide range
of domains, which can be helpful in providing a comprehen-
sive evaluation for the state-of-the-art relation classification
techniques developed for extracting scholarly semantic infor-
mation.

6.3.3 Evaluation on open information extraction techniques

In addition to building classifiers to identify pre-defined rela-
tions, techniques that are developed under the paradigm of
open information extraction to identify more diverse rela-
tional triples “without requiring any relation-specific human
input” [6] can an alternative yet promising strategy for
extracting scholarly information, especially for identifying
scientific relational tuples from scholarly records in vari-
ous domains with massive uncertain semantic relations in
advance. The further examination of state-of-the-art tech-
niques in this field for scientific relation identification and
the trade-offs between such techniques with BERT-based
classification on pre-defined relations could be a valuable
avenue to pursue.

7 Conclusions

Wehave investigated the scientific relation classification task
to support building scholarly knowledge graphs based on dig-
ital library collections. We provide a comprehensive view
of eight Bert-based classification models on three clean
corpora, which differ usefully in terms of corpus size and
annotation guidelines. Moreover, considering many schol-
arly records in real-world digital libraries are digitized with
OCR errors, we further prepared three noisy corpora cor-
responding to the clean ones and investigated the effect of
OCR errors on the optimal Bert-based classifier identified
from clean data. The presented empirical study in this paper
contributes to the digital library stakeholder’s understanding
of state-of-the-art NLP techniques for identifying seman-
tic relations from scholarly publications, which can provide
practical benefits for identifying the optimal NLP tool to
build scholarly knowledge graphs of digital library collec-
tions.

Our observations indicate that the performance of classi-
fiers on clean texts is mainly associated with two aspects.
First, from the perspective of training algorithms, three main
factors, including classification strategies, the pre-training
corpus domain, and vocabulary case, determine the optimal
model to apply in practice. Second, with respect to the anno-

tation of scientific relations for training, there are two key
factors that influence the ability of a Bert-based classifi-
cation model to identify each relation type: (1) the number
of annotations of each relation type; and, (2) the regularity
of each relation’s syntactic context. With further exploration
on OCR noise impacts, we found that text noise caused by
digitization has an obvious negative influence on the perfor-
mance of Bert-based classifiers when identifying scientific
relations, especially when the ratio of noise is high (e.g.,
49%). Comparatively, relations with more concrete semantic
meaning such asUsage andResult aremore beneficialwith
the classifiers’ robustness to OCR noise than other relations,
while relations showing concept hierarchy likeCompare and
Hyponym- Of are more likely to stimulate the vulnerability
of classifiers to the noise.

The overall insights in this study suggest that the uncased
SciBERT-based classification model built under SRC strat-
egy is the optimal choice for scientific relation classification
in general. Regarding the corpus with OCR noise, we sug-
gest DL stakeholders employ noisy data to build classifiers
because the heterogeneous nature of OCR noise in training
data is helpful with the generalization ability of classification
models for processing unseen data.
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