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Abstract
The study and analysis of past events can provide numerous benefits. While event categorization has been previously studied,
it usually assigned only one event category to an event. In this study, we focus on multi-label classification for past events,
which is a more general and challenging problem than those approached in previous studies.We categorize events into thirteen
different types using a range of diverse features and classifiers trained on a dataset that has at least 50 labeled news articles
for each category. We have confirmed that using all the features to train classifiers has statistical significance and improves
all micro- and macro-average F1, multi-label accuracy, average precision@5, area under the receiver operating characteristic
curve and example-based loss functions.
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1 Introduction

Study and analysis of past events can provide numerous ben-
efits, including an enhanced perception of the legacies of
the past in the present and enabling learners to make valu-
able connections through time [19,45,58]. Indeed, one of the
goals of imparting recent history education at high schools is
to enable students to studyhowpeople or organizations in his-
tory tried to solve problems in described events. Students can
then apply this knowledge to consider creative solutions to
social problems in present events [4,38]. In addition, there are
many applications of this knowledge if we correctly under-
stand event documents. For example, by being able to tell the
categories of mentioned events one could better understand
thanks to studying which past event types are mentioned in
news articles. Equipped with knowledge on the categories of
past event mentions one could also foster collective memory
studies [1] as well as support search methods for finding his-
torical events. Finally, the classification technique could be
used for constructing thematic timelines or event lists (e.g.,
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list of disasters/accidents in Asia, timeline of armed conflicts
in the USA).

We focus in this work on the problem of multi-label clas-
sification (MLC) for past events that assigns more than one
category to each event. For example, if we read theWikipedia
article1 to know what the 2014 West Africa Ebola outbreak
caused in our life, we can see that it killed many both human
and animal (environment event), some researchers developed
a vaccine (technology event), they then reported the details
and their statistics (study event). Table 1 shows other exam-
ples of multi-labeled events.

The main challenge in MLC for past events lies in the
scarcity of data, the ambiguity of expressions and variety of
diverse means by which events can be referred to. Further-
more, frequently, in realistic scenarios, events are not called
by their explicit names, or, they may have no known names.2

Consequently, their automatic detection using named entity
recognition (NER) tools is problematic.Wemake an assump-
tion that the context of such documents (e.g., surrounding
sentences in the original text) is not available to cover also
the case of standalone documents like the lists of significant
events in each month of the Wikipedia’s Current Portal.3

Hence, we rely only on the event document itself.
To provide sufficient data, we use a range of features based

on lexical analysis as well as ones based on distributional

1 https://en.wikipedia.org/wiki/West_African_Ebola_virus_epidemic.
2 Usually, only very popular or important events have own names.
3 https://en.wikipedia.org/wiki/Portal:Current_events.
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Table 1 Example events. Our classifier takes documents of events;
however, we include only short documents or names of events here
for simplicity. The abbreviated category names are used: Reign (Rg),
Diplomacy (Dp), War (Wr), Production (Pr), Commerce (Cr),
Study (St),Religion (Rl),Literature and Thought (LT),
Technology (Tc),Popular Movement (PM),Community (Cn),
Disparity (Ds) and Environment (En)

Event Categories

Agnes Chan named UNICEF Regional
Ambassador for East Asia and Pacific
Region

Dp, Cn and LT

The World Strikes a Deal on Climate
Change

En

Paris attacks Dp, Rg and PM

ISIS Terrorists Strike on Three Continents Dp, Rl, Wr and PM

Same-Sex Marriage Debate LT and Cn

Ebola outbreak En, St and Tc

The Scottish independence referendum Rg, PM and Cn

word representation using neural networks. Though there are
several labeled event datasets on theWeb such asWikipedia’s
Current Portal, many of them assign only one category to
each event. To perform MLC for events, we have created a
new database and opened it on a public repository (Sect. 3).
We use news articles that have one or more than two event
categories in the created dataset to train our classifiers from
the features.

We conducted experimental evaluations to confirm how
well using all feature types improve classification accuracies
on the created new database. We confirmed that our method
achieved approximately 60% in the micro-average F1 score
that is the best among all compared methods. We also evalu-
ated that this score is a statistically significant improvement
from using each feature type to train classifiers. In addi-
tion, we performed other measurements (macro-average F1,
multi-label accuracy, average precision@5, hamming loss,
log loss, ranking loss scores, and area under the receiver oper-
ating characteristic curve (AUC)), which are widely used in
MLC studies, and confirmed that our method achieved the
best scores of all compared methods.

Problem statement In our classification, each document
describing an eventmayhavemore thanone label. The formal
definitions are given as follows: Let L be a finite and non-
empty set of labels {l1, l2, . . . , lm}. Let X and Y be the input
and the output spaces, respectively. Given a dataset Dl =
{(xi , yi )}Ni=1 ⊂ X × Y , yi j ∈ {0, 1}m , MLC predicts labels
ŷ = {yk | 1 ≤ k ≤ m} for a document. The assigned labels
are usually referred to as the relevant labels for the input
document.

Definition of the past In this paper, we define past events
as events that occurred before training classifiers.

Paper organization The remainder of this paper is orga-
nized as follows: Sect. 2 provides summaries of several
related works. Section 3 describes the dataset this paper
used. Next, the proposed method in this paper is described
in Sect. 4. We perform experimental evaluations to confirm
the effectiveness of the proposed method in Sect. 5 and then
conclude remarks in Sect. 6.

2 Related works

As this study performs classification for past events, we
summarize differences of this study from classification and
history-related studies. In particular, this study explores how
well it is able to create feature vectors to train classifiers; thus,
we separately describe differences of past feature selection
studies and training classifiers in Sects. 2.1 and 2.2, respec-
tively.

We then focus on identifying differences of this study from
history-related past studies by dividing this sub-section in
events focused on classification, history education, collective
memory, information retrieval and data mining in Sects. 2.3,
2.4, 2.5, 2.6 and 2.7, respectively.

2.1 Feature selections and extractions

To train classifiers, it is necessary to create feature vectors
from documents. One of the simplest methods is to count
the number of word occurrences in documents to set them as
indexes of vectors corresponding to the documents.However,
this simple method presents problems such as high compu-
tational complexity and overfitting as there are numerous
kinds ofwords in documents leading to the high feature space
dimensionality.

Semantic analysis such as latent semantic analysis (LSA),
latent Dirichlet allocation (LDA) [2] and Doc2Vec [35] has
become a popular way to reduce the dimensionality of fea-
ture space. Using semantic analysis creates feature vectors
from topic distributions for all documents and trains clas-
sifiers from the feature vectors. Another popular method of
dimensional reduction is to use statistical approaches [5,63]
or mutual information [12,36,37].

Feature extraction is another widely applied method, for
example principal component analysis (PCA) [72]. Gopal
and Yang [17] defined meta-level features by transforming
conventional representations of data and categories into a
relatively small set of link-based features.

Similar to the case of past studies, we use word- and
semantic-based feature vectors and reduce the dimension-
ality of feature space after combining all feature vectors. In
addition to the popular feature types, we take temporal nouns
that occur only for specific durations to replace them with
their contexts (meaning the top-similar words for the nouns)
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as several events tend to include names of persons, groups
and other entities. From our experimental results, we show
that this replacement of temporal nouns with their contexts
plays a key role in this objective.

2.2 Training classificationmethods

MLC algorithms typically consist of two steps: learning to
rank categories for data and learning to put a threshold on
whether each category is assigned or not. For the first step, the
simplest method is to employ a binary-classifier, such as sup-
port vector machine (SVM), naive bayes probabilistic clas-
sifiers or random forests [67]. This binary-classifier-based
method learns a scoring function for each category indepen-
dently from the scoring functions for other categories, and
then scores test data for each category independently.

Several studies utilize global optimization techniques.
Elisseeff and Weston proposed Rank-SVM to maximize the
sumof themargins for all categories at the same timewhereas
binary SVM maximizes the margin for each category inde-
pendently [13]. As another method, the k-Nearest Neighbor
is widely used for multi-label classification [10,70,73].

McCallum [41] trains a classifier by EM algorithm to
take mixture models into account for the training because
each data point of a category can be considered as it is
generated from a distribution of the category. However, the
EM algorithm is typically used to train classifiers as the
semi-supervised learning (SSL) style [8,16,48,76]. SSL is
a well-known procedure to train classifiers with decreasing
manual category assignment costs in the case where few
labeled data and many unlabeled data are acquired. For the
other SSL-based classification type, graph-based methods
are proposed [76]. In graph-based methods, data are repre-
sented as nodes and the similarity between two data points
is represented as the weight of an edge.

In the task of categorizing short documents, data scarcity
becomes a more severe problem than in long documents. To
overcome this problem, some studies use contextual infor-
mation. Sriram et al.’s [57] approach classifies tweets by
using author information, URL and hashtags. Nie et al. [47]
use a Naive Bayes classifier equipped with texts, image and
video contents for Q&A classification. Lee et al. [39] classify
queries using user-click behavior to identify user goals inweb
searches. On the other hand, using external information such
asWikipedia is also a popular approach. Zelikovitz andMar-
quez [71] train a classifier with LSA [11] based onWikipedia
data, and Phan et al. [53] propose a generalized classifica-
tion framework with the topic model. This framework first
trains the topic model on texts of an external resource. It then
trains classifiers after building a moderate size labeled train-
ing dataset. Explicit semantic analysis (ESA) is applied in
[61] to map short texts to Wikipedia articles.

Training classifier assumes that feature vectors are given;
in other words, the training designs an algorithm to project
feature vectors into categories. Since this paper proposes a
novel feature selection method, this paper takes any algo-
rithms of training models. Indeed, this paper applies SVM,
Naive Bayes and graph-based methods that are described
above.

2.3 Event classification

Kosmerlj et al. proposed event categories that were originally
defined byWikipedia editors and then investigated automatic
classification using TF-IDF created from news articles [33].
Several events canbementionedwith a fewsentences, such as
news articles containing references to related events, histori-
cal accounts or biographies. Sumikawa and Jatowt propose a
feature selection method to classify short documents of past
events [59]. These studies propose classifying event docu-
ment frameworks; however, they are designed as multi-class
classification that assigns only one category to an event.

2.4 Analyzing history for education

Studying history is beneficial to understand how the present
shapes, and it can be used to predict the future to some
extent. Indeed, there are classes to learn history starting from
elementary school inmany countries. Recently, some histori-
ans, education researchers and national guidelines consider
that it is important to support learners to connect past and
present to examine what knowledge we can use about the
past to consider solutions to present social issues. This abil-
ity is called historical analogy, and several researchers have
studied effective and efficient methods for enhancing the his-
torical analogy.

Drie and Boxtel [66] find that there are basic compo-
nents to enhance historical reasoning. Mansilla examined
what the triggers for successfully using historical analogy
are [3]. Lee proposes a framework that makes connections
between events in the past and potentially between events
in the past and present [38]. This framework is an overview
of long-term change patterns, and an open structure capable
of being modified, tested, improved and even abandoned.
Ikejiri designed a competitive card game [22] where players
construct causal relations for an event. From the construction,
players can identify causal relationships within modern soci-
etal issues and compare how two past and present issues are
similar from a viewpoint of causal relationship structures to
stimulate historical analogy. In addition, Ikejiri et al. propose
another competitive card game in which players learn eco-
nomic policies that are actually enforced in the past to create
new policies that would revitalize Japan’s economy [23].
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2.5 Analyzing collectivememories

The concept of collective memory (social memory) popular-
ized by Halbwachs [18,20] describes the shared reflection
of the past within social groups. Collective memory can be
contrasted with the concept of collective amnesia defined by
Jacoby [26] as forceful or unconscious suppressions ofmem-
ories, especially those related to disgraceful or inconvenient
events.

Traditionally, research on collective memory has been
based on small-scale investigations of personal accounts and
the activities of political and cultural institutions. Recently,
some researchers haveused computational approaches for the
quantification of the characteristics of social memory over
large text datasets. Cook et al. [9] investigated the decay of
fame over time based on a collection of news articles span-
ning the twentieth century. Au Yeung and Jatowt [1] have
studied memory decay and the way in which past years are
remembered based on the dataset of English news articles
spanning 90 years. When it comes to other document gen-
res, Ferron andMassa [14] andKanhabua et al. [32] proposed
usingWikipedia as a global memory space. There are several
literature reports using Wikipedia to study collective mem-
ory [15,28]. Social media has been commonly utilized to
study public attitudes toward real-time events such as the US
American elections [65]. Microblogs are popular tools for
sharing and finding information related to the past as well
as media. There is an ongoing project that focuses on the
First World War [7] and compares commemorative cultures
across countries. Sumikawa et al. [60] attempt to fill this gap
by focusing on Twitter as a common social media platform
frequently used in computational social science. This study is
exploratory and aims to provide an initial broad investigation
of history-related content sharing in social networks.

2.6 History-related information retrieval

The current Web has numerous digital archives including
historical images and documents, as results of digitization.
For effective searching for what users want, searching past
objects is becoming popular research topic to aid historians
[50,56].

Singh et al. [56] proposed an IR framework to support his-
torians.According to the literature, if historians investigate an
entity, theyfirst try to see a big picture of the entity. Then, they
further search the entity for specific aspects. Thus, it is impor-
tant for historians’ information seeking behavior to show
not only important time windows but also different aspects.
Zhang et al. [74] propose a framework that detects entities
counterparts over time. The framework bridges two differ-
ent vector spaces that are created for different time-ranges
such as [1900–1950] and [1960–2010] by transformation
matrix, which maps an entity from one vector space into

another; thus, this framework takes a word. They extend this
framework tomake use of hierarchical cluster structures [75].
Searching images related to history is also proposed [6].

2.7 Mining history-related knowledge

Growing the number of digital archives gives us studies that
extract beneficial history-related knowledge, such as evaluat-
ing the significance of historical entities[62], the importance
of historical persons [29]and semantic change of words [27].
These studies try to find beneficial information from a large
amount of data. Considering mining the past, there is litera-
ture to add useful information, such as timestamps to entities
[30], analysis trends [21] and for trying to predict future from
past events [31,54,55].

3 Data collection

3.1 Event categories

This paper uses thirteen categories defined in [24,25] in order
to connect past and present events. The event categories
are: Commerce (Cr), Diplomacy (Dp), Production
(Pr), Reign (Rg), Environment (En), Religion
(Rl), Disparity (Ds), Study (St), Community (Cn),
Literature and Thought (LT),Popular Movement
(PM), Technology (Tc) and War (Wr). These categories
are defined by Encyclopedia of Historiography [51]. Table 14

shows example events for the 13 categories.

3.2 Datasets

In this paper, we use news articles describing events, which
were published by Japanese companies including NHK news
and Mainichi news.5 These articles typically have enough
words for classification; however, most news articles are
assigned categories defined by their companies. Thus, they
are usually different from the above 13 event categories. To
train our classifiers, we manually assigned more than one
event category from the list to several news articles. The
assignment processeswere done by two Japanese researchers
working on history education research and HistoInformatics.
They all have Ph. D. degrees; therefore, the dataset is created

4 We use Japanese news articles to evaluate classifications in this paper
as described in Sect. 5. Even though we did not use the listed example
events in the evaluation, we show them to aid understanding what kinds
of events can be assigned to from the 13 categories.
5 Some articles are stored in CD-Mainichi Newspapers 2012 data,
Nichigai Associates, Inc., 2012 (Japanese). The others are collected by
Web crawling.
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Table 2 Statistics of the whole dataset

Num. of categories 13

Num. of labeled articles 435

Ave. length 1641.8

Ave. num. of categories per document 2.6

Ave. num. of document per category 87.2

Table 3 Statistics for each category. This table shows the numbers of
labeled data for a category c (Dl

c)

Cat. Num. of Dl
c Cat. Num. of Dl

c

Cr 179 St 59

Dp 187 Cn 60

Pr 108 LT 55

Rg 93 PM 52

En 69 Tc 77

Rl 50 Wr 59

Ds 86

by experts. This new ground truth dataset has been opened
on a public repository.6

3.3 Statistics of dataset

Table 2 shows the dataset statistics. We have prepared 435
labeled articles from Web crawling and the Mainichi news
dataset.

We show the number of articles per category in Table 3.
For each event category, there are at least 50 labeled articles.

4 MLC for past events

For classifying past events, our algorithm first creates effec-
tive feature vectors to train multi-label classifiers (Sect. 4.1).
It then trains the classifiers including probabilistic, non-
probabilistic and graph-based ones (Sect. 4.2).

Algorithm 1 shows an overview of classifier training for
past events. First, this algorithm applies Preprocess to create
tokens after removing stop words and stemming. As sev-
eral natural languages such as Japanese and Korean do not
distinguish words by spaces, it is necessary to apply mor-
phological analysis to divide words during this preprocess.
Since this paper uses Japanese documents in experiments,
we apply MeCab [34] as a morphological analysis.

6 https://doi.org/10.5281/zenodo.3258150. This opened dataset
excludes all texts of the articles to respect copyright law. However,
it is possible to obtain the texts because the opened dataset includes
event IDs defined in Mainichi Newspapers 2012 data or URLs used to
Web crawling. Thus, after buying Mainichi Newspapers 2012 data or
recrawling the URLs with Wayback Machine (the accessed day is 18
June, 2019), their corresponding texts can be retrieved.

Algorithm 1 Algorithm of multi-label classification for past
events.

Input: A set of labeled documents docsl , a set of unlabeled docu-
ments docsu and a set of labels for the labeled documents l

Output: A classifier FVecs
1: Function MLCPastEvents(docsl , docsu , l, k)
2: tokensl , tokensu = Preprocess(docsl ),Preprocess(docsu)
3: models = MakeModels(tokensl , tokensu)
4: FVecsl = FeatureSelection(tokensl ,models, k)
5: FVecsu = FeatureSelection(tokensu,models, k)
6: clf = TrainClassifier(FVecsl,FVecsu, l)
7: return clf
8: Function Preprocess(docs)
9: tokens = ∅
10: for d ∈ docs
11: tlist = SplitWords(d) // If it is necessary, morphological analy-

sis is applied here
12: validtlist = RemoveStopWords(tlist)
13: tokens.add(validtlist)
14: return tokens
15: Function MakeModels(tokensl , tokensu)
16: lda, lsa, d2v,w2v = TrainSemModels(tokensl , tokensu)
17: dr = TrainDimReductModel(tokensl)
18: return lda, lsa, d2v,w2v, dr

Algorithm 2 Feature Vector Creation
Input: A set of documents docs and a set of models models used in

semantic-based feature vectors
Output:A set of feature vectors FVecs

1: Function FeatureSelection(tokens_list,models, k)
2: FVecs = ∅
3: for tokens ∈ tokens_list
4: // Word-based features
5: v1 = WordFVecs(tokens, tokens_list)
6: // Semantic-based features
7: v2, v3, v4 = SemanticFVecs(tokens,models)
8: // Noun-context-based features
9: v5 = NounContextFVecs(tokens, tokens_list, k,models)
10: fvec = DimReduction(v1, v2, v3, v4, v5)
11: FVecs.add(fvec)
12: return FVecs

The algorithm then performs MakeModels to train the
LDA, LSA, Doc2Vec and Word2Vec models on the whole
dataset to create semantic-based feature vectors described in
Sect. 4.1.2. In MakeModels, dimensional reduction models
are also trained on the labeled documents. Then, it applies the
function FeatureSelection to create feature vectors by apply-
ing the dimensional reductionmodels.As this paper performs
SSL training for graph-based classifiers using unlabeled doc-
uments (docsu), this algorithm describes how to use docsu .
If the training method is supervised learning instead of SSL,
the docsu should be ∅ and the training classifier function
(TrainClassifier) does not use it to train classifiers.

4.1 Feature selection

In this sub-section,wedescribe howour approach creates fea-
ture vectors to train classifiers. At the beginning, Algorithm
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2 shows the overview of the feature selection. First, this algo-
rithm creates three types of feature vectors. It then combines
these feature vectors to be a single feature vector. Simply
combining the vectors increases the number of dimensions
leading to the curse of dimension, it finally performs dimen-
sional reduction to the combined feature vectors. Once these
processes are applied to tokens for all documents, this func-
tion returns the results of applying dimensional reduction
methods. In the remainder of this sub-section, we describe
how to produce each type of feature. To help understanding
how and why we create these features, we use actual texts
of Web news that are used in our experimental evaluation as
examples to see how to create feature vectors. The texts are:

1.

7

7 https://www3.nhk.or.jp/news/html/20181122/k10011720261000.
html accessed on 22 Nov. 2018.

2.

8

The following English texts are translations of the above
Japanese texts.

1. D1: With the government in a state of confusion, such as
the resignation of cabinet ministers criticizing the Euro-
pean Union (EU)’s draft withdrawal agreement, Prime
Minister May hastened to rebuild her administration,
including appointing a new Secretary of State for exiting
the European Union. It is also reported that the ministers
who are in a position to criticize the draft agreement on
withdrawal are willing to make amendments to the draft
agreement, and there is no prospect of the May admin-
istration being able to form a formal agreement with the
EU. In theUK, there has been confusion over the political
situation. It includes the resignation problem of the min-
isterswho are in a position to criticize the draft agreement
on withdrawal with the EU and four other ministers one
after another. Prime Minister May appeared on a radio
program on the 16th and appealed for support for the
withdrawal agreement by answering questions from the
public directly. Later, she appointed Stephen Berkeley as
the newSecretary of State for exiting the EuropeanUnion
and is in a hurry to rebuild her regime. Under these cir-
cumstances, Fox, the International Trade Minister, who

8 https://www3.nhk.or.jp/news/html/20181117/k10011714161000.
html accessed on 17 Nov. 2018.
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represents thewithdrawal party, said that Legislatorswho
oppose the draft agreement shouldmake reasonable judg-
ments. It is better to have some kind of agreement than
to have nothing, and now it is in the national interest to
provide stability to the business community. In addition,
Gove, theMinister of the Environment, whose possibility
of resignation was discussed, also stated that he supports
the prime minister, and the chain resignation of ministers
has been halted for the time being. However, Gobe and
other ministers who are in a position to criticize the draft
agreement on withdrawal will also meet on the weekend
to find ways to persuade the PrimeMinister to amend the
draft withdrawal agreement, and it is forecasted that the
May administration will be in agreement with the EU.

2. D2: PrimeMinister Abe directedministers towork on the
implementation of supporting young researchers at the
government council as Professor Honjo, a special profes-
sor at Kyoto University who was selected for the Nobel
Prize inMedicine and Physiology, highlighted the impor-
tance of supporting young researchers. Professor Honjo
gave a presentation at the government’s conference called
General Science, Technology and InnovationConference
held at the PrimeMinister’s Office in order to suggest that
both amounts of national research funds for fundamental
researches and the number of young researches have been
decreasing and therefore government support is needed.
Prime Minister Abe stated Professor Honjo gave a very
candid talk about the importance of fundamental research
and reaffirmed the importance of creating opportunities
for young researchers to challenge as national support.
On that basis, Prime Minister Abe stated, We want the
government to carry out steady distribution of scientific
research grants to young researchers, and told related
ministers to work on the budget proposal for the next
fiscal year according to the presentation given by Pro-
fessor Honjo. After the meeting, Professor Honjo told
reporters that It is important to bring up the next genera-
tion of researchers, as countries without scientific power
have no future.

4.1.1 Word-based features

First,we createTF-IDFvectors (v1) fromall the documents to
measure similarity based on their terms. Each element of this
vector is a TF-IDF score for a word indicating how important
the element is to a document in the dataset. This score is a
multiplication of term frequency and inverse document fre-
quency. The term frequencymeans how frequently each term
(word) occurs in each document whereas the inverse docu-
ment frequency represents how rarely each term occurs in
whole documents. The formal definition is given as follows:

TFIDF(w, d,Dl) = t f w,d ∗ | Dl |
| {d ′ ∈ Dl | w ∈ d ′} | (1)

where tfw,d is the number of times a word w occurs in a
document d, | • | is the size of •. The second term of this
equation gives the number of all labeled data divided with
labeled data including w.

Algorithm 3Word-based feature vector creation
Input: A token list for a document t and a set of token list for all

documents tokens
Output: A tf-idf vector

1: Function WordFVecs(tokens, tokens_list)
2: vec = [0.0, . . . , 0.0] // its size equal to the size of a set of tokens.
3: for w ∈ tokens
4: vecw = TFIDF(w, tokens, tokens_list)
5: return vec

Algorithm 3 shows how to use Eq. 1 for a given document.
As a document is already converted to a token list, this algo-
rithm calculates the TF-IDF score for each word list. In the
algorithm, vecw represents an index for a word w.

Table 4 lists words that are portions of the results of
applying MeCab and removing stop words to the two actual
example texts (D1 and D2). As word-based features use all
words to make feature vectors, the dimensionality of this fea-
ture’s type tends to be high, leading to sparse vectors. In our
experiments, there are 24,594 words; thus, the dimensional-
ity of v1 is 24,594.

4.1.2 Semantic-based features

Next, we create feature vectors by applying Doc2Vec (v2),
LSA (v3) and LDA (v4) models to capture latent seman-
tic text structures. These three models capture the latent
semantics, but their algorithms differ. Doc2Vec is a neural
network-based algorithm. LSA performs a matrix decompo-
sition (SVD) on the term-document matrix whereas LDA
is a probabilistic model assuming a Dirichlet prior over
the latent topics. As shown in Algorithm 4, these feature
vectors are simply created from paragraph vectors by apply-
ing D2vFeature and topic distributions of LSA and LDA
by LSATopicDist and LDATopicDist, respectively. Note that
modelsA represents a model of A.

Algorithm 4 Semantic-based vector creation
Input: A token list for a document t and a set of token list for all

documents tokens
Output:Doc2vec, lda and lsa feature vectors

1: Function SemanticFVecs(tokens,models)
2: v2 = D2vFeature(tokens,modelsd2v)
3: v3 = LSATopicDist(tokens,modelslsa)
4: v4 = LDATopicDist(tokens,modelslda)
5: return v2, v3, v4
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Table 4 Words from example
texts. The listed words are
sub-sets of words of the example

D1

D2

Applying Algorithm 4 for tokens that are results of
Preprocess generates feature vectors whose dimension is 100
aswe set the value as a parameters in all the semantic analysis
(LDA, LSA, Doc2Vec and Word2Vec). As each element of
these vectors indicates a distribution of topics, these vectors
tend to be dense compared with the word-based feature.

4.1.3 Noun-context-based features

The objective of this feature type is to smooth the temporal
effects of words used for specific temporal durations. In this
paper,we call this kind ofword a temporalword.As this study
classifies texts of events, names of persons, events and groups
are oftenused indocuments such as,whodoeswhat, locations
where the events occurred and so on. Since somewords occur
for specific durations, our algorithm replaces temporal words
with semantically equivalent words that are commonly used
for all durations. For example, two texts Abraham Lincoln
won the election and Donald Trump won the election can
be targets of this study. If it is possible to identify that both
Abraham Lincoln and Donald Trump can be replaced with
the president, then the two texts become completely the same
texts.

In this paper, we apply a simple strategy that replaces
all nouns with their semantically similar words. From this,
temporal words can be removed by the replacements. This
study focuses on nouns as this type of word plays a key
role in distinguishing event categories. For example, diplo-
matic events tend to include names of politicians whereas
commercial events frequently mention production items. To
perform the replacement, we use two assumptions: (1) words
that are frequently used together are semantically similar to
each other and (2) meanings of frequent terms (such as presi-
dent, the prime minister, propose, accident and cause) can be
the same at different points in time. The first assumption is
widely used in natural language processes such as LSA and
Word2Vec. This study uses this assumption to locate words
for replacement. The second assumption uses the observation
that it is hard for the dominant meaning of frequently used
words to change in several languages [40,52]. For example,
the president tends to be used in political activities such as
nomination, defeat, serve, party, vote and congress. Indeed,
these words are commonly used in Wikipedia articles for

Abraham Lincoln and Donald Trump. Thus, this study uses
the second assumption as a reason for why our algorithm per-
forms the replacements to fill in the gap of temporal words.

The simple strategy may perform replacements for non-
temporal words even though the processes are unnecessary
for them.However, this strategyhas twobenefits. First, it does
not require any additional analysis to identify whether each
word is temporal or not. Second, it is beneficial to reduce the
sparsity of created feature vectors as the replacement should
increase the number of words describing events.

Figures 1, 2, 3 and 4 show the top-5 words for two tem-
poral and two non-temporal nouns from the two example
texts (D1 and D2). These two texts are related to govern-
ment policies for the UK and Japan; therefore, there are two
names of the politicians (May and Abe). Once their terms as
the Prime Minister expire, and different persons contribute
as the Prime Ministers, the two names may not be used in
event description frequently. Thus, once the noun (May) is
replaced with the 5 words displayed in Fig. 1 (postpose,
leaving, defeat, withdrawal and “form a Government”9) that
represent what the noun tries to accomplish, it is possible to
use words widely appearing in political event descriptions
instead of the temporal words. Figure 3 also shows similar
effects of the replacement forAbe; it is able to use the 5words
representing which party he belongs to (Liberal Democratic
Party), which position he is in the party (president), what is
the objective of his policy (deflation and break out) instead
of using the temporal word. Figures. 2 and 4 show the top-5
words for two non-temporal words (council and research).
We can see that there are no temporal words in the top-5s;
therefore, the replacement reduces sparsity without changing
the semantics of the word.

One possible concern of this replacement is that it is pos-
sible to include temporal words in the top-k such as Tanigaki,
which is the name of a person, as shown in Fig. 3. However,
the figure shows that the replacement that incorporates 4 non-
temporal ones that contribute to improvement share common
wordswith other documents. Indeed, the non-temporalwords
should have strong similarity within non-temporal words as
they can be used on all temporal durations. Although there
is a concerning situation, our experimental results show that

9 In Japanese, this term can be represented as a word.
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Fig. 1 Example top-5 for May. This figure plots top-5s for two nouns
(person and non-named entity)
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10

-10

5

-5

0

252010 155

Fig. 2 Example top-5 for council. This figure plots top-5s for two nouns
(person and non-named entity)

Tanigaki (谷垣)

Abe (安倍)
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president(総裁)

10
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Fig. 3 Example top-5 for Abe. This figure plots top-5s for two nouns
(person and non-named entity)

science (科学)

research (研究)
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Fig. 4 Example top-5 for research. This figure plots top-5s for two
nouns (person and non-named entity)

this type of feature contributes to improving classification
accuracy.

To capture the semantic similarity of words, we perform
word embedding through the Skip-gram model [42–44].
Since this technique assigns vectors to words so the closer
their meaning, the greater similarity they indicate, we replace
all nouns in documents with their top-k closest words on the
vectors. Algorithm 5 shows how to create this type of fea-
ture vector. After training the Skip-grammodel, the proposed
method locates top-k similar words for each noun. It then
replaces the nouns by their top-ks to create TF-IDF vectors
(v5) from the replaced words.

Algorithm 5 Noun-context vector creation
Input: A token list for a document t and a set of token list for all

documents tokens
Output:Anoun-context-based feature vector

1: Function NounContextFeature(tokens, tokens_list, k,models)
2: new_tokens = []
3: for n ∈ Noun(tokens)
4: new_tokens ← TopSimWords(n, k, ,modelsw2v)
5: return TFIDFFeature(new_tokens, tokens_list)

4.1.4 Combining feature vectors

Finally, we combine all the feature types and then perform
dimensional reduction to avoid sparsity. Let si be a size of
the i th feature vector. For each document, we create 5 fea-
ture vectors (v1, v2, …, v5), and then combine them to form
a feature vector; therefore, the size of a combined feature
vector is s1+ s2+· · ·+ s5. For the combined feature vectors,
we apply a method of dimensional reduction. In this paper,
we train the following three popular methods of dimensional
reduction on labeled data:
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1. L1 Norm Regularization (L1): This method trains the lin-
ear model penalized with the L1 norm, and then selects
the non-zero coefficients.

2. RandomForests (RFs): Thismethod calculates the impor-
tance for each feature and discards irrelevant features
according to the values of importance.

3. PCA: This method decomposes a multivariate dataset in a
set of successive orthogonal components that explain the
maximum amount of variance.

4.2 Classification

In this paper, training classifiers is performed on the results of
combined feature vectors. Since this paper focuses on design-
ing a feature selection method for effective multi-label event
classification, this paper implemented three popular classi-
fiers: naive bayes (NB), random forests (RFs), and SVMs
with RBF or linear kernels. These classifiers are trained as
one-vs-rest classification.

In addition, this paper trains the following graph-based
classifiers to estimate how well utilizing correlation between
labels works on the proposed feature selection scheme.

1. Label propagation (LP): LP is a graph-based SSL clas-
sification algorithm [76]. This algorithm employs cluster
assumption meaning that similar nodes tend to have com-
mon labels to calculate scores for assigning categories.
This calculation is performed by iteratively multiplying
label scores with similarities between nodes.

2. Dynamic LP (DLP): DLP is an extension of LP to take
label correlation [68].

3. LP through linear neighborhoods (LNP) [69]: LNP is
an extension of the LP algorithm to efficiently construct
graphs by applying KNN to incorporate similarity of lin-
ear neighborhoods into a probability matrix.

4. LP using amendable clamping (LPAC) [46]: LPAC is an
extension of the LP-based algorithm. LPAC is originally
designed for the label completion task ofMLC by empha-
sizing the cluster assumption; however, this algorithm
achieves better than traditional classifiers on a simple
MLC task. We use LPAC as a baseline in this study.

As these classifiers perform SSL, we additionally prepared
9000 unlabeled news articles fromCD-MainichiNewspapers
2012 data.

5 Experimental results

5.1 Parameter settings

In this paper, we set 100 as parameters of LDA, LSA,
Doc2Vec and Word2Vec and 5 as k for creating v5. We

use implementations of LDA, LSA, Doc2Vec andWord2Vec
from gensim.10

5.2 Evaluation criteria

There are several methods to measure MLC performances
from several different points of view. Usually, these perfor-
mances are measured by two kinds of methods: label-based
measures and example-based loss functions [64]. The label-
based measures decompose the evaluation with respect to
each label whereas the example-based loss functions com-
pute the average differences of the actual and the predicted
sets of labels over all examples.

For the label-based measurement, we use micro- and
macro-average precision, recall and F1 score. Formal equa-
tions of micro-average precision, recall and F1 score are
defined as follows:

mi P =
∑

i TPi∑
i (TPi + FPi )

(2)

mi R =
∑

i TPi∑
i (TPi + FNi )

(3)

miF1 = 2 mi P mi R

mi P + mi R
(4)

where TP, FP and FN are true positive, false positive and
false negative, respectively. The precision is defined as the
proportion of predicted labels that are truly relevant. The
recall is defined as the proportion of truly relevant labels that
are included in predictions. The trade-off between precision
and recall is formalized by their harmonic mean, called the
F1 score.

These micro-average measurements calculate metrics
globally by counting the total true positives, false negatives
and false positives. In contrast, the macro-average measure-
ments treat all classes equally; in other words, they compute
the metrics independently for each class and then take the
average. The formal definitions of macro-average precision,
recall and F1 are as follows:

maPi = TPi
TPi + FPi

(5)

maRi = TPi
TPi + FNi

(6)

maF1 =
(

∑

i

2 maPi maRi

maPi + maRi

)

/ | L | (7)

10 https://radimrehurek.com/gensim/models/ldamodel.html,
https://radimrehurek.com/gensim/models/lsimodel.html,
https://radimrehurek.com/gensim/models/doc2vec.html and
https://radimrehurek.com/gensim/models/word2vec.html.
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Further, we use average precision at K (ap@K), which
is one of the most popular metrics in information retrieval.
This metric corresponds to average precision among the top
K documents. The formal equation of average precision is
defined as follows:

Precision(k) = 1

k

k∑

i

ri (8)

AverageP = 1

| Dt |
∑

k<N

rkPrecision(k) (9)

where ri represents whether the prediction is correct or not
by using 1 (correct) or 0 (wrong), Dt is a set of test data and
N is the last rank where a classifier assigns a correct label to
the test data.

In addition, for multi-label accuracy, we use the Jaccard
index-based measurement (MA) and area under the receiver
operating characteristic curve (AUC). TheMAmeasurement
calculates a score for the dissimilarity between two sets by
dividing the difference of the sizes of the union and the inter-
section of the two sets with the size of the union. The formal
definition is given as follows:

MA = 1

N

N∑

i

|yi ∧ ŷi |
|yi ∨ ŷi | (10)

where ŷi is a label predicted by a classifier.
AUC is one of the most important metrics for evaluat-

ing classifier models. This metric measures the area under
the receiver operating characteristics (ROC) curve that repre-
sents the relationship between true positive and false positive
rate.

In the case where we use these metrics, the higher scores
they are, the better the evaluated classifiers are.

As for the example-based loss functions, hamming loss
(HL), ranking loss (RL) and log loss (LL) are popular mea-
surements in MLC. HL calculates the fraction of the wrong
labels to the total number of labels. RL means a proportion
of pairs of labels that are not correctly ordered. Finally, LL
calculates scores from probabilistic confidence. This metric
can be seen as a cross-entropy between the distribution of
the true labels and predictions. Their formal definitions are
given as follows:

HL = 1

NL

N∑

i

L∑

l

[[yi,l �= ŷi,l ]] (11)

RL = 1

N

N∑

i

∑

y j>yk

(

[[ŷi < ŷ j ]] + 1

2
[[ŷi = ŷ j ]]

)

(12)

Table 5 Feature selection accuracies. Micro-average F1 scores of
SVM-Lin. for different feature selection methods

PCA (%) RFs (%) L1 (%)

NB 30.0 57.1 60.2

RFs 28.8 55.2 50.3

SVM-Lin. 56.4 57.1 57.2

SVM-RBF 58.0 56.8 56.8

The bold-faced numbers indicate the best score for a classifier over the
three-dimensional reduction methods

LL = −
L∑

i

yi log(pi ) (13)

In these measurements, the smaller the scores, the better the
model performances.

We calculate all the above scores by averaging of 5-fold
cross-validation.

5.3 Discussions of accuracies

In the remainder of this section,wediscuss the results ofMLC
for past events. First, Sect. 5.3.1 compares accuracies for all
dimensional reduction methods to fix methodologies used in
the following discussions. Then, Sect. 5.3.2 investigates how
well the proposed feature vector creation correctly predicts
categories. Section 5.3.3 performs error analysis to better
understand why each classifier performed mis-predictions.
Finally, Sect. 5.3.4 analyzes which feature types contribute
to the improvement in the proposed method.

5.3.1 Accuracies of dimensional reductions

Q.Which dimensional reduction method was the best for
icro-average F1?
A. The L1-based dimensional reduction method exhib-
ited the best micro-averaging performance for F1.

Table 5 shows the micro-average F1 scores of NB, RFs,
SVM-Lin and SVM-RBF, which are trained on feature vec-
tors created by the three different feature selection methods.
We can see that L1-based feature selection for NB obtained
the best score; therefore, we show results of classifiers using
this method in the following section.

5.3.2 Accuracies of feature vectors creations

Q. Which classifier was the best for micro-average F1
scores?
A. The NB equipped with all features demonstrated the
best micro-average F1 scores.

123



74 Y. Sumikawa, R. Ikejiri

Ta
bl
e
6

m
iF

1
of

ba
se
lin

es
.S

co
re
s
fo
r
N
B
an
d
L
P-
ba
se
d
al
go
ri
th
m
s
ob
ta
in
ed

w
he
n
us
in
g
in
di
vi
du
al
fe
at
ur
e
gr
ou
ps

an
d
T
F-
ID

F,
re
sp
ec
tiv

el
y

C
at
eg
or
y

T
F-
ID

F
(v

1
)
(%

)
D
oc
2V

ec
(v

2
)
(%

)
L
SA

(v
3
)
(%

)
L
D
A
(v

4
)
(%

)
N
ou
n-
co
nt
ex
t(
v
5
)
(%

)
L
P
(%

)
D
L
P
(%

)
L
PA

C
(%

)
L
N
P
(%

)

C
r

23
.4

64
.7

66
.1

56
.1

69
.7

58
.2

59
.7

70
.7

66
.1

D
p

53
.4

71
.6

60
.5

65
.6

73
.8

59
.9

64
.1

71
.2

67
.7

P
r

0.
0

53
.4

45
.0

31
.4

38
.9

39
.2

41
.8

45
.9

46
.0

R
g

0.
0

20
.1

13
.1

4.
8

7.
6

23
.9

26
.0

26
.4

27
.8

E
n

1.
9

46
.8

41
.3

29
.7

5.
5

26
.2

35
.8

59
.6

45
.5

R
l

0.
0

50
.1
%

40
.0

44
.5

26
.0

20
.6

22
.4

53
.7

43
.5

D
s

8.
8

60
.4

60
.1

24
.9

28
.6

32
.5

22
.4

35
.6

47
.2

S
t

6.
4

36
.6

50
.0

19
.7

13
.5

23
.8

22
.4

33
.3

42
.3

C
n

0.
0

31
.0

31
.0

15
.8

27
.5

35
.0

31
.1

45
.2

44
.3

L
T

0.
0

36
.2

48
.1

22
.8

25
.3

22
.1

16
.8

0.
0

19
.5

P
M

0.
0

38
.5

35
.7

12
.8

0.
0

21
.1

29
.4

53
.3

40
.1

T
c

2.
5

52
.5

45
.3

36
.8

14
.9

29
.8

31
.1

42
.1

43
.9

W
r

0.
0

53
.2

35
.9

48
.2

14
.8

23
.8

29
.4

44
.1

40
.4

To
ta
l

16
.5

52
.9

50
.1

40
.8

43
.1

33
.4

34
.5

48
.9

48
.4

T
he

bo
ld
-f
ac
ed

nu
m
be
rs
in
di
ca
te
th
e
be
st
fo
r
a
pa
rt
ic
ul
ar

te
rm

gi
ve
n
th
e
m
et
ri
c

123



Feature selection for classifying multi-labeled past events 75

Ta
bl
e
7

m
iF

1
of

pr
op
os
ed

m
et
ho
ds
.S

co
re
s
w
he
n
us
in
g
al
lf
ea
tu
re
s
us
ed

to
ge
th
er

fo
r
N
B
,R

Fs
,S

V
M

an
d
L
P-
ba
se
d
al
go
ri
th
m
s
se
tti
ng
s
fo
r
ea
ch

cl
as
s

C
at
eg
or
y

A
ll+

N
B
(%

)
A
ll+

R
Fs

(%
)

A
ll+

SV
M
-R

B
F
(%

)
A
ll+

SV
M
-L
in
.(
%
)

A
ll+

L
P
(%

)
A
ll+

D
L
P
(%

)
A
ll+

L
PA

C
(%

)
A
ll+

L
N
P
(%

)

C
r

75
.8

69
.9

73
.0

71
.4

65
.1

58
.2

64
.9

60
.6

D
p

75
.8

69
.6

78
.0

76
.4

73
.8

59
.9

74
.1

69
.2

P
r

60
.6

49
.0

39
.3

36
.2

52
.4

39
.2

51
.7

50
.3

R
g

31
.3

22
.1

4.
4

0.
0

26
.2

23
.9

26
.0

26
.2

E
n

54
.4

25
.2

58
.4

59
.7

30
.3

26
.2

30
.3

37
.8

R
l

60
.1

57
.1

52
.1

35
.3

59
.5

20
.6

59
.5

55
.8

D
s

57
.4

45
.1

56
.6

52
.1

46
.9

32
.5

46
.9

44
.9

S
t

52
.8

41
.5

53
.4

52
.7

38
.9

23
.8

38
.9

41
.4

C
n

57
.3

33
.0

34
.6

30
.7

35
.7

35
.0

37
.7

38
.0

L
T

39
.5

18
.8

31
.6

15
.9

16
.6

22
.1

16
.6

20
.3

P
M

42
.4

24
.3

17
.7

19
.2

40
.2

21
.1

40
.2

40
.5

T
c

58
.6

34
.1

50
.0

35
.6

40
.1

29
.8

40
.1

38
.7

W
r

54
.8

35
.0

35
.5

26
.7

50
.7

23
.8

50
.4

41
.6

To
ta
l

60
.2

50
.3

56
.8

57
.2

52
.6

33
.4

52
.5

49
.3

T
he

bo
ld
-f
ac
ed

nu
m
be
rs
in
di
ca
te
th
e
be
st
fo
r
a
pa
rt
ic
ul
ar

te
rm

gi
ve
n
th
e
m
et
ri
c

123



76 Y. Sumikawa, R. Ikejiri

The micro-average F1 scores for all baselines and our
approaches are shown in Tables 6 and 7. Initially, we can see
that the combination of all features achieved the best results
for almost all categories as well as for the whole dataset.
Thus, we can conclude that our method is better than the
baselines. In particular, the F1 scores for 6 categories, Cr,
Pr, Rg, Rl, Cn and Tc, were improved more than 5 points
compared with the best results of individual feature groups.
Weaker results for Rg, LT and PM categories were likely due
to the relatively small size of training data compared with the
number of training data for the co-occurring categories (Cr
and Dp) as shown in Fig. 7 and Table 2.

To confirm the conclusions, we perform approximate ran-
domization tests [49] for the top-2 baselines (Doc2Vec and
LSA) with All+NB on micro-average F1. The compari-
son results (Doc2Vec vs. All+NB and LSA vs. All+NB)
showed 0.0310 and 0.0301, respectively, in the case where
we repeated comparisons 1000 in the test. Thus, we can claim
that the result of our classifier is statistically significant.

Q.Howwell did all classifiers perform in other measure-
ments (macro-average F1, MA, average precision@5,
HL, LL, RL and AUC)?
A. For macro-average F1, multi-label accuracy, average
precision@5 and RL, All+NB performed the best.
A. For HL and LL, SVM-RBF was the best.
A. For AUC, SVM-Lin. was the best.

We evaluated two other kinds of accuracies (macro-average
F1 (MF), multi-label accuracy (MA), average precision@5,
three loss functions (HL, LL and RL) and AUC in Table 8.
Similar to the results of micro-average F1, we can see that
combining all feature vectors improved the scores and gen-
erated the best outcomes. In particular, all the best scores
were generated from the combined all feature vectors by
All+NB for MF, MA and RL, All+SVM-RBF for average
precision@5, HL and LL or All+SVM-Lin. for AUC.

From the above results, we can conclude that combin-
ing all the features improves scores for all the categories.
However, the results also showed that two classifiers NB and
SVM-RBF achieved the best scores in many measurements.
To better understand the differences between the two classi-
fiers, we focus on the two classifiers in the remainder of this
experimental evaluations.

Q.Which was better, All+NB or All+SVM-RBF?
A. All+NB was better overall because All+NB’s micro-
average recall and F1 were on average approximately
30% and 10% higher than the values of All+SVM-RBF.
However, comparing micro-average precision scores,
All+SVM-RBF was better than All+NB approximately
by 10%.

Precision Recall F-score
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Fig. 5 Micro-average precision, recall and F1 scores for All+NB
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Fig. 6 Micro-average precision, recall and F1 scores for All+SVM-
RBF

Figures 5 and 6 showmicro-average precisions and recalls
aswell as F1 scores forAll+NBandAll+SVM-RBF.Looking
at All+NB’s result, this classifier achieved over 70% scores
in recall for 8 categories: Cr, Dp, Pr, En, Rl, St, Tc and
Wr. On the other hand, there are only 2 categories Cr and
Dp in which the classifier achieved over 70% scores in preci-
sion and F1-score. Looking at results of All+SVM-RBF, this
classifier obtained high precision scores in 4 categories: Cr,
Dp, Rl and Ds. However, its recall scores tended to be low
excluding Cr and Dp. If improving precision or reducing the
loss scores is important, SVM-RBF may be a good classifier
instead of NB.

Comparing the two classifiers, we can say that All+NB is
better thanAll+SVM-RBF because All+NB’smicro-average
recall and F1 were on average approximately 30% and 10%
higher than the corresponding All+SVM-RBF values.

To confirm these conclusions, we performed approximate
randomization tests for the two classifiers on micro-average
F1. The result showed 0.0213 in the case where the compar-
ison test was repeated 1000 times. Thus, we can claim that
All+NB is statistically significant from All+SVM-RBF.
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Table 8 Label- and
example-based results without
micro-average F1. Scores of
macro-average F1 (MF),
multi-label accuracy, (MA),
average precision@5 (ap@5),
hamming loss (HL), log loss
(LL), ranking loss (RL) and
AUC

MF (%) MA (%) ap@5 (%) HL LL RL AUC

TF-IDF (v1) 7.4 9.2 41.7 0.185 31.589 0.326 0.510

Doc2Vec (v2) 47.3 38.4 40.9 0.274 10.668 0.258 0.512

LSA (v3) 43.9 34.9 41.0 0.154 8.177 0.145 0.520

LDA (v4) 31.8 26.7 37.8 0.168 6.821 0.187 0.508

Noun-context (v5) 26.6 28.9 39.3 0.174 44.741 0.212 0.526

LP 32.0 20.1 28.6 0.799 6.450 0.373 0.518

DLP 33.3 20.9 28.6 0.791 6.705 0.361 0.500

LPAC 44.7 33.4 40.4 0.343 6.354 0.176 0.510

LNP 46.7 35.1 26.4 0.320 17.889 0.314 0.500

All+NB 55.4 45.8 42.5 0.191 9.314 0.138 0.519

All+RFs 40.3 35.6 40.1 0.171 10.565 0.242 0.528

All+SVM-RBF 45.0 43.1 42.4 0.145 5.292 0.143 0.530

All+SVM-Lin. 39.4 38.5 41.1 0.154 5.514 0.162 0.534

All+LP 44.5 34.2 38.8 0.189 5.674 0.152 0.518

All+DLP 32.0 20.1 28.0 0.799 6.523 0.386 0.500

All+LPAC 44.4 34.1 33.3 0.190 5.612 0.151 0.510

All+LNP 43.5 31.0 28.8 0.209 23.178 0.540 0.500

The bold-faced numbers indicate the best score for a classifier over the three-dimensional reduction methods

5.3.3 Error analysis

Q.Why was the result of Rg weak for all classifiers?
A. Events of the category tend to co-occur with other
categories (Cr and Dp) where the numbers of training
data for the co-occurring categories were approximately
twice those of the Rg category.

To better understand the reasons why the Rg category was
weak result in Table 7, we plot the number of co-occurring
category pairs in Fig. 7, in which clearly Cr and Dp are
often used with Rg. However, the numbers of training data
of Cr andDpwere approximately twice those of Rg as shown
in Table 3; therefore, the small size of training data can be
considered the reason for weak results for the Rg category.

Q. How and why did ALL+NB incorrectly predict
results?
Q. How and why did ALL+NB perform missing correct
label assignments?
A. The Pr and St categories were often wrongly
assigned to each other.
A. If several categories such as Cn, PM and Ds co-
occurred together on the same events, the categories
tended to be wrongly assigned to each other.

We next analyzed how and why our classifier performed
mis-predictions. In particular, we analyze (1) what categories
ALL+NB wrongly assigned data to and (2) what suitable
categories the classifier did not assign data to. Figure 8 shows
the categories that were incorrectly assigned to events. We

Fig. 7 Co-occurrences of labels

can see that severalDs (Disparity) eventswere assigned to the
Rg (Reign), Cn (Community), PM (Popular Movement) and
Wr (War) categories. One possible reason for assigningCn or
PM is that Ds category has a high co-occurrenceswith the two
categories as shown in Fig. 7. The three categories of events,
Wr,Rg and Ds, often refer to locations, which can be a reason
for wrongly assigning Wr or Rg to Ds events. For example,
an event text what economic or political policy issues may
trigger for causing economic disparity on a specific location
can be seen as a disparity-related event. As for both Wr- and
Rg-related events, a text which countries began to invade to
another country can belong to the categories.

We also observe that several Pr (Production) events were
wrongly assigned to the Ds or St (Study) categories. First,
it is relevant that there is a strong relationship between Pr

123



78 Y. Sumikawa, R. Ikejiri

Dp

Pr

Rg

En

Rl

Ds

St

Cn

LT

PM

Tc

Wr

Cr

Dp Pr Rg En Rl Ds St Cn LTPMTc WrCr

10

8

6

2

0

4

Fig. 8 Wrongly assigned categories by NB. The x axis represents cat-
egories that were wrongly assigned to events of y axis’s categories
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Fig. 9 Missed categories by NB. The x axis represents categories that
were correct but were not assigned to events of y axis’s categories

and St since many production events can be results of study
events. Also, these two category events may generate dispar-
ity; thus, these wrong assignments can be considerable.

We can see that Dp (Diplomacy) was often incorrectly
assigned to Pr, Ds, St or Tc (Technology) events. Dp
events include negotiation such as the Trans-Pacific Partner-
ship Agreement which is a trade agreement involving several
products; therefore, the classifierwrongly assigned Dp toPr.
The same reason can be considered for reasons of assigning
the category to St and Tc because it is possible to regard
outputs of these two categories as productions. Next, looking
at Fig. 7, we can see that some events commonly can have
Dp and Pr; it is a possible reason for the mis-prediction.

Figure 9 shows the number of categories that are attached
in the test data for which no classifiers were assigned. We
can see that several test data that were attached to two cate-
gories such as Cr (commerce) and Dp were often assigned
to only one of them. Similarly, the Pr category also missed
Cr events.

Q. Were there dependencies between different cate-
gories?
A. Regarding mutual information measurements, there
were strong dependencies between 3 categories, Tc, LT
and PM.
A. Regarding Euclidean distance measurements, events
of Cr, Dp and Pr or PM, Tc and Wrwere similar to each
other within the 3 categories.

We then calculated scores of the mutual information (MI)
that represent dependencies between categories. The formal
definition of MI is as follows:

MI(X ′
1, X

′
2) =

∑

x1∈X ′
1

∑

x2∈X ′
2

p(x1, x2) log

(
p(x1, x2)

p(x1)p(x2)

)

(14)

Figure 10 plots the obtained MI values between the cate-
gories. We can see that there are strong dependencies among
categories Tc, LT (Literature and Thought) and
PM. This result is considerable because some technologies
can affect our social life. For example, IT items, such as
personal computer, can change our work styles in ways like
office or remote working. The items also have potential of
creating movements such as affecting the work style not only
for specific persons/organizations but also for societies.

In addition, wemeasure similarities between different cat-
egories by Euclidean distance. The lower the score of the
distance between two feature vectors is, the more similar
they are. We calculate the distances for all combinations of
feature vectors of 2 categories and plot them in Fig. 11. The
scores among 3 categories of Cr, Dp and Pr were low. This
is because the 3 categories tend to be assigned to the same
feature vectors as shown in Fig. 7. Another observation is that
there were relatively strong dependencies among the 3 cat-
egories PM, Tc and Wr. Similar to the relationship between
LT, PM and Tc, technology can have strong relationships
with PM and Wr related events.

Q. Were there dependencies between feature vectors in
the same category?
A. The Pr, St and LT categories have strong event
dependencies.

We next investigate the dependencies of feature vectors by
MI in the same category. Table 9 shows the scores of 3 cat-
egories St, LT and Tc have relatively strong dependencies
between feature vectors in their categories compared with
other categories. In addition, we apply Euclidean distances
to measure the inner-category similarity. Interestingly, fea-
ture vectors of Tc are relatively similar to each other since its
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score is low. This result indicates that this category’s events
describe similar topics or use the same words.

5.3.4 Analyzing importance of feature vectors

Q. How was each feature important in this study?
Q. How well were scores of micro-average F1 for NB
and SVM-RBF equipped with the important features?
A. The Noun-context-based feature was the most used
feature type to create vectors.
A. Doc2Vec’s importance score was the highest of all
feature type.
A. The Noun-context + SVM-RBF had better scores for
En than ALL+NB although the total score of Noun-
context + SVM-RBF was weaker than that of ALL+NB.

Figure 12 shows ratios of the numbers of feature types used
in the result of applying the proposed method. We can see
that the noun-context type is the most used feature type. This

Table 9 Inner-category dependency and similarity. MI scores and
Euclidean distances of feature vectors in the same categories

Category MI Euc. Dist.

Cr 0.751 4.275

Dp 0.739 4.167

Pr 0.756 4.061

Rg 0.750 5.002

En 0.774 4.591

Rl 0.758 4.908

Ds 0.766 5.430

St 0.780 4.972

Cn 0.731 5.162

LT 0.784 5.445

PM 0.764 4.611

Tc 0.782 4.394

Wr 0.758 4.025

Ave. 0.761 4.69

The italic-faced number indicates the average score of all categories

26.9%

26.3%

1.2%

Noun-context
d2v
lsa

tf-idf
lda

44.2%

1.5%

Fig. 12 Ratio of important feature vectors

feature type occupies approximately 45% of the combined
feature vector.

In Fig. 13, we show the average importance values (blue
bars) and standard deviations (black lines) of our features.We
can see that the Doc2Vec and other semantic-based features
were the most important in event MLC. The noun-context
feature is the lowest in this figure.

Tables 10 and 11 show scores of six measurements
(micro- and macro-average F1, multi-label accuracy, ham-
ming loss, log loss and ranking loss) for NB and SVM-RBF
equipped with Doc2Vec and Noun-context-based feature
vectors. Looking at the result of SVM-RBF’s micro-average
F1, total scores were weaker than the ones of All+NB; how-
ever, there was a category (En) where SVM-RBF was better
than ALL+NB. In addition, three loss scores for SVM-RBF
were better than the ones for NB. On the other hand, com-
paring results of Doc2Vec and Noun-context-based feature
vectors for NB, the scores of Doc2Vec were better than ones
for the other more than 10% for 10 categories: Pr, Rg, En,
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Table 10 Micro-average F1
scores for the top important
feature. F1 scores for NB
obtained when using d2v and
Noun-context settings for each
class

Category All+NB All+SVM-RBF

Doc2Vec (%) Noun-context (%) Doc2Vec (%) Noun-context (%)

Cr 64.7 69.7 24.0 44.2

Dp 71.6 73.8 20.8 52.0

Pr 53.4 38.9 0.0 3.2

Rg 20.1 7.6 0.0 0.0

En 46.8 5.5 30.0 49.1

Rl 50.1 26.0 10.3 30.3

Ds 60.4 28.6 26.7 22.5

St 36.6 13.5 14.7 19.2

Cn 31.0 27.5 0.0 8.3

LT 36.2 25.3 2.9 4.0

PM 38.5 0.0 5.7 11.9

Tc 52.5 14.9 6.3 18.8

Wr 53.2 14.8 4.7 14.5

Total 52.9 43.1 15.4 30.4

Table 11 Scores for the top
important feature. Scores of
macro-average F1 (MF),
multi-label accuracy (MA),
hamming loss (HL), log loss
(LL), ranking loss (RL) for NB
and SVM-RBF

MF (%) MA (%) HL LL RL

NB Doc2Vec 47.3 38.4 0.274 10.668 0.258

Noun-context 26.6 28.9 0.174 44.741 0.212

SVM-RBF Doc2Vec 11.2 9.3 0.185 5.333 0.148

Noun-context 21.4 18.5 0.167 5.084 0.133

0.0014
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0.0010

0.0008
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0.0000
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Fig. 13 Feature importances

Rl, Ds, St, LT, PM, Tc and Wr. One possible reason for the
difference was the sizes of the feature vectors since the noun-
context-based feature type uses all words to create the feature
vector. The sizes of Doc2Vec andNoun-context feature types
are 100 and 24,594, respectively.

Q.Howwell did combinations of feature vectors improve
micro-average F1 scores?

Table 12 Feature combinations. Micro-average F1 scores for NB
equipped with incrementally added feature vectors

Simple (%) Dimensional reduction (%)

v5 43.1 54.2

v5 + v2 44.4 57.5

v5 + v2 + v3 45.0 58.8

v5 + v2 + v3 + v4 45.0 59.1

All 36.5 60.2

A.Adding Doc2Vec to noun-context resulted in the most
improvement. Adding other feature types with dimen-
sional reduction also improved the score by approxi-
mately 1%.
A. Applying the dimensional reduction method was
important as combining feature types without themethod
resulted in lower scores than the case where the method
was used. In particular, adding TF-IDF without the
method reduced the score.

We then investigate which features truly contribute to
improving the micro-average F1 scores. We incremen-
tally combined Noun-context-based feature vectors with
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Doc2Vec, LSA, LDA and TF-IDF in descending order of
numbers of used feature type in combined all feature types
and results are contained in Table 12. The simple column
means that we combine feature vectors without apply-
ing dimensional reduction methods and train NB on them
whereas the dimensional reduction column lists the score
for NB trained on the results of applying L1 dimensional
reduction. The dimensional reduction column indicates that
it is able to linearly improve accuracy by combining feature
vectors with applying a dimensional reduction. The sim-
ple column also shows that adding feature types makes the
improvement excluding TF-IDF.

6 Conclusions

Understanding categories of events can have many appli-
cations including support for building historical analogy
models, across-time connection of events/entities, or struc-
turing longer text collections such as Wikipedia (e.g., year
related articles). In this paper we introduce a classification
technique for multi-labeled documents of events.We showed
that our technique could improvemicro-average F1 scores by
approximately 10%. For this evaluation, we created a new
ground truth dataset, and have made it available on a public
repository.

Future work will (a) investigate a novel feature selection
algorithm that is robust for training data. It is considerable
that the feature selection process also utilizes correlations;
however, one of the trends inmulti-label classification (MLC)
studies is how to train classifier on an incomplete dataset
whose labeled data have wrongly assigned categories or
missed suitable ones. This trend indicates that it is prob-
lematic for feature selection to simply use the correlation
that leads to incorporating the wrong correlation. One of
the solutions is to find implicit semantic intermediate labels
from feature vectors; however, this is essentially classifica-
tion. Thus, although it might be possible to incorporate the
findings of implicit semantics to feature vectors, it might
not be straightforward. We believe that this study can be
useful as a baseline to facilitate designing the novel feature
selection method. We also plan to (b) propose a novel and
effective learning system specialized to history. This system
will bridge past and present events by estimating how well
each event is relevant to event categories.
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