
Int J Digit Libr (2015) 16:229–246
DOI 10.1007/s00799-015-0158-y

On the combination of domain-specific heuristics for author name
disambiguation: the nearest cluster method

Alan Filipe Santana1 · Marcos André Gonçalves1 · Alberto H. F. Laender1 ·
Anderson A. Ferreira2

Received: 2 December 2014 / Revised: 9 June 2015 / Accepted: 22 June 2015 / Published online: 7 July 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Author name disambiguation has been one of the
hardest problems faced by digital libraries since their early
days. Historically, supervised solutions have empirically out-
performed those based on heuristics, but with the burden of
having to rely on manually labeled training sets for the learn-
ing process. Moreover, most supervised solutions just apply
some type of generic machine learning solution and do not
exploit specific knowledge about the problem. In this article,
we follow a similar reasoning, but in the opposite direc-
tion. Instead of extending an existing supervised solution, we
propose a set of carefully designed heuristics and similarity
functions, and apply supervision only to optimize such para-
meters for each particular dataset. As our experiments show,
the result is a very effective, efficient and practical author
name disambiguation method that can be used in many dif-
ferent scenarios. In fact, we show that our method can beat
state-of-the-art supervised methods in terms of effectiveness
in many situations while being orders of magnitude faster.
It can also run without any training information, using only
default parameters, and still be very competitive when com-
pared to these supervised methods (beating several of them)
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and better than most existing unsupervised author name dis-
ambiguation solutions.
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1 Introduction

It is a consensus that author name disambiguation (AND) has
been one of the hardest problems faced by digital libraries
since their early days. This can be demonstrated by the large
volume of literature published on the topic in the last decade
(e.g., a recent survey cites literally dozens of works [7]) and
the continuous interest by the research community in the
problem. Although some efforts do exist to provide a global
unique identifier to all authors, this will not work in all cases,
for instance, while processing textual citations in papers for
bibliographic analysis. Thus, automatic solutions, which are
highly effective, efficient and practical in most situations, are
still in need.

Most automated solutions in the literature exploit either
some problem-specific heuristics to define similarity func-
tions to be used by clustering or author assignment solutions
or exploit supervised methods that learn such functions [7].
Historically, supervised solutions have empirically outper-
formed the ones based on heuristics, with the burden of
having to rely on manually labeled training sets for the learn-
ing process. Such training sets are usually very expensive and
cumbersome to obtain. Furthermore, such supervised solu-
tions may not be practical at all in real-word situations in
which new ambiguous authors (not present in a “static” train-
ing set) do appear all the time and changes in the publication
patterns of known authors are common.

Moreover, most supervised solutions just apply some type
of generic machine learning solution and do not exploit
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specific knowledge about the problem that is usually embed-
ded in the heuristic-based solutions. The few exceptions we
know [25] extend some generic supervised solutions to con-
sider a few aspects inherent to the problem, thus presenting
the best effectiveness results reported in the literature.

In this article, we follow a similar reasoning, but in
the opposite direction. Instead of extending an existing
supervised solution, we propose a set of carefully designed
heuristics and similarity functions based on our experience
of almost a decade working on the problem. We use the pro-
posed heuristics and similarity functions to find the nearest
author, represented by a cluster of citations (thus the name
of our method: nearest cluster), and assign the ambiguous
citation to that author. If no cluster is “near enough”, the
method assumes that a new author is being inserted into the
digital library. There are also some heuristics to incorporate
reliable predictions into the disambiguation process and to
merge clusters of similar authors. As our solution requires
some parameters to be defined, supervision is used mostly to
optimize such parameters for each particular dataset. Notice,
however, that our solution can be run without such super-
vised step as it does not learn any particular model from the
training set; the model is already encoded in the heuristics
and similarity functions we propose.

Our experiments with several collections, using only the
minimum amount of information present in bibliographic
citations, namely, author names and publication and venue
titles, demonstrate that our proposed method has a number
of desired properties. First of all, it is highly effective—
in the experiments our method has produced significant
effectiveness gains against the best state-of-the-art (super-
vised) method. Second, it is highly efficient, having a low
computational complexity. In fact, when compared to this
aforementioned method, our solution is orders of magnitude
faster (about 6,500 times). If comparedwith another fast “nat-
ural” baseline, our method is as fast as it but up to 58 %more
effective.And third, it is highly practical—besides using only
the minimum amount of information available in a citation
(and thus not relying on other types of information usually
hard to obtain or simply not available at all, such as author
affiliation or emails), we show that our method is very insen-
sitive to several parameters and very easy to configure using
some general rules.

In addition, the proposed solution can run without any
supervision, still producing very reasonable results with
default parameters, or by exploiting a previously proposed
technique for automatically building training sets for AND
tasks [6,9]. Moreover, our method can run in an incremental
way, disambiguating only new citations inserted to the digi-
tal library (differently from clustering solutions that always
disambiguate the digital library as whole) and is able to auto-
matically incorporate new information to the process (e.g.,

the existence of new authors not previously seen in the train-
ing data).

We also perform a thorough analysis of cases of error of
ourmethod, i.e., cases in which citations were assigned to the
wrong authors. This analysis shows that more than half of the
errors are due to the lack of information in the training data
or due to the very high ambiguity of the references, showing
that improvements are very difficult to obtain and that we are
almost on the limits of the effectiveness that can be achieved
with such type of solution.

Finally, we provide a qualitative analysis of our solution
considering all baselines used for comparison in our exper-
iments and show that our proposed method possesses most
of the qualities of a good AND solution should have, mainly
when compared to the alternative approaches.

This article is organized as follows. Section 2 covers
related work. Section 3 describes our proposed method,
including details about how its parameters are estimated.
Section 4 details our experimental evaluation. Finally, Sect. 5
concludes the paper, including perspectives for future work.

2 Related work

According to Ferreira et al. [7], AND methods may be
broadly classified in two categories according to the type of
approach they perform: author grouping methods and author
assignment methods.

2.1 Author grouping methods

Author grouping methods exploit the similarity among the
citations in order to group them by using some clustering
technique. In this category, we may cite several methods [2,
4,5,12,14,19,23,24,26].

Bhattacharya and Getoor [2] propose a combined similar-
ity function based on terms present in a citation and relational
information between disambiguated coauthor names of the
citations. A greed agglomerative algorithm uses such a func-
tion to group the most similar citations in clusters.

Cota et al. [4] propose a heuristic-based hierarchical clus-
tering method (HHC) that is based on two assumptions: (1)
very rarely two citations with similar author names shar-
ing similar coauthor names are two different authors and (2)
authors usually publish on the same subjects or venues during
their careers. HHC has two steps. The first step creates clus-
ters of citations using the coauthor names and the second step
successively fuses similar clusters based on the publication
and venue titles. Each cluster contains aggregated informa-
tion of all citations for each attribute in the cluster, providing
more information for the next round of fusion.
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In [5], Fan et al. propose GHOST (GrapHical framewOrk
for name diSambiguaTion), a framework that represents a
collection of citations as a graph in which each vertex rep-
resents a citation and each undirected edge represents a
coauthorship between two citations. Fan et al. also propose a
new similarity function based on the formula that calculates
the resistance of a parallel circuit and use the Affinity Prop-
agation clustering algorithm to group the citations of a same
author.

Han et al. [12] propose the use ofK-way spectral clustering
with QR decomposition to obtain a given number of citation
clusters where each cluster is associated to an author. To
calculate the similarity among the citations, Han et al. apply
the cosine similarity function on the references.

Huang et al. [14] exploit DBSCAN, a density-based clus-
tering algorithm, for clustering references by author. The
similarity function used by DBSCAN is learned by an active
support vector machine algorithm (LaSVM), representing
the comparison between two citations by a similarity vector,
where each feature represents the comparison of an attribute
of the two citations.

In [26], Wu et al. propose a hierarchical agglomerative
clustering algorithm based on Dempster-Shafer theory in
combination with Shannons entropy to disambiguate the
author names. Dempster-Shafer theory fuses evidences to
obtain more reliable candidate clusters for fusion and Shan-
nons entropy uncovers the importance of each feature.

Some works propose disambiguating author names in
PubMed1 citations [19,23,24]. Torvik et al. [23] propose
to learn a probabilistic metric for determining the similar-
ity among PubMed citations while, in [24], Treeratpituk and
Giles use a Random Forest classifier to learn the similarity
function between citations. Torvik et al. [23] also propose a
heuristic for automatically generating training examples and
a new agglomerative clustering algorithm for grouping cita-
tions of a same author. In [19], Liu et al. present a system for
disambiguating author names in PubMed that automatically
obtains training examples based on low-frequency author
names and pairs of citations in different ambiguous groups,
besides using a Huber classifier to learn weight functions
jointly with an agglomerative clustering technique to group
the citations of a same author.

2.2 Author assignment methods

Author assignment methods directly assign the citations
to their corresponding authors using either a supervised
classification [6,8,10,25] or a model-based clustering tech-
nique [11,22]. These methods use a training set or perform
in an interactive way to obtain models to predict the author
of a citation. For example, in [10], Han et al. propose two

1 http://www.ncbi.nlm.nih.gov/pubmed/.

supervisedmethods basedonnaïveBayes andSupportVector
Machines learning techniques. Both methods learn a disam-
biguation function using a set of training examples to predict
the author of each citation. Aiming to eliminate the set of
training examples, in [11], Han et al. present an unsuper-
vised hierarchical version of the naïve Bayes-based method
for modeling each author by estimating the parameters using
the Expectation Maximization Algorithm.

In [22], Tang et al. present a probabilistic framework based
on Hidden Markov Random Models for the polysemy sub-
problem. In such a work, the authors use evidence based on
content (i.e., terms of the citation attributes) and relationships
between citations (e.g., coauthor names in common) for dis-
ambiguating author names. The authors also use Bayesian
Information Criterion to estimate the number of authors of a
collection.

In [25], Veloso et al. propose SLAND, amethod that infers
the author of a citation by using a supervised rule-based asso-
ciative classifier. Themethod is also capable of improving the
coverage of the training set by means of reliable predictions,
and detecting authors without any citation in the training set.
Aiming to reduce the number of training examples to com-
pose the training set, Ferreira et al. [8] present SAND, a new
active sampling strategy based on associative rules for the
disambiguation task. Then, in [6,9], they extend their pre-
vious work to eliminate the need of manually providing the
training examples.

2.3 Final remarks

Besides classifying the methods according to the type of
approach they use, alternatively, we can group them accord-
ing to the evidence exploited in the AND task: citation
attributes (only) [4–6,10,24,25], Web information [15,16,
20], or implicit data that can be extracted from the avail-
able attributes [21]. Some methods [23] also assume the
availability of additional information such as emails, affilia-
tions, addresses, paper headers, which is not always available
or easy to obtain, although, if existent, may help a lot the
process.

Our method, which can be considered an author assign-
ment one, follows a totally different path when compared
to what have been historically done in AND tasks. In here,
instead of simply applying a generic machine learning solu-
tion or adapting it to the problem, we use our accumulated
experience on the problem topropose a set of domain-specific
heuristics to solve the AND task, using supervision (i.e.,
training data) only to adapt the method to specific idiosyn-
crasies of the target dataset. Notice that our proposed method
can work without any supervision by using a set of default
parameters. We also take advantage of a strategy previously
proposed in the literature [6,9] for automatically building
training sets for AND tasks with no manual supervision. Our
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Table 1 Notation table
Notation Description

ci = cci ∪ cti ∪ cv
i Citation represented as sets of terms for coauthors (cci ) and

publication and venue titles (cti and cv
i , respectively)

cxi = {tl , tm , ...} Attribute of a citation represented as a set of terms

ai = {cl , cm , ...} Author i represented as a group of citations

A = {a1, a2, ..., an} Set of authors defined in the training data

D = ⋃n
i=1 ai Set of citations in the training data

ni = |{a j : a j ∈ A ∧ ∃cl ∈ a j , ti ∈ cl }| Number of authors who used term ti in some citation

f reqi = |{c j : c j ∈ D ∧ ti ∈ c j }| Number of citations having term ti

f reqi, j = |{ck : ck ∈ a j ∧ ti ∈ ck}| Number of citations in group a j that have term ti

wc, wt , wv Weights assigned to the coauthor, publication and venue title
attributes, respectively

experimental results show that our method combines aspects
of effectiveness, efficiency and practicability rarely found in
any other method proposed in the literature.

3 Proposed method

In this section, we present our proposedANDmethod and the
procedures used to estimate its parameters. In our method,
citations are represented as sets of terms occurring in the
list of coauthors and publication and venue titles2. From
the list of coauthors, we obtain terms formed by the ini-
tial letter of their first name appended to the coauthors’ last
name. Terms in the publication and venue titles are obtained
after the removal of stop words and stemming of the remain-
ing words, by using Porter’s algorithm [1]. For the equa-
tions defined next, we consider the notations presented in
Table 1.

3.1 Nearest cluster model

Anauthor publication profilemaybe characterizedby the dis-
tributionof the terms found in her bibliographic citations. The
list of coauthors captures her collaboration networkwhile the
set of terms in the venue and publication titles capture her
research interests. Thus, each term present in a citation cap-
tures some evidence of the association between a citation and
a reference in this citation. The strength of such an evidence
varies according to the attribute to which it belongs and its
discriminative capability. For instance, the presence of coau-
thors in common in two citations is a stronger evidence that
these two citations belong to the same author than the occur-
rence of a common term in the titles. Such differences in the

2 We here work with the minimum amount of information found in a
citation in order to illustrate the practical capabilities of our method in
real-world scenarios, but in other contexts citations may include other
attributes such as authors’ affiliations or emails.

importance of the attributes have been exploited by several
disambiguation methods (e.g., [18]).

Based on such observations, a simple disambiguation
method consists in defining a similarity function between
authors (represented as a group/cluster of citations) and an
ambiguous citation. Disambiguation of a citation ck is per-
formed by identifying the author whose group has the highest
similarity with ck . Equation 1 presents the similarity function
between a citation ck and an author a j using the proposed
method. Such function consists of a weighted sum of the
similarities produced considering each attribute in isolation.

sim(ck, a j ) = wc f (c
c
k, a j ) + wt f (c

t
k, a j ) + wv f (c

v
k , a j )

(1)

It should be noticed that a related idea is presented in [18]
to identify false citations not belonging to an author due to
homonyms. In that work, the similarities between vectors
of terms in attributes and the set of citations of an author
are computed using the traditional cosine similarity. We, on
the other hand, propose our own similarity functions specific
for the problem (see next). In any case, we use the above
mentioned work as one of our baselines.

In this work, our proposed method is applied in a generic
way for solving the disambiguation task, using our own sim-
ilarity function defined as

f (cxk , a j ) = 1

|cxk |
∑

ti∈cxk
w(ti , a j ) (2)

where,

w(ti , a j ) =

⎧
⎪⎨

⎪⎩

(

1+ 1 − ni
n

) (
f req2i, j + 1

|a j | f reqi + 2

)α

if ni > 0,

0 otherwise.
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Functionw(ti , a j )weights the terms of each citation, return-
ing a value between 0 and 1, defined according to the
following problem-specific heuristics:

– The higher the number of authors who used a term ti , the
lower its discriminative power. The sum (1+ (1−ni )/n)

returns 1 if the terms are used only in one group or 1/n
if the terms has been used in all groups.

– Given the occurrence of a term ti , the value of the con-
ditional probability P(a j |ti ) gives us evidence of the
strength of the association between the citation that pos-
sesses term ti and author a j . Such a probability may be
estimated by the fraction f reqi, j/ f reqi , however such an
estimationmay be biased due to the high imbalance com-
monly found in training data for disambiguation tasks. It
is well know that publication patterns have a very skewed
distribution: few authors publish a lot while most authors
have smaller figures. To consider and reduce this possible
bias wemultiply this estimate by the distribution of terms
in the group, estimated by the fraction f reqi, j/|a j |.

– Considering that in disambiguation tasks the training data
are usually not very large (due to the inherent costs in
generating it), in order to produce accurate estimates of
probabilities and terms’ distributions we added constants
(1 and 2, see Eq. 2) and,mainly, theα exponent to smooth
the calculations of these factors. The value of the α para-
meter, defined in the interval [0, 1], controls the influence
on the discriminative factor in the finalweight of the term.
The value for this factor can be determined by cross-
validation in the training set.

3.2 Beyond similarity: domain-specific heuristics

In the course of our 10-year history working on this prob-
lem,we have found that some domain-specific issues are very
important and should be incorporated by any AND solution.
For instance, treatment of “new” ambiguous authors, i.e.,
authors not previously known to the methods, and adaptabil-
ity to changes in publication patterns, are two phenomena
that do occur in real-world collections andmust be taken into
consideration. Thus, the similarity values between a citation
and groups of citations associatedwith authors in the training
set can be used to cope with both issues.

The main steps of our proposed method are shown in
Algorithm 1. During disambiguation, we keep two sets of
citations: the training set D, defined by a set of authors A and
a set of already assigned citations E but not (yet) included in
the training data D. Such division is performed to allow that
doubtful citations be re-evaluated at the moment that new
citations are included in the training set. In the following,
we detail the steps of the algorithm referring to the adopted
strategies to consider the automatic inclusion of new citations
and new authors in the training set.

Algorithm 1 Name Disambiguation
Require: Training Set A, test citation ck , set E of already assigned citations not (yet)

included in D
Ensure: Associate an author al with a citation ck
1: G ← ∅
2: for all a j ∈ A do � Calculating similarities

3: Calculate sim(ck , a j ) according to Equation 1
4: if sim(ck , a j ) > 0 then
5: G ← G ∪ {a j }
6: end if
7: end for
8: Let al be the author with highest sim()

9: Let am be the author with the second highest sim()

10: Calculate Δ(ck ) according to Equation 3

11: if sim(ck , al ) < γ then � Checking for new author

12: az ← {ck }
13: A ← A ∪ {az }
14: else if Δ(ck ) > Δmin then � Reliable prediction?

15: al ← al ∪ {ck }
16: for all a j ∈ G do � Checking clusters similarities

17: Let dl, j be the cosine similarity between al and a j
18: if dl, j > φ then
19: al ← al ∪ a j
20: A ← A − {a j }
21: end if
22: end for
23: El ← {c j |c j ∈ E ∧ c j ∩ ck 
= ∅}
24: for all c j ∈ El do � Checking doubtful predictions

25: Update c j similarities
26: if Δ(c j ) > Δmin then
27: Include c j in the training set
28: Perform a cluster union, if necessary
29: E ← E − {c j }
30: end if
31: end for
32: else � Just classify and include citation in set E
33: Associate an author al with a citation ck
34: E ← E ∪ {ck }
35: end if

3.2.1 Including new citations into the training set

Adaptability issues try to cope with two aspects inherent to
AND: lack of information in the current training set and the
capability of capturing slowly changing publication patterns
of existing authors (i.e., present in the training data). We
cope with both issues by proposing heuristics to enhance
and incorporate new information into the training data.

In more details, if a large portion of the terms in a citation
ck is mainly used by only one specific author a j , specially
regarding coauthor names, there is a large confidence that ck
belongs to a j . By using Equ. 1, a simple confidence metric
on such assignment can be obtained based on the similarity
between ck and the first and second most similar authors, al
and am , respectively, as given by the following equation:

�(ck) = sim(ck, al)

(
2 · sim(ck, al)

sim(ck, al) + sim(ck, am)
− 1

)

(3)

This metric combines information about how close ck
is to al and how distant it is from the other authors. In
the SLAND method [25], a close baseline, the confidence
estimate exploits only the distance between the highest con-
ditional probability p̂(al |ck) and the others, independently
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on how confident this highest probability is. This allows the
inclusion of examples in the training data with low confi-
dence. Given a limit �min, the assignments with �(ck) >

�min canbe considered confident enough and canbe included
in the training data. At this moment, the assigned citations
not included in the training data (set E) that have similar
terms are analyzed again (lines 23–31 in Algorithm 1). This
approach allows the original method to automatically correct
eventual misclassifications, given that the amount of noise
introduced in the training is low. In Sect. 3.3, we present the
proposed strategy to define �min from the training data.

3.2.2 Detecting new authors

A low similarity between a citation and its most similar
group in the training set may indicate the presence of a
new author (not in the current training data) or simply a
shift of research interests of an existing author. Thus, we
introduced the following two additional thresholds to help
defining the probability of finding a new author and to control
the amount of fragmentation inserted into the training, i.e.,
distinct groups whose citations belong to the same author:
(i) minimum similarity value between a citation and a group
of citations, γ , needed to assign a citation to an author; (ii)
minimum similarity value between two clusters of citations,
φ, to consider them as belonging to the same author.

The γ parameter also helps us to control the purity of the
groups as it introduces a minimal requirement for perform-
ing an actual author assignment. Notice, however, that even
with small values for the γ threshold, the citation groups for
authors who work in different research lines may still result
in some fragmentation. To alleviate this problem, every time
a new citation is inserted into the training set, the similarities
between the group assigned to ck and all the other groups that
have at least one term shared with ck are re-calculated (lines
17 and 28 in Algorithm 1). If such similarity is greater than
φ, these clusters are merged. Notice that in this procedure,
we do not take into accountmanually labeled authors/groups,
since we assume the authorship of these citations is correct
for most cases.

For comparing two groups, any distance function may be
used. Here we used the cosine similarity applied to the term
vectors of all citations in the groups weighted according to
Eq. 4:

t f id f (ti , a j ) = (
1 + log2 f reqi, j

) ·
(

1 + log2
|A|
ni

)

· wx

(4)

This function exploits, besides the TFIDF (term
frequency—inverse document frequency)weighting scheme,
the wx weights defined for each attribute x containing term

i , the same weight used in Eq. 1. The values of parameters
γ and φ may be obtained by cross-validation in the training
set. Next, we detail the parameter estimation procedures.

3.3 Estimation of parameters

Our proposed method has seven parameters: wc, wt , wv, α,

�min, γ and φ. The best values for these parameters may
be obtained using standard procedures of cross-validation
in the training set, However in order to increase efficiency
of this search, we proposed a few strategies. The process is
performed in five steps in the following order: (1) definition
of parameterα; (2) definition of the values forweightswc, wt

andwv; (3) definitionof value for�min; (4) definitionof value
for γ ; and (5) definition of value for φ.

Parameter α is defined by testing values 0.1, 0.2, 0.3, 0.4
and 0.5 using cross-validation in the training set. These val-
ues, determined empirically, define the weight of each term
based mainly on its discriminative capability. In this proce-
dure, the weights wc, wt and wv were all configured with a
standard value 1/3. In this and some other steps of the para-
meter search, the method does not identify new authors nor
includes new citations in the training. For the other parame-
ters, the procedures are described next.

3.3.1 Attribute weights

For a citation ck to be correctly associated with an author
al , the weights must be defined so that sim(ck, al) >

sim(ck, am),∀am ∈ A − {al}. Based on the training data,
it is possible to define a set of inequalities considering the
difference of similarities between each attribute in the form
wc ·diffc +wt ·diff t +wv ·diffv > 0, where diffx represents
the difference f (cxk , al) − f (cxk , am).

By using, again, a cross-validation procedure in the train-
ing set, we obtain approximately n̄|D| inequalities that
compose a system, possibly unsolvable. However, the values
of the calculated differences, i.e., diffc, diff t and diffv , reflect
the degree of importance of each attribute. For instance, if
many authors publish in the same venues, some values of
diffv will be very low indicating that the weight wv should
not be higher than wc or wt .

Considering such observations, the adopted strategy for
defining the attribute weights consists of using the sum-
mations of the differences of the similarities between each
attribute weighted by the total similarity as shown in Eq. 5:

wx ≈
∑

ck∈D

∑

am∈A−{al }
diff x · sim(ck, am) (5)

where x represents a given attribute and al is the correct
author of the citation. The weights are defined after a nor-
malization that consists of calculating the proportion of the
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total value with respect to the other values. If the minimum
value is negative, all values are updated by summing up the
absolute minimum plus 1.

3.3.2 Minimum confidence

The �min value must be defined so that, for a given citation
ck with �(ck) > �min, the probability of ck being correctly
assigned is close to 1. Based on the definition of the α,wc, wt

and wv parameters, a new cross-validation procedure is per-
formed to fill in a matrix with the calculated values of � and
a variable indicating a correct or wrong assignment. These
values are ordered and an accuracy rate is calculated for each
line in the matrix. The lowest value of � associated with an
accuracy of at least 90% is attributed to�min. Such accuracy
has been empirically defined, but it can be adjusted to con-
trol the level of noise allowed in the training set during the
disambiguation process.

If the amount of training is very low, it may occur that no
suitable value for �min can be found. In this case, we used
the formula �min = (wx + wy)/2 to define the value of this
parameter, where wx represents the lowest weight and wy

the second lowest weight. This value expresses the expected
similarity value when a citation has few discriminative terms
related to a group.

3.3.3 Minimum evidence

The value for the γ parameter was calculated by maximizing
the tradeoff between the rate of correct assignments and the
rate of identification of new authors. The higher the value
of γ , the higher the chance of identifying new authors, with
the downside of the possibility of increasing fragmentation
in the final result. This tradeoff may be represented as the
following sum of probabilities:

p̂(sim(ck, ax ) < γ |az /∈ A) p̂(az /∈ A)

+ p̂(sim(ck, ax ) ≥ γ |az ∈ A) p̂(az ∈ A)

where ck represents a citation, ax the group with highest
similarity with ck and az the correct group of ck . The prob-
ability that a citation belongs to an author absent in the
training set p̂(az /∈ A) was approximated by the fraction
(|A| + 1)/(|D| + 2), although this value may be manually
set in order to control the purity of the generated clusters.
The conditional probabilities were estimated based on the
following steps:

1. For each citation ck ∈ D and author a j ∈ A, we calculate
similarities sim(ck, a j ) not considering the presence of
ck in the training set; this is similar to a leave-one-out
validation procedure.

2. For each citation ck ∈ D we store in amatrix, the similar-
ity value of the citation group sim(ck, az) and the highest
obtained similarity not considering the similaritywith the
correct group sim(ck, ax ).

3. The matrix is stored in decreasing order of sim(ck, ax )
values so that the positions of each value correspond to
the number of citations in the training set that would
not be identified if the value for γ was smaller than
sim(ck, ax ). These positions are used to estimate the
probabilities p̂(sim(ck, ax ) < γ |az /∈ A).

4. Thematrix is ordered in increasingvalue of sim(ck, az) so
that the positions of each value correspond to the number
of citations with authors in the training set that would
not be correctly assigned if the parameter γ was higher
than sim(ck, az). These positions are used to estimate the
probabilities p̂(sim(ck, ax ) ≥ γ |az ∈ A).

With the estimated probabilities, the final value for γ is
defined as the one that maximizes the sum presented in the
beginning of this section. If the amount of training is very
low, the value for γ may also be low, thus we empirically
define a minimum value for this parameter corresponding to
1
4 of the attribute value with the lowest weight. We analyze
the sensitivity of the method to this parameter in our experi-
mental evaluation.

3.3.4 Minimum cluster similarity

The φ parameter was designed to reduce fragmentation
caused by the lack of evidence in assigning a citation. To
calculate the value of this parameter, the training set was
split into two halves. With this we expect to have approxi-
mately two clusters per author. The similarities between each
pair of clusters belonging to the two different partitions of
the training are stored in a matrix along with a variable indi-
cating whether these two groups belong to the same author
or not. Based on this procedure, we define the value of φ as
the one corresponding to the lowest similarity value associ-
ated with an error of at most one incorrect cluster match. In
the case of small amounts of training, this value can be very
low, therefore we define for it a minimal empirical value of
0.075. We also analyze the sensitivity of the method to this
parameter in our experimental evaluation.

3.3.5 Self-training

When no training data are available, our method can be man-
ually configured (for this, some guidelines are presented in
Sect. 4.5.5) or we may use a strategy to automatically create
the training data. Ferreira et al. [6] have proposed a procedure
to create and select pure clusters in order to train the SLAND
method. Here, this same strategy is used to train NC. This
procedure is based on two steps: (1) extract pure clusters, i.e.,
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clusters with high probability of containing citations belong
to only one author, and (2) discard fragmented clusters. Pure
clusters are extracted by exploiting recurring patterns in the
coauthorship graph, that is, two citations are placed together
in the same cluster if both have coauthors in common.

In order to produce the best possible training set, which
ideally contains only one cluster per author in the collection,
we need to discard fragmented clusters. This step starts by
sorting clusters in descending order of size resulting in a
sorted list C. We then, iteratively select the largest cluster
in C that is most dissimilar to the clusters already selected
to compose the training data. Ferreira et al. [6] have shown
that using a specialized author name similarity function it is
possible to obtain a low fragmentation rate in this last step
while keeping the purity of the clusters very high.

3.4 Computational complexity

Our disambiguation method can be efficiently implemented
using hash tables. The analysis presented next considers that
insertion and search operations in this data structure have a
time complexity of O(1).

The number of instructions executed to perform the cal-
culation of the similarity function defined by Equ. 2 is
proportional to the number of terms of the citation, thus the
steps defined in lines 2–7 of Algorithm 1 have time complex-
ity of O(|ck ||A|). If the value of sim(ck, al) is less than γ , a
new cluster is created and included in the training set in time
O(|ck |). If the value of �(ck) is less or equal than �min, the
citation is included in the set E also in time O(|ck |). Finally,
if the citation is considered reliable, the complexity of each
step of the algorithm is given by:

– O(|ck |) for the inclusion of ck in the training set (line
15);

– O(|G|m) for calculating the similarities between al and
each cluster in G and to perform the merges if neces-
sary, where m represents the average number of terms
per cluster (lines 16–22);

– O(|E ||ck |) for getting El (line 23);
– O(|El |(|A|t + gm)) for reclassifying each citation in El ,

where t represents the average number of terms per cita-
tion and g the average number of clusters related to each
citation (lines 24–31).

Since we have that g ≤ |A| andm ≥ t , the time complex-
ity of the entire disambiguation procedure can be represent
by O(|A|(|ck | + |E |m)).

4 Experimental evaluation

In this section, we present experimental results that demon-
strate the effectiveness, efficiency and practicability of our

method, hereafter called NC (from nearest cluster model).
We first describe the baselines, collections and evaluation
metrics.

4.1 Baselines

We used as baselines five author assignment methods (four
supervised, one self-trained)—SLAND [25], SAND [9],
SVM [10], NB [10] and Cosine—and two unsupervised
author grouping methods—LAVSM-DBSCAN [14] and
HHC [4]. We explain them next3.

SLAND infers the author of a citation by using a lazy
supervised rule-based associative classifier. The method
infers the most probable author of a given record ri using
the confidence of the association rules X → ai where X
only contains features of ri . The method works on demand,
i.e., association rules to infer the correct author of a citation
record are generated at the moment a citation is presented
to the method for disambiguation. The method is also capa-
ble of inserting new examples into the training data during
the disambiguation process, using reliable predictions, and
detecting authors not present in the training data. SAND
extends this method by using the procedure described in
Sect. 3.3.5 to automatically produce training data, based on
pure clusters, for the associative classifier, i.e., SAND does
not need any manually labeling process, predicts the author
by cluster instead of by citation and performs without any
user parameter set up. For these two baselines, we have used
the original implementations provided by the authors.

SVM4 associates each authorwith an author class and train
the classifier for that class. Each citation is represented by a
feature vector with the elements of their attributes (author
and coauthor names, and terms from publication and venue
titles) and their TFIDF as the feature weight. The method
uses an “one class versus all others” approach to multi-class
classification.

NB assumes that each citation is generated by a naïve
Bayes model. Thus, to estimate the model parameters some
citations are used as training data. Let ai be an author class
corresponding to a unique single person, where i ∈ [1, n]
and n is the number of authors, and let r be a citation. The
probability of each class ai generates a citation r is calculated
by using the naïve Bayes rule. The citation r is attributed
to the class that has the maximal posterior probability of
produce it. The parameters of the model for a given author
ai , which include, for example, the probability of ai writing
an article with previously seen and unseen coauthors and

3 The implementations of all methods used in our experimental
evaluation are available at http://www.lbd.dcc.ufmg.br/lbd/collections/
disambiguation/author-name-disambiguation-methods.
4 For this baseline,we have used the libSVMpackage available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm/.
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the probability of ai writing a title or publishing in a venue
containing a specific word, are all defined in [10]. We have
implemented this baseline by ourselves.

Cosine is a version of the method proposed in [18] that
uses the cosine distance with TFIDF to calculate the simi-
larity among citations and groups of citations. Similar to our
method, it also proposes to use different weights for the cita-
tion attributes. Cosine needs that examples of citations for
each author be given a priori in order to calculate the simi-
larities and perform the assignments. In this sense, it can be
considered as a supervised method. We also have used our
own implementation of this baseline.

LASVM-DBSCAN uses DBSCAN5, a density-based
clustering method [14], for clustering citations by author.
First, the distance metric between pairs of citations used by
DBSCAN is calculated by a trained active SVM algorithm
(LASVM), which yields, according to the authors, a simpler
and faster model than the standard support vector machines.
The authors use different functions for each different attribute
to make the similarity vectors, such as the edit distance for
emails and URLs, Jaccard similarity for addresses and affil-
iations, and soft-TFIDF for author and coauthor names. In
our work, we use cosine for work and publication venue title
and soft-TFIDF for author and coauthor names.

HHC is a two-step heuristic-based method [4]. In the first
step, it creates clusters of citations with similar author names
that share at least a similar coauthor name. Author name sim-
ilarity is given by an ad-hoc name comparison algorithm.
This step produces very pure but fragmented clusters. In
the second step, it successively merges clusters with similar
author names according to the similarity between the other
citation attributes (i.e., publication and venue titles) calcu-
lated using the cosine measure. In each round of merging,
the information of merged clusters is aggregated providing
more information for the next round. This process is succes-
sively repeated until no more merges are possible according
to a similarity threshold. For this baseline, we have used the
original implementation provided by the authors.

4.2 Collections

In order to evaluate our disambiguationmethod, we used col-
lections of citations extracted fromDBLP6 and BDBComp7.
The collections are described below8.

5 We used the LASVM package [3] available at http://leon.bottou.org/
projects/lasvm and the DBSCAN version available fromWeka at http://
www.cs.waikato.ac.nz/ml/weka/.
6 http://dblp.uni-trier.de.
7 http://www.lbd.dcc.ufmg.br/bdbcomp.
8 All collections used in our experimental evaluation are avail-
able at http://www.lbd.dcc.ufmg.br/lbd/collections/disambiguation/
collections-the-nearest-cluster-method.

The first collection derived from DBLP sums up 8,418
citations associated with 477 distinct authors, which means
an average of approximately 17.6 citations per author. This
collection includes 5,585 citations whose author names are
in short format, i.e., initial of the first name appended to the
last name. The version we use is the same adopted by several
other works [4,6,8,9,20,25]. It was based on [11], in which
the authors manually labeled all citations. For this, they used
the author’s publication home page, affiliation name, e-mail,
and coauthor names in a complete name format, and also sent
emails to some authors to confirm their authorship. We used
the 14 original ambiguous groups considered in [11] with
few corrections performed in [4] due to the identification of
some labeling mistakes. Working in a cleaner collection may
help to better separate the limitations of the technique from
errors caused by bad labeling.

In more details, the original DBLP collection used in [11]
contained a few errors. This probably has several causes.
First, the citation records listed in an author’s homepagewere
associated with publications written by that same author.
However, there are many cases where an author’s homepage
contains citation records that are related to different authors
and, as a result, theremight be errors thatmerge different cita-
tion records into the same ambiguous group. Second, there
were several cases of duplicated citations. One example, is
the citation “The design of a rotating associative memory
for relational database applications” by Chyuan Shiun Lin,
Diane C. P. Smith, and John Miles Smith” in the “J. Smith”
group whose duplicated entry was removed from the col-
lection. In [4], the authors manually examined and closely
analyzed the original DBLP collection and removed errors
using more recent information found on theWeb and in other
digital libraries and similar systems (e.g., ArnetMiner9 and
Microsoft Academic Search10). In any case, the differences
between the collection we use and its original version [11]
correspond to only 64 records11 or less than 0.8 % of the
collection.

The second collection derived from DBLP, hereafter
referred to as KISTI, was built by the Korea Institute of Sci-
ence and Technology Information [17] for English homonym
author name disambiguation. The top 1,000 most frequent
author names from late-2007 DBLP version were obtained
jointly with their citations. To disambiguate this collection,
the authors submitted a query composed of the surname of
the author and the publication title of each citation to Google,
aiming at finding personal publication pages. The first 20
web pages retrieved for each query were manually checked

9 http://arnetminer.org.
10 http://academic.research.microsoft.com.
11 This does not count the expansion, performed in [4], from short to
full author names in some records to better resemble a more realistic
situation, in which there is a more balanced mix of both cases.
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to identify the correct personal publication page for each cita-
tion. This identified page was then used to disambiguate the
citation record. This collection has 41,659 name instances of
867 name groups and 6,908 authors12.

The collection of citations extracted from BDBComp
sums up 361 citations associated with 184 distinct authors,
approximately two citations per author, in which only eight
author names are in short format. Notice that, although much
smaller than the DBLP and KISTI collections, this collection
is very difficult to disambiguate, because it has many authors
with just a few (one or two) citations. This collection con-
tains the 10 largest ambiguous groups found in BDBComp
at the time of the dataset creation [4].

We have used KISTI and BDBComp collections as orig-
inally created, while we have promoted a few corrections in
the DBLP collection based on mistakes found during some
error analysis procedure, as explained above.

4.3 Evaluation metrics

In order to evaluate our proposed disambiguationmethod, we
use two evaluation metrics: the K and pairwise F1 metrics.
These are standard metrics that have been largely used by the
community (e.g., [14,20]). In the discussion that follows, we
describe thesemetrics. The key idea is to compare the clusters
extracted by disambiguation methods against ideal, perfect
clusters, which were manually extracted. Hereafter, a cluster
extracted by a disambiguation method will be referred to as
an empirical cluster, while a perfect cluster will be referred
to as a theoretical cluster.

The K metric determines the trade-off between the aver-
age cluster purity (ACP) and the average author purity (AAP).
Given an ambiguous group, ACP evaluates the purity of
the empirical clusters with respect to the theoretical clus-
ters for this ambiguous group. Thus, if the empirical clusters
are pure (i.e., they contain only citations associated with the
same author), the corresponding ACP value will be 1. ACP
is defined as:

ACP = 1

N

e∑

i=1

t∑

j=1

n2i j
ni

(6)

where N is the total number of citations in the ambiguous
group, t is the number of theoretical clusters in the ambiguous
group, e is the number of empirical clusters for this ambigu-
ous group, ni is the total number of citations in the empirical
cluster i , and ni j is the total number of citations in the empir-
ical cluster i which are also in the theoretical cluster j .

For a given ambiguous group, AAP evaluates the frag-
mentation of the empirical clusters with respect to the theo-

12 http://www.kisti.re.kr.

retical clusters. If the empirical clusters are not fragmented,
the corresponding AAP value will be 1. AAP is defined
as:

AAP = 1

N

t∑

j=1

e∑

i=1

n2i j
n j

(7)

where n j is the total number of citations in the theoretical
cluster j .

Thus, the K metric consists of the geometric mean
between ACP and AAP values. It evaluates the purity and
cohesion of the empirical clusters extracted by each method,
being defined as:

K = √
ACP · AAP (8)

Finally, pairwise F1 (pF1) is the F1 metric calculated
using pairwise precision and pairwise recall. Pairwise preci-
sion (pP) is calculated as pP = a

a+c , where a is the number
of pairs of citations in an empirical cluster that are (correctly)
associated with the same author, and c is the number of pairs
of citations in an empirical cluster not corresponding to the
sameauthor. Pairwise recall (pR) is calculated as pR = a

a+b ,
where b is the number of pairs of citations associated with
the same author that are not in the same empirical cluster.
Thus, the pairwise F1 metric is defined as:

pF1 = 2 · pP × pR

pP + pR
(9)

4.4 Experimental setup

Experiments were conducted within each ambiguous group
splitter into training (50%) and test (50%) sets. Firstwe com-
pare NC with supervised author assignment methods using
the training and test sets, and, then, we compare the results
obtained using only the test sets with unsupervised or author
grouping methods. All results shown correspond to the per-
formance in the test sets and are the average of 10 runs. They
were all found to be statistically significant at the 95% confi-
dence level when tested with the two-tailed paired t-test with
Holm–Bonferroni correction [13].

Unless otherwise stated, RBF kernels were used for SVM
and we employed the LibSVMGRID13 tool for finding their
optimum parameters for each training data on each ambigu-
ous group. We estimate the parameter of the NB method as
in [10]. Finally, for SLAND, the state-of-the-art supervised
author assignment method, the best parameters were discov-
ered using cross-validation in the training set.

13 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Table 2 Results obtained in DBLP collection

Method K pF1

NC 0.919 ± 0.020 0.919 ± 0.023

Cosine 0.884 ± 0.028 0.898 ± 0.029

SLAND 0.878 ± 0.027 0.869 ± 0.034

SVM 0.777 ± 0.038 0.702 ± 0.070

NB 0.711 ± 0.045 0.616 ± 0.080

Best results are highlighted in bold

Table 3 Results obtained in KISTI collection

Method K pF1

NC 0.940 ± 0.002 0.816 ± 0.009

SLAND 0.927 ± 0.002 0.806 ± 0.008

Cosine 0.883 ± 0.003 0.757 ± 0.008

SVM 0.797 ± 0.004 0.623 ± 0.009

NB 0.768 ± 0.005 0.596 ± 0.009

Best results are highlighted in bold

Table 4 Results obtained in BDBComp collection

Method K pF1

NC 0.917 ± 0.020 0.633 ± 0.165

SLAND 0.882 ± 0.031 0.512 ± 0.205

Cosine 0.746 ± 0.041 0.400 ± 0.199

SVM 0.579 ± 0.042 0.201 ± 0.124

NB 0.537 ± 0.067 0.246 ± 0.157

Best results are highlighted in bold

4.5 Results

Table 2 shows the average results of NC compared with
Cosine, SLAND,SVM, andNB inDBLP.NCoutperforms all
baselines under bothmetrics. Gains, underK, are around 18.3
and 29.3 % compared with SVM and NB, respectively, and,
under pF1, gains surpass 30% compared with the same base-
lines. Compared with Cosine and SLAND, gains are smaller
(around 4 % under K against both baselines) but still signif-
icant. The worst performances of SVM and NB are due to
the fact that both have static training sets and exploit generic
classification techniques not directly adapted to the problem.

In KISTI (Table 3), NC also outperforms all baselines
under both metrics. Gains, under K, vary from 1.3 % against
SLAND and 22.3 % against NB, and 1.2 and 36.9 % under
pF1, over the same baselines.

Our best gains are obtained in BDBComp (Table 4), the
hardest collection, as can be verified by the much lower
pF1 results obtained by all methods. Against Cosine, gains
are around 21.9 and 58.3 % under K and pF1, respectively.
Against SLAND, the best baseline in this collection, gains

range from 4 % under K to 23 % under pF1. Finally, against
SVM and NB, gains surpass 70.0 % under K and more than
157.4 % under pF1. We notice that this collection has a lot
of authors with just a few citations. Thus, several authors do
not have any example in the training data. NC and SLAND
are able to identify citations belonging to new authors (i.e.,
authors without any citation in the training data) and add
such citations to the training data, justifying their superior
performance.

Tables 5 and 6 show, for every single ambiguous group in
DBLP and BDBComp, the results obtained by our proposed
method and the two baselines with the best average perfor-
mances: SLAND and Cosine. Similar results are shown in
Table 7 for the 40 largest ambiguous groups of KISTI (space
reasons prevent us to show results for all 881 groups).

We can notice in Table 5 that NC produces the best results
in all ambiguous groups in DBLP, with four statistical ties
with SLANDandfivewithCosine underK.NC reaches gains
of up to 14.8 % and 11 % (“J. Martin” ambiguous group)
against SLAND and Cosine, respectively, under K. In terms
of pF1, NC outperforms or is statistically tied with SLAND
and Cosine in all ambiguous groups with gains reaching
22.0 % against SLAND and 10.7 % against Cosine (both
in “J. Martin”).

Likewise, in BDBComp (Table 6) NC is not outperformed
by anymethod in any single group, with six ties with SLAND
under K and seven ties under pF1. Comparing with Cosine,
NC outperforms it in all ambiguous groups under both met-
rics, but one ambiguous groups underK andfive under pF114.
Gains under K reach up to 11.1 % against SLAND (“L.
Silva”) and 45.9 % against Cosine (“R. Santos”). Under pF1,
gains reach up to 53.3%against SLANDand 729.4%against
Cosine (“F. Silva”).

Table 7 shows the results of SLAND, Cosine and NC in
the KISTI collection for the 40 largest ambiguous groups.
Under K, NC obtains gains up to 15.8 % (“S. Lee”) against
SLAND and 18.6 % (“J. Halpern”) against Cosine. In terms
of pF1, NC obtains up to 34.4 % and 18.8 % (“J. Kim”)
of gains against SLAND and Cosine, respectively. Notice
that, among these 40 largest ambiguous groups, NC does not
obtain the best performance under both metrics only in the
“M. Vardi” group. The best result obtained by SLAND in
this group is explained by its number of authors and citation
records. The “M.Vardi” group has only two authors, with one
of them having 174 citation records while the other one has
only two. Thus, the number of rules generated by SLAND
for the most prolific author is much higher than those for the
other author. In this case, SLAND always assign the records

14 As the pF1 metric is calculated based on the number of pairs of
citations in the empirical clusters, when the cluster has only one citation,
no pair is formed, and the obtained value is equal to 0, as in the case of
the “M. Silva” group.
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Table 5 Results obtained by SLAND, Cosine and NC in each ambiguous group in the DBLP collection

Ambiguous
Group

SLAND Cosine NC

K pF1 K pF1 K pF1

A. Gupta 0.886 ± 0.024 0.897 ± 0.029 0.913 ± 0.014 0.937 ± 0.011 0.941 ± 0.008 0.957 ± 0.010

A. Kumar 0.927 ± 0.022 0.919 ± 0.027 0.922 ± 0.019 0.928 ± 0.023 0.934 ± 0.015 0.925 ± 0.026

C. Chen 0.845 ± 0.014 0.845 ± 0.025 0.815 ± 0.014 0.829 ± 0.024 0.848 ± 0.018 0.814 ± 0.036

D. Johnson 0.861 ± 0.035 0.849 ± 0.054 0.847 ± 0.017 0.848 ± 0.023 0.898 ± 0.024 0.909 ± 0.026

J. Lee 0.843 ± 0.012 0.835 ± 0.013 0.847 ± 0.013 0.873 ± 0.013 0.904 ± 0.007 0.905 ± 0.007

J. Martin 0.824 ± 0.038 0.745 ± 0.055 0.852 ± 0.038 0.821 ± 0.048 0.946 ± 0.018 0.909 ± 0.033

J. Robinson 0.926 ± 0.029 0.917 ± 0.034 0.928 ± 0.024 0.936 ± 0.026 0.937 ± 0.018 0.939 ± 0.016

J. Smith 0.896 ± 0.013 0.913 ± 0.011 0.891 ± 0.014 0.930 ± 0.013 0.914 ± 0.014 0.930 ± 0.019

K. Tanaka 0.943 ± 0.017 0.941 ± 0.019 0.963 ± 0.014 0.971 ± 0.014 0.974 ± 0.013 0.980 ± 0.016

M. Brown 0.920 ± 0.036 0.911 ± 0.049 0.891 ± 0.057 0.896 ± 0.060 0.922 ± 0.026 0.909 ± 0.037

M. Jones 0.782 ± 0.033 0.765 ± 0.037 0.839 ± 0.026 0.860 ± 0.028 0.882 ± 0.020 0.891 ± 0.023

M. Miller 0.945 ± 0.013 0.949 ± 0.014 0.978 ± 0.006 0.987 ± 0.007 0.980 ± 0.011 0.986 ± 0.008

S. Lee 0.820 ± 0.009 0.818 ± 0.014 0.805 ± 0.009 0.829 ± 0.013 0.869 ± 0.007 0.880 ± 0.011

Y. Chen 0.876 ± 0.010 0.869 ± 0.013 0.885 ± 0.009 0.932 ± 0.010 0.926 ± 0.011 0.939 ± 0.014

Average 0.878 ± 0.027 0.869 ± 0.034 0.884 ± 0.028 0.898 ± 0.029 0.919 ± 0.020 0.919 ± 0.023

Best results are highlighted in bold

Table 6 Results obtained by SLAND, Cosine and NC in each ambiguous group in the BDBComp collection

Ambiguous
Group

SLAND Cosine NC

K pF1 K pF1 K pF1

A. Oliveira 0.897 ± 0.043 0.878 ± 0.077 0.798 ± 0.077 0.765 ± 0.114 0.912 ± 0.040 0.877 ± 0.076

A. Silva 0.869 ± 0.023 0.744 ± 0.059 0.783 ± 0.032 0.599 ± 0.075 0.932 ± 0.028 0.776 ± 0.099

F. Silva 0.931 ± 0.029 0.422 ± 0.284 0.714 ± 0.048 0.078 ± 0.073 0.955 ± 0.041 0.647 ± 0.329

J. Oliveira 0.822 ± 0.054 0.637 ± 0.103 0.683 ± 0.039 0.485 ± 0.084 0.890 ± 0.032 0.764 ± 0.085

J. Silva 0.842 ± 0.058 0.620 ± 0.139 0.801 ± 0.033 0.586 ± 0.081 0.901 ± 0.070 0.778 ± 0.140

J. Souza 0.894 ± 0.049 0.807 ± 0.085 0.797 ± 0.062 0.693 ± 0.092 0.856 ± 0.025 0.747 ± 0.050

L. Silva 0.840 ± 0.043 0.559 ± 0.153 0.770 ± 0.051 0.501 ± 0.116 0.934 ± 0.047 0.795 ± 0.134

M. Silva 0.859 ± 0.029 0.000 ± 0.000 0.769 ± 0.071 0.152 ± 0.120 0.938 ± 0.041 0.418 ± 0.239

R. Santos 0.963 ± 0.030 0.267 ± 0.314 0.635 ± 0.045 0.050 ± 0.058 0.927 ± 0.045 0.261 ± 0.262

R. Silva 0.903 ± 0.035 0.189 ± 0.156 0.713 ± 0.048 0.091 ± 0.099 0.927 ± 0.074 0.263 ± 0.263

Average 0.882 ± 0.031 0.512 ± 0.205 0.746 ± 0.041 0.400 ± 0.199 0.917 ± 0.020 0.633 ± 0.165

Best results are highlighted in bold

to the author with the largest number of citations. However,
it is worth to notice that NC performs only 1.8 % lower than
SLAND under K in this group.

4.5.1 Error analysis

In here, we present an analysis of some errors detected dur-
ing our experiments, based on the values of the similarity
function (Eq. 2) and the confidence metric (Eq. 3) defined
for our method. By using these values, we can identify very
ambiguous references as well as how the lack of information
in the training set affects the disambiguation process. Given
a test citation ck , the cluster al with the highest similarity

value that represents its author15 and the cluster az with the
highest similarity value, we have defined the following error
cases:

1. A new cluster is incorrectly created when sim(ck, al) <

0.05. This case represents errors that may be considered
inevitable due to the lack of evidence in the training data.

2. A new cluster is incorrectly created when sim(ck, al) ≥
0.05. Someof these errors could be avoidedwith a change
in the γ value (the “new author” parameter).

15 We consider that a cluster represents an author if most of its citations
belong to this author.
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Table 7 Results obtained by SLAND, Cosine and NC in the 40 largest ambiguous groups in the KISTI collection

Ambiguous
Group

SLAND Cosine NC

K pF1 K pF1 K pF1

A. Choudhary 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

A. Gupta 0.883 ± 0.034 0.878 ± 0.043 0.902 ± 0.025 0.901 ± 0.031 0.918 ± 0.020 0.905 ± 0.033

D. Eppstein 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

D. Lee 0.927 ± 0.026 0.931 ± 0.028 0.890 ± 0.024 0.878 ± 0.038 0.959 ± 0.007 0.957 ± 0.012

H. Chen 0.830 ± 0.035 0.776 ± 0.053 0.860 ± 0.023 0.859 ± 0.043 0.870 ± 0.038 0.801 ± 0.099

H. Wang 0.896 ± 0.031 0.867 ± 0.051 0.907 ± 0.018 0.897 ± 0.030 0.943 ± 0.015 0.938 ± 0.019

J. Chen 0.843 ± 0.036 0.799 ± 0.050 0.889 ± 0.026 0.952 ± 0.025 0.952 ± 0.016 0.981 ± 0.014

J. Halpern 0.918 ± 0.011 0.915 ± 0.013 0.768 ± 0.033 0.779 ± 0.043 0.912 ± 0.020 0.925 ± 0.022

J. Kim 0.789 ± 0.020 0.563 ± 0.047 0.808 ± 0.039 0.637 ± 0.071 0.903 ± 0.010 0.757 ± 0.036

J. Lee 0.814 ± 0.021 0.674 ± 0.045 0.830 ± 0.027 0.754 ± 0.054 0.864 ± 0.024 0.710 ± 0.053

J. Li 0.852 ± 0.032 0.749 ± 0.062 0.874 ± 0.021 0.884 ± 0.030 0.937 ± 0.009 0.929 ± 0.032

J. Liu 0.841 ± 0.028 0.808 ± 0.049 0.890 ± 0.026 0.918 ± 0.026 0.933 ± 0.019 0.952 ± 0.015

J. Mitchell 0.986 ± 0.010 0.987 ± 0.010 0.965 ± 0.020 0.966 ± 0.019 0.998 ± 0.003 0.998 ± 0.003

J. Smith 0.830 ± 0.024 0.828 ± 0.033 0.871 ± 0.026 0.918 ± 0.022 0.929 ± 0.021 0.946 ± 0.028

J. Wang 0.848 ± 0.025 0.797 ± 0.044 0.885 ± 0.019 0.884 ± 0.023 0.932 ± 0.023 0.902 ± 0.040

J. Wu 0.936 ± 0.015 0.937 ± 0.018 0.909 ± 0.019 0.918 ± 0.015 0.952 ± 0.022 0.955 ± 0.025

J. Zhang 0.852 ± 0.027 0.810 ± 0.050 0.861 ± 0.029 0.818 ± 0.036 0.934 ± 0.009 0.901 ± 0.024

L. Zhang 0.865 ± 0.030 0.829 ± 0.055 0.898 ± 0.016 0.897 ± 0.025 0.926 ± 0.023 0.897 ± 0.041

M. Chen 0.886 ± 0.026 0.873 ± 0.031 0.935 ± 0.013 0.958 ± 0.012 0.972 ± 0.010 0.978 ± 0.014

M. Pedram 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

M. Vardi 0.990 ± 0.004 0.991 ± 0.003 0.893 ± 0.041 0.889 ± 0.045 0.972 ± 0.015 0.972 ± 0.016

N. Jennings 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

N. Jha 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

N. Lynch 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

P. Yu 0.983 ± 0.009 0.985 ± 0.007 0.963 ± 0.021 0.964 ± 0.021 0.993 ± 0.009 0.993 ± 0.010

Q. Yang 0.923 ± 0.026 0.942 ± 0.026 0.911 ± 0.012 0.959 ± 0.008 0.943 ± 0.027 0.968 ± 0.025

S. Jajodia 0.945 ± 0.013 0.948 ± 0.016 0.894 ± 0.022 0.916 ± 0.022 0.949 ± 0.016 0.962 ± 0.017

S. Kim 0.843 ± 0.044 0.715 ± 0.108 0.869 ± 0.021 0.837 ± 0.044 0.928 ± 0.026 0.893 ± 0.064

S. Lee 0.812 ± 0.031 0.700 ± 0.084 0.844 ± 0.029 0.827 ± 0.053 0.941 ± 0.036 0.904 ± 0.111

T. Henzinger 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

W. Wang 0.807 ± 0.039 0.677 ± 0.061 0.801 ± 0.022 0.761 ± 0.039 0.885 ± 0.018 0.836 ± 0.044

X. Li 0.804 ± 0.023 0.740 ± 0.047 0.830 ± 0.026 0.785 ± 0.044 0.874 ± 0.032 0.804 ± 0.062

X. Zhou 0.924 ± 0.033 0.910 ± 0.044 0.915 ± 0.044 0.889 ± 0.055 0.964 ± 0.008 0.959 ± 0.011

Y. Chen 0.828 ± 0.025 0.713 ± 0.062 0.849 ± 0.021 0.790 ± 0.024 0.919 ± 0.011 0.873 ± 0.037

Y. Li 0.860 ± 0.023 0.756 ± 0.049 0.837 ± 0.026 0.761 ± 0.046 0.911 ± 0.016 0.838 ± 0.039

Y. Liu 0.894 ± 0.019 0.886 ± 0.025 0.920 ± 0.011 0.938 ± 0.011 0.947 ± 0.011 0.939 ± 0.021

Y. Wang 0.851 ± 0.018 0.804 ± 0.030 0.875 ± 0.012 0.864 ± 0.016 0.899 ± 0.012 0.858 ± 0.020

Y. Yang 0.903 ± 0.020 0.892 ± 0.030 0.894 ± 0.031 0.889 ± 0.036 0.958 ± 0.012 0.945 ± 0.032

Y. Zhang 0.836 ± 0.017 0.750 ± 0.031 0.870 ± 0.029 0.839 ± 0.061 0.937 ± 0.022 0.904 ± 0.048

Z. Zhang 0.871 ± 0.024 0.844 ± 0.037 0.856 ± 0.015 0.842 ± 0.015 0.921 ± 0.018 0.908 ± 0.026

Average 0.897 ± 0.022 0.857 ± 0.037 0.899 ± 0.020 0.889 ± 0.027 0.944 ± 0.012 0.925 ± 0.023

Best results are highlighted in bold

3. Wrong assignment of ck to a cluster due to noise in the
training data, that is, if all citations in az that belong to
the same author of ck were removed from az , the citation
would be correctly assigned to al .

4. Wrong assignment of ck to a cluster, when for each
attribute x, f (cxk , az) ≥ f (cxk , al). In this situation, no
matter the values of the attribute weights, the citation
cannot be correctly assigned to al .
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Table 8 Error analysis
# Error case % of errors Total (%)

BDBComp DBLP KISTI

1 Incorrectly created clusters
when sim(ck .al ) < 0.05

3.00 % 28.78 % 5.68 % 9.35 %

2 Incorrectly created clusters
when sim(ck .al ) ≥ 0.05

36.64 % 16.22 % 30.49 % 28.29 %

3 Incorrectly classified citations
due to noise in the training set

0.00 % 2.38 % 0.68 % 0.95 %

4 Incorrectly classified citations
when diff x ≤ 0 ∀x

54.05 % 28.54 % 50.05 % 46.65 %

5 Incorrectly classified citations
when �(ck) ≥ 0.5

0.00 % 0.06 % 0.16 % 0.14 %

6 Incorrectly classified citations
when �(ck) < 0.5 and
�(ck) ≥ 0.25

0.00 % 1.74 % 1.10 % 1.19 %

7 Incorrectly classified citations
when �(ck) < 0.25 and
�(ck) ≥ 0.1

0.60 % 3.56 % 2.80 % 2.89 %

8 Incorrectly classified citations
when �(ck) < 0.1

4.80 % 18.67 % 8.84 % 10.36 %

9 Incorrectly classified citations
due to wrong merges

0.90 % 0.03 % 0.18 % 0.17 %

10 Incorrect merges of clusters
due to noise in the training set

0.00 % 0.03 % 0.02 % 0.02 %

5. Wrong assignmentwith high�(ck) values.Once the con-
fidencemetric combines the information about how close
ck is to al and how distant it is from az , an error with this
metric greater than 0.5 indicates a very ambiguous case
(or a noise in the training data). Some of the errors asso-
ciated with low values of this metric can be avoided with
changes in the attribute weights.

6. Wrong assignment due to a wrong merge of clusters.
7. Wrongmerge of clusters due to noise in the training data,

that is, if the clusters were pure the cosine similarity
would not be higher than φ.

Table 8 shows, for each collection, the percentage of errors
considering each case described above. As we can see, more
than 56 % of all errors can be considered inevitable due to
the lack of information in the training data or due to the high
ambiguity of the citations (cases 1, 4 and 5). About 40 %
of all errors could be avoided by changing the parameter
values, but we do not known how the change would affect the
correct classifications (cases 2 and 8). InBDBComp, the high
number of errors in case 2 reflects the lack of information in
the training data due the low number of citations per author.
In DBLP, the high percentage of errors in cases 1 and 8 may
be explained by the lack of discriminate terms in the training
data (most of the terms occur in more than one cluster). In
KISTI, more than 50 % of the errors fall in case 4, which
indicates that itwould be difficult to get further improvements

using only a similarity function based on bag-of-words. It is
also interesting to notice that only a small number of errors
is due to noise in the training set (0.95 %).

4.5.2 Runtime analysis

To show the high efficiency of our method, we empirically
measured the runtime of NC and the baselines. All experi-
ments were performed on a Linux-based PC (Linux Mint 16
Cinnamon 64 bits) with an Intel Core i5-3570, CPU 3.4 GHz
x 4 and 8GBytes RAM. Most methods were implemented
using Java, namely: NC, Cosine, SVM, NB, and HHC. SVM
also uses tools for training and classifying available in C.
SLAND and LASVM are also implemented in C.

Table 9 shows the average runtime in seconds of all meth-
ods in the whole disambiguation task (i.e., the time for
training and classification). As we can see, NB is the fastest
method while ours obtained the second best performance in
all collections. However, NC is at least 25 % more effective
than NB in these same collections. The runtime of NC is sta-
tistically tied with Cosine, but effectiveness gains of NC over
this method range from 4 % (DBLP) to 58 % (BDBComp).
Compared with the other baselines (SVM and SLAND), our
method is orders of magnitude faster. The SVM runtime is
around 5900, 4500 and 400 times higher than NC runtime in
the BDBComp, DBLP and KISTI collections, respectively,
thoughmost of this time is for training (i.e., parametrization).
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Table 9 Runtime analysis

Method Runtime (seconds)

BDBCOMP DBLP KISTI

NB 0.03 ± 0.01 0.50 ± 0.10 0.53 ± 0.03

NC 0.09 ± 0.02 1.97 ± 0.32 2.69 ± 0.02

Cosine 0.10 ± 0.03 6.05 ± 1.01 5.12 ± 0.05

SVM 527.8 ± 0.1 8862.6 ± 1646.6 1071.5 ± 7.4

SLAND 239.6 ± 15.9 21256.7 ± 3738.9 16337.1 ± 144.7

Regarding SLAND, the best baseline, its runtime is around
2700, 10800 and 6000 times higher than the NC runtime16.

Remind that SLAND is a lazy method with no a priori
training, so most of this is in fact real-time parameter fitting
and classification time. The low performance of SLAND can
be explained by its computational complexity. The number
of instructions executed by SLAND is proportional to the
number of rules generated during disambiguation. Given a
test citation ck , the maximal number of association rules that
can be induced per training instance is 2|ck |. The procedure
used to abstain unreliable predictions can, in the worst case,
double the number of times that the each citation is classified.
Thus, the disambiguation time of SLAND can be represented
by O(|D|2|ck |), which is proportional to the number of train-
ing examples and exponential on the citation size, for each
(test) citation to be disambiguated. This explains the high
cost of this method.

4.5.3 Analyzing the components of our solution

To analyze the impact of each component of our solution in
the performance of the proposedmethod, we have performed
experiments removing somecapabilities of themethod.Thus,
we evaluate four scenarios: (1) NC-No-Training-Update—
themethod does not add new examples to the training set, but
maintains the capability of identifying new authors inserting
them into the training set; (2) NC-Cosine—the algorithm
remains the same, but our own similarity function is replaced
by the cosine similarity function and the terms are weighted
using TFIDF; (3) NC-Similarity-Only—themethod does not
improve the coverage of the training set and is not capable
of identifying new authors, i.e., the method uses only the
similarity function in the AND task; and (4) NC-No-New-
Authors—the method does not identify new authors.

In BDBComp (Table 10) and KISTI (Table 11), the effec-
tiveness is not hurt only when we do not add new examples
to the training data. In all other four situations there is
somedrop in effectiveness, as alreadymentioned.BDBComp

16 Toput in perspective,with the reported times, it would takemore than
twoweeks to disambiguate a digital library with 1million citations with
SLAND. With NC, this would take, on average, about three minutes.

Table 10 Results obtained in BDBComp collection

Method K pF1

NC 0.917 ± 0.020 0.633 ± 0.165

NC-No-Training-Update 0.918 ± 0.022 0.631 ± 0.162

NC-Cosine 0.861 ± 0.032 0.542 ± 0.212

NC-Similarity-Only 0.747 ± 0.041 0.404 ± 0.192

NC-No-New-Authors 0.738 ± 0.037 0.393 ± 0.181

Best results are highlighted in bold

Table 11 Results obtained in KISTI collection

Method K pF1

NC 0.940 ± 0.002 0.816 ± 0.009

NC-No-Training-Update 0.937 ± 0.002 0.810 ± 0.009

NC-Cosine 0.927 ± 0.003 0.803 ± 0.009

NC-No-New-Authors 0.888 ± 0.003 0.762 ± 0.008

NC-Similarity-Only 0.888 ± 0.003 0.761 ± 0.008

Best results are highlighted in bold

and KISTI have several authors with only few citations.
Thus, many authors do not have any citation example in the
training set. This characteristic leads to effectiveness losses
when there is no identification of new authors (NC-No-New-
Authors) and, consequently, when it uses only our similarity
function (NC-Similarity-Only). In such situations, the per-
formance decreases around 18 and 36 %, under the K and
pF1metrics, respectively, in BDBComp, and around 5% and
6.7% in KISTI for the samemetrics. These results showwhy
identifying new authors is important in scenarios in which
new researchers are frequently inserted into a digital library.

In DBLP (Table 12), the most impacting factor when
removed from our solution is the joint removal of the capa-
bility of improving coverage of the training set and the
capability of identifying new authors as well as the change
in the similarity functions. DBLP has many examples in the
training set for each author in each ambiguous group, so the
removal of the first two capabilities isolated has not much
impact, but when removed together, they cause a drop in
effectiveness.

To sum up, we can say that, in the tested datasets, all com-
ponents of our solution are, in one way or another, important
for improving effectiveness, with the least important compo-
nent being the addition of new training examples.

4.5.4 Effectiveness without any training

To analyze the effectiveness of our methodwithout any train-
ing example, we performed NCwith default parameters (i.e.,
wc = 0.5, wt = 0.3, wv = 0.2, α = 0.2, δ = 0, γ = 0.2
and φ = 0.1) and with the self-training strategy described
in Sect. 3.3.5 (NC-Self-Training). We defined the standard
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Table 12 Results obtained in DBLP collection

Method K pF1

NC 0.919 ± 0.020 0.919 ± 0.023

NC-No-New-Authors 0.911 ± 0.023 0.915 ± 0.022

NC-No-Training-Update 0.910 ± 0.022 0.909 ± 0.026

NC-Similarity-Only 0.897 ± 0.025 0.903 ± 0.026

NC-Cosine 0.891 ± 0.028 0.887 ± 0.032

Best results are highlighted in bold

configuration as follows: (1) for the attribute weights, we
used the values suggested in [18]; (2) for the other attributes,
we used the set of common parameters in all collections that
maximized effectiveness using cross-validation in the train-
ing set.

Note that besides having no information about the best
parameters, in the experiments with no training data, NC
has also no information about the authors who used a given
ambiguous name. The groups of citations representing these
authors have to be automatically discovered by using NC’s
incremental disambiguation capabilities (i.e., training data
expansion and fusion of groups). In this context, the compar-
ison with the methods NB, SVM and Cosine is not possible
since they need examples of citations for each author to per-
form the assignments. Thus, in this section we compare our
results with those obtained by the methods that can perform
with no manually labeled training example, including the
author grouping methods HHC and LASVM-DBSCAN. It
is important to notice that SAND uses SLAND in its dis-
ambiguation task, thus, we do not include SLAND in this
discussion.

The results obtained using the test set are shown in
Tables 13, 14, and 15 for DBLP, KISTI and BDBComp,
respectively. Considering the results obtained by NC with
default parameters, in the DBLP and KISTI collections, the
effectiveness decreases at most 13.3 and 23 % under K and
pF1, respectively. Notice that, in these collections, NC is still
better than SVMandNBwhich uses 50%of the training data
and know the structure of the disambiguation space a priori.
In the BDBComp collection, the decrease is even smaller.
TheK and pF1 results decrease around 0.9 and 6.0%, respec-
tively. In fact, with no training data, NC still outperforms all
author assignment baselines in BDBComp.

Comparing the results with the methods that need no
manually labeled example, we notice that NC and NC-Self-
Training are statistically tied with SAND, the best baseline,
in the BDBComp collection. In the DBLP and KISTI collec-
tions, NC-Self-Training outperforms SAND under K metric
with gains around 11.2 and 3.9 %, respectively. The results
also show the effectiveness of the self-training procedure in
BDBCompwhere NC-Self-Training achieves of about 7.1 %
of gain under pF1 metric compared with NC manually con-

Table 13 Comparison of NC applied without training set with the
author grouping methods in DBLP

Method K pF1

NC 0.797 ± 0.043 0.710 ± 0.094

NC-Self-Training 0.749 ± 0.070 0.661 ± 0.129

HHC 0.692 ± 0.084 0.598 ± 0.143

SAND 0.674 ± 0.091 0.556 ± 0.151

LASVMDBSCAN 0.479 ± 0.097 0.319 ± 0.092

Best results are highlighted in bold

Table 14 Comparison of NC applied without training set with the
author grouping methods in KISTI

Method K pF1

NC-Self-Training 0.927 ± 0.002 0.803 ± 0.008

SAND 0.892 ± 0.003 0.734 ± 0.008

NC 0.888 ± 0.004 0.731 ± 0.009

HHC 0.862 ± 0.003 0.671 ± 0.008

LASVMDBSCAN 0.858 ± 0.004 0.638 ± 0.011

Best results are highlighted in bold

Table 15 Comparison of NC applied without training set with the
author grouping methods in BDBComp

Method K pF1

SAND 0.942 ± 0.022 0.691 ± 0.155

HHC 0.937 ± 0.021 0.722 ± 0.156

NC-Self-Training 0.927 ± 0.020 0.678 ± 0.139

NC 0.905 ± 0.027 0.592 ± 0.142

LASVMDBSCAN 0.883 ± 0.042 0.333 ± 0.231

Best results are highlighted in bold

figured and almost tying in KISTI under both metrics. Only
in the DBLP there are more substantial losses due to the high
ambiguity of the “C. Chen”, “J. Lee”, “S. Lee” and “Y. Chen”
groups.

4.5.5 Sensitivity to parameters γ and φ

When we apply our method in an unsupervised manner, it is
important to perform a careful adjustment of the parameters
γ and φ in order to balance the degree of purity and frag-
mentation in the generated clusters. Figure 1 shows how the
K metric varies in function of these values, considering the
interval from 0 to 0.5, keeping constant the other parame-
ters values (wc = 0.5, wt = 0.3, wv = 0.2, α = 0.2 and
δ = 0). We notice that values lower than 0.1, for both para-
meters in all collections, generate clusters with a low purity
rate and, therefore, a lower K value. In DBLP and KISTI, the
best results are obtained in the range from 0.1 to 0.2 for both
parameters. In BDBComp, considering the γ parameter, the
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Fig. 1 Sensitivity to parameters γ and φ, a DBLP, b KISTI, c BDBComp

Table 16 Qualitative overview of the methods

Method Efficiency Effectiveness Detect
new authors

Improve the
coverage of
training data

Need for
training
data

Merge
fragmented
clusters

Sensitivity
to parameters
values

NC High High Yes Yes None Yes Medium

SAND Low High Yes Yes None No None

SLAND Low High Yes Yes Medium No Medium

HHC High Medium No – None No Medium

Cosine High High No No High No Medium

LASVM-DBSCAN Medium Medium No – Low No High

SVM Low Medium No No High No High

NB High Low No No High No None

best results are observed for the values from 0.2 to 0.3, while
for the parameter φ there is no significant changes for values
higher than 0.05, due to the small number of citations per
author in this collection.

To set the other parameters, we suggest some guidelines:
(1) the coauthor attributeweightmust be higher than the other
weights (configurations like wc = 0.5, wt = 0.3, wv = 0.2
or wc = 0.4, wt = 0.3, wv = 0.3 are usually good choices),
(2) the α value should be between 0.2 and 0.5 in order to
avoid great variations in the term weights due to the lack
of information in the training set, and (3) the value of �min

should be close or equal to 0 so that the method can use the
maximum available information in the test set.

4.5.6 Qualitative overview of the methods

Table 16 summarizes some characteristics of each evalu-
ated method based on the results previously discussed. NC
is the only method able to detect fragmented groups, i.e.,
distinct groups that contains citation of a unique author.
Furthermore, it requires no training data, have low time com-
plexity and high efficiency. SAND and SLAND have high
effectiveness but low efficiency which hampers their use
in large datasets. NC, SAND and SLAND are capable of
detecting new authors, i.e., they are able to infer whether a
citation belongs to an author in the disambiguated repository

or not. HHC, LASVM-DBSCAN and SVM effectiveness is
medium, but, SVM has a major drawback as it requires train-
ing data associated with each author.

Considering the sensitivity to parameter values, we have
observed that all methods, but SAND and NB that do not
have parameters, can vary considerable in performance if
not properly configured. However, as shown in Sect. 4.5.4,
NC can be suitably configured automatically by using a self-
training strategy similar to that of SAND.

5 Conclusions and future work

We have proposed a highly effective, efficient and practi-
cal method that smoothly combines several domain-specific
heuristics to solve the AND task. Our experiments demon-
strate the superiority of NC in a rich set of scenarios. In
fact, NC produces some of the best results ever reported in
the literature using a minimal set of features, with very low
computational costs, while presenting most of the properties
that an “ideal” AND method should possess.

As future work, we intend to exploit NC in incre-
mental tasks, to improve its effectiveness by considering
co-occurrence of terms within attributes, and to exploit rele-
vance feedback in the method. We also intend to investigate
techniques to detect noise in the cluster to discard them in

123



246 A. F. Santana et al.

the similarity measure and, as training data change during
the disambiguation process, how we can adapt the parameter
values to these changes.
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