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Abstract Ecological and environmental sciences have
become more advanced and complex, requiring observa-
tional and experimental data frommultiple places, times, and
thematic scales to verify their hypotheses. Over time, such
data have not only increased in amount, but also in diversity
and heterogeneity of the data sources that spread through-
out the world. This heterogeneity poses a huge challenge
for scientists who have to manually search for desired data.
ONEMercury has recently been implemented as part of the
DataONE project to alleviate such problems and to serve as
a portal for accessing environmental and observational data
across the globe. ONEMercury harvests metadata records
from multiple archives and repositories, and makes them
searchable. However, harvested metadata records sometimes
are poorly annotated or lacking meaningful keywords, which
could impede effective retrieval. We propose a methodology
that learns the annotation from well-annotated collections

This manuscript is an extension of the authors’ earlier work presented
at the 13th ACM/IEEE-CS Joint Conference on Digital Libraries
(JCDL 2013) [25].

S. Tuarob (B) · C. L. Giles
Computer Science and Engineering, The Pennsylvania State
University, University Park, PA, USA
e-mail: suppawong@psu.edu

C. L. Giles
Information Science and Technology, The Pennsylvania State
University, University Park, PA, USA
e-mail: giles@ist.psu.edu

L. C. Pouchard
Purdue University, West Lafayette, IN, USA
e-mail: pouchard@purdue.edu

P. Mitra
Qatar Computing Research Institute, Doha, Qarta
e-mail: pmitra@qf.org.qa

of metadata records to automatically annotate poorly anno-
tated ones. The problem is first transformed into the tag rec-
ommendation problem with a controlled tag library. Then,
two variants of an algorithm for automatic tag recommenda-
tion are presented. The experiments on four datasets of envi-
ronmental science metadata records show that our methods
perform well and also shed light on the natures of different
datasets. We also discuss relevant topics such as using top-
ical coherence to fine-tune parameters and experiments on
cross-archive annotation.

Keywords Metadata annotation · Topic model · Tag
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1 Introduction

Environmental sciences have become both complex and data
intensive, needing access to heterogeneous data collected
from multiple places, times and thematic scales. For exam-
ple, research on bird migration would involve exploring and
analyzing observational data such as themigration of animals
and temperature shifts across the world, from time to time.
While the needs to access such heterogeneous data are appar-
ent, the rapid expansion of observational data, in both quan-
tity and heterogeneity, poses huge challenges for data seekers
to obtain the right information for their research. Such prob-
lems behoove tools that automatically manage, discover, and
link big data from diverse sources, and present the data in
forms that are easily accessible and comprehensible.

1.1 ONEMercury search service

Recently, DataONE, a federated data network built to facil-
itate access to and preserve environmental and ecological
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Fig. 1 Screen shots of the ONEMercury search interface and result page using the query ‘soil’

science data across the world, has become increasingly pop-
ular [18,26,27]. DataONE harvests metadata from different
environmental data providers and makes it searchable via the
search interface ONEMercury,1 built on Mercury,2 a distrib-
uted metadata management system. Figure 1 shows sample
screen shots of the ONEMercury search interface (left) and
the search result page with the search query ‘soil’. ONE-
Mercury offers a full-text search on the metadata records.
The user can also specify the boundary of locations in which
the desired data are collected or published using the inter-
active graphic map. At the result page, the user can choose
to further filter out the results by Member Node, Author,
Project, and Keywords. The set of keywords used in the
system is static (users cannot arbitrarily add new or remove
the existing keywords) and managed by the administrator to
prevent spurious, new keywords from being created. Such
keywords are used for manually annotating metadata during
the data curation process.

1.2 Challenge and proposed solution

Linking data from heterogeneous sources always have a cost.
One of the biggest problems that ONEMercury is facing
is the different levels of annotation in the harvested meta-
data records caused by different metadata curation standards.
For example, a data center may have specialized personnel
whose sole duty is to provide rich description and useful

1 https://cn.dataone.org/onemercury/.
2 http://mercury.ornl.gov/.

keywords for each metadata record, while another data cen-
ter collects data directly from scientists who are busy with
their experiments and do not have time to curate their data.
Poorly annotated metadata records tend to be missed dur-
ing the search process as they lack meaningful keywords.
Furthermore, such records would not be compatible with the
advanced mode offered by ONEMercury as it requires the
metadata records to be annotated with predefined keywords
from the keyword library. The explosion of the amount of
metadata records harvested from an increasing number of
data repositories makes it impossible to annotate them man-
ually by hand, necessitating the need for a tool capable of
automatically annotating these poorly annotated metadata
records.

In this paper, we address the problem of automatic anno-
tation of metadata records. Our goal is to build a fast and
robust system that annotates a given metadata record with
related keywords from a given keyword library. The idea is
to annotate a given record with keywords associated to the
well-annotated records that it is semantically relevant to. We
propose a solution to this problem by first transforming the
problem into the tag recommendation problem with a con-
trolled tag library, where the set of recommended tags is
used to annotate the given document, and then propose a set
of algorithms that deal with the problem.

1.3 Problem definition

We define a document as a tuple of textual contents and a set
of tags. That is d = 〈c,e〉, where c is the textual content,
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represented by a sequence of terms, of the document d and
e is a set of tags associated with the document. Given a
tag library T , a set of annotated documents D, and a non-
annotated query document q, our task is to recommend a
ranked list of K tags taken from T to the query q. A document
is said to be annotated if it has at least one tag; otherwise, it
is non-annotated. The formal description of each variable is
given below:

T = {t1, t2, . . . , tM } ; ti is a tag.
D ={d1, d2, . . . , dN } ; di =〈cdi , edi 〉 , edi ⊆ T, and edi �=�
q = 〈

cq ,�
〉

1.4 Contributions

This paper has five key contributions as follows:

1. We address a real-world problem of metadata annota-
tion faced by ONEMercury. We transform the problem
into the tag recommendation problem and generalize the
problem so that the proposed solution can further be
applied to other domains.

2. We propose a novel technique for tag recommendation.
Given a document query q, we first compute the distri-
bution of tags. The top tags are then recommended. We
propose two variants of our algorithms: term frequency-
inverse document frequency (TF-IDF) based and topic
model (TM) based.

3. We crawl environmental science metadata records from
four different archives for our datasets: the Oak Ridge
National Laboratory Distributed Active Archive Center
(DAAC),3 Dryad Digital Repository,4 the Knowledge
Network for Biocomplexity (KNB),5 and TreeBASE:
a repository of phylogenetic information.6 We select
roughly 1000 records from each archive for the exper-
iments.

4. We validate the proposed methodology using rigorous
empirical evaluations. We use document-wise tenfold
cross-validation to evaluate ourmethodswith five evalua-
tionmetrics: precision, recall, F1,MRR (mean reciprocal
rank), and BPref (binary preference). These evaluation
metrics are typically used together to evaluate recom-
mendation systems.

5. We further discuss relevant issues namely (i) limitations
and scalability of our proposed methods, and (ii) using
topical coherence to fine-tune the optimal parameters.

3 http://daac.ornl.gov/.
4 http://datadryad.org/.
5 http://knb.ecoinformatics.org/index.jsp.
6 http://treebase.org/treebase-web/home.html.

2 Preliminaries

Our proposed solution is built upon the concepts of Cosine
Similarity, term frequency-inverse document frequency (TF-
IDF), and latent Dirichlet allocation (LDA).We briefly intro-
duce them here before going further.

2.1 Cosine similarity

Cosine similarity is a measure of similarity between two vec-
tors obtained by measuring the cosine of the angle between
them. Given two vectors A and B, the cosine similarity is
defined using a dot product and magnitude as:

CosineSim(A, B) = A · B
‖A‖ ‖B‖

=
∑N

i=1 Ai × Bi√∑N
i=1(Ai )2 ×

√∑N
i=1(Bi )

2
(1)

In information retrieval literature [16], the cosine similar-
ity is heavily used to calculate the similarity between two
vectorized documents. An assumption is made that each
element in a document vector is a real non-negative num-
ber (such as term frequency and TF-IDF score), hence
CosineSim(A,B) outputs [0,1], with the value indi-
cating the level of similarity.

2.2 Term frequency-inverse document frequency

TF-IDF, used extensively in the information retrieval field
[16,29], quantifies how important a term is to a document in
a corpus. TF-IDF has two components: the term frequency
(TF) and the inverse document frequency (IDF). The TF is
the frequency of a term appearing in a document. The IDF
of a term measures how important the term is to the corpus,
and is inversely proportional to the document frequency (the
number of documents in which the term appears). Formally,
given a term t , a document d, and a corpus (document col-
lection) D:

t f (t, d) = √
count(t, d) (2)

id f (t, D) =
√

log

( |D|
|d ∈ D; t ∈ d|

)
(3)

TFIDFTerm(t, d, D) = T F(t, d) · IDF(t, D) (4)

We can then construct a TF-IDF vector for a document d
given a corpus D as follows:

TFIDFDoc(d, D)

= 〈TFIDFTerm(t1, d, D), . . . ,TFIDFTerm(tn, d, D)〉 (5)

Consequently, if one wishes to compute the similarity score
between two documents d1 and d2, the cosine similarity can
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be computed between the TF-IDF vectors representing the
two documents:

DocSimTF−IDF(d1, d2, D)

= CosineSim (TFIDFDoc(d1, D),TFIDFDoc(d2, D)) (6)

2.3 Latent Dirichlet allocation

In text mining, latent Dirichlet allocation (LDA) [3] is a gen-
erative model that allows a document to be represented by
a mixture of topics. Past literature [12,28,30–33] demon-
strates successful usage of LDA to model topics from given
corpora. The basic intuition of LDA is that an author has a set
of topics inmindwhenwriting a document. A topic is defined
as a distribution of terms. The author then chooses a set of
terms from the topics to compose the document. The whole
document can then be represented using a mixture of differ-
ent topics. LDA serves as a means to trace back the latent
topics in the author’s mind before the document is written.
Mathematically, the LDA model is described as follows:

P (ti |d) =
|Z |∑

j=1

P (ti |zi = j) · P(zi = j |d) (7)

P(ti |d) is the probability of term ti being in document d. zi
is the latent (hidden) topic. |Z | is the number of all topics.
This number needs to be predefined. P(ti |zi = j) is the
probability of term ti being in topic j . P(zi = j |d) is the
probability of picking a term from topic j in the document
d.

Essentially, the LDA model is used to find P(z|d), the
topic distribution of document d, with each topic being
described by the distribution of term P(T |z). After the top-
ics are modeled, we can assign a distribution of topics to a
given document using statistical inference [2]. A document
then can be represented with a vector of numbers, each of
which represents the probability of the document belonging
to a topic.

Infer(d, Z) = 〈
z1, z2, . . . , zQ

〉 ; |Z | = Q (8)

where Z is a set of topics, d is a document, and zi is a proba-
bility of the document d falling into topic i . Since a document
can be represented using a vector of real non-negative num-
bers, one can then compute the topic similarity between two
documents d1 and d2 using cosine similarity as follows:

DocSimTM(d1, d2, Z)

= CosineSim (Infer(d1, Z), Infer(d2, Z)) (9)

3 Related works

The literature on document annotation is extensive. Hence
we only present the work closely related to ours.

3.1 Automatic document annotation

Newman et al. [20] discuss approaches for enriching meta-
data records usingprobabilistic topicmodeling.Their approach
treats each metadata record as a bag of words and consists of
two main steps: (1) generate topics based on a given corpus
of metadata, and (2) assign relevant topics to each metadata
record. Hence, a metadata record is annotated by the top
terms representing the assigned topics. They propose three
variations of their approaches. The first method, which they
use as the baseline, uses full vocabulary (every word) from
the corpus. The remaining twomethods filter out the vocabu-
lary by deleting useless words resulting in more meaningful
topics. They compare the three approaches in three aspects:
% of usable topics, % enhanced records, and average cov-
erage by the top 4 chosen topics. They acquire the datasets
from 700 repositories, hosted by OAISter Digital Library.
The results show that, overall, the second method performs
the best. However, such methods require manual modifica-
tion of the vocabulary, hence would not scale well. The third
method performs somewhere in between.

Bron et al. [4] address the problemof document annotation
by linking a poorly annotated document to well-annotated
documents using TF-IDF cosine similarity. One corpus con-
sists of textually rich documents (As) while the other con-
tains sparse documents (At ). In the paper, they address two
research problems: document expansion and term selection.
For the document expansion task, each targeted document (a
document in the sparse set) is mapped to one or more docu-
ments in the rich set, using simple cosine-similarity measure.
Top N documents are chosen from the rich corpus, and the
texts in these documents are added to the targeted documents
as supplemental content. The term selection task was intro-
duced because using the whole documents from the source
corpus to enrich the targeted document might be too spurious
and have a fair chance of topic drifts. This term selection task
aims to select only meaningful words from each document in
the source corpus to add to the targeted documents. Basically,
top K % of the words in each document, ranked by TF-IDF
scores, are selected as representative words of the document.

Thiswork has a similar problem setting to ours, except that
we aim to annotate a query document with keywords taken
from the library, while their approaches extract keywords
from the full content of documents.

Witten et al. [36] propose KEA, a machine learning-
based keyphrase extraction algorithm from documents. The
algorithm can also be applied to annotate documents with
relevant keyphrases. Their algorithm first selects candidate
keyphrases from the document. Two features are extracted
from each candidate keyphrase: TF-IDF score and distance
of the first occurrence of the keyphrase from the beginning
of the document. A binary NaiveBayes classifier is trained
with the extracted features to build a classification model,
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which is used for identifying important keyphrases. The algo-
rithm is later enhanced by Medelyan et al. [17] to improve
the performance and add more functionality such as docu-
ment annotation and keyphrase recommendation from con-
trol vocabulary, where the list of keyphrases to be recom-
mend is already defined in the vocabulary. In our research,
we use keyphrase recommendation with control vocabulary
feature of this improved version of the KEA algorithm as our
baseline.

3.2 Automatic tag recommendation

Since we transform the metadata annotation problem into a
tag recommendation problem, we briefly cover related lit-
erature. Tag recommendation has gained substantial amount
of interest in recent years. Most work, however, focuses on
personalized tag recommendation, suggesting tags to a user’s
object based on the user’s preference and social connection.
Mishne et al. [19] employ the social connection of the users
to recommend tags for weblogs, based on similar weblogs
tagged by the same users. Wu et al. [37] utilize the social
network and the similarity between the contents of objects
to learn a model for recommending tags. Their system aims
towards recommending tags for Flickr photo objects. While
such personalized schemes have been proven to be useful,
some domains of data have limited information about authors
(users) and their social connections. Liu et al. [14] propose a
tag recommendation model using machine translation. Their
algorithm trains the translation model to translate the textual
description of a document in the training set into its tags.
Krestel et al. [13] employ topic modeling for recommending
tags. They use the Latent Dirichlet Allocation algorithm to
mine topics in the training corpus where tags are used as the
textual content. They evaluate their method against the asso-
ciation rule-based method proposed in [8]. Their method,
however, is designed for tag recommendation for social doc-
uments where the network of users is assumed to exist, while
our methods do not rely on such an assumption.

4 Datasets

We obtain four different datasets of environmental metadata
records for the experiments: the Oak Ridge National Labo-
ratory Distributed Active Archive Center (DAAC),7 Dryad
Digital Repository (DRYAD),8 the Knowledge Network for
Biocomplexity (KNB),9 and TreeBASE: a repository of phy-
logenetic information (TreeBASE).10 The statistics of the

7 http://daac.ornl.gov/.
8 http://datadryad.org/.
9 http://knb.ecoinformatics.org/index.jsp.
10 http://treebase.org/treebase-web/home.html.

datasets including the number of documents, total number of
tags, average number of tags per document, number of unique
tags (tag library size), tag utilization, number of all words
(dataset size), and average number of word per document,
are summarized in Table 1. Tag utilization is the average
number of documents where a tag appears in, and is defined

as # all tags
# unique tags . The tag utilization quantifies how often, on

average, a tag is used for annotation.
The Oak Ridge National Laboratory Distributed Active

Archive Center (ORNL DAAC) is one of the NASA Earth
Observing System Data and Information System (EOSDIS)
data centersmanaged by theEarth ScienceData and Informa-
tion System (ESDIS)11 Project, which is responsible for pro-
viding scientific and other users access to data from NASA’s
Earth Science Missions. The biogeochemical and ecologi-
cal data provided by ORNL DAAC can be categorized into
four groups: Field Campaigns, Land Validation, Regional
and Global Data, and Model Archive. After raw data are col-
lected, the data collector describes the data and annotates it
using topic-represented keywords from the topic library.

Dryad is a nonprofit organization and an international
repository of data underlying scientific and medical publi-
cations. The scientific, educational, and charitable mission
of Dryad is to promote the availability of data underlying
findings in the scientific literature for research and educa-
tional reuse. As of January 24, 2013, Dryad hosts 2570 data
packages and 7012 data files, associated with articles in 186
journals. Metadata associated with each data package are
annotated by the author with arbitrary choices of keywords.

The Knowledge Network for Biocomplexity (KNB) is a
national network intended to facilitate ecological and envi-
ronmental research on biocomplexity. For scientists, the
KNB is an efficient way to discover, access, interpret, inte-
grate and analyze complex ecological data from a highly dis-
tributed set of field stations, laboratories, research sites, and
individual researchers. Each data package hosted by KNB is
described and annotated with keywords from the taxonomy
by the data collector.

TreeBASE is a repository of phylogenetic information,
specifically user-submitted phylogenetic trees and the data
used to generate them. TreeBASE accepts all types of phylo-
genetic data (e.g., trees of species, trees of populations, trees
of genes) representing all biotic taxa. Data in TreeBASE are
exposed to the public if they are used in a publication that
is in press or published in a peer-reviewed scientific jour-
nal, book, conference proceedings, or thesis. TreeBASE is
produced and governed by the Phyloinformatics Research
Foundation, Inc.12

11 http://earthdata.nasa.gov/esdis.
12 http://www.phylofoundation.org/.
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Table 1 Statistics of the 4 datasets

# Docs # All Tags Avg Tags/Doc # Uniq. Tags Tag Util. # All Words Avg Words/Doc

DAAC 978 7294 7.46 611 11.937 101,968 104.261

DRYAD 1729 8266 4.78 3122 2.647 224,643 129.926

KNB 24,249 254,525 10.49 7375 34.511 1,535,560 63.324

TreeBASE 2635 1838 0.697 1321 1.391 30,054 11.405

In our setting, we assume that the documents are indepen-
dently annotated, so that the tags in our training sets represent
the gold-standard. However, some metadata records may not
be independent since they may be originated from the same
projects or authors, hence annotated with similar styles and
sets of keywords. To mitigate such problem, we randomly
select a subset of 1000 annotated documents (except DAAC
dataset, which only has 978 documents of land terrestrial
ecology, hence we select them all) from each archive for
our experiments. We combine all the textual attributes (i.e.
Title, Abstract, Description) together as the tex-
tual content for the document.We preprocess the textual con-
tent in each document by removing 664 common stop words
and punctuation, and stemming the words using the Porter2
stemming algorithm.13

5 Methodology

The metadata annotation problem is transformed into the
tag recommendation problem with a controlled tag library.
A document is a tuple of textual information and a set of
tags, i.e. 〈text, tags〉. A document query is a document with-
out tags, 〈text,�〉. Specifically, given a tag library T =
〈t1, t2, . . . , tm〉, a document corpus D = 〈d1, d2, . . . , dn〉,
and a document query q, the algorithm outputs a ranked list
T ∗
K = 〈t1, t2, . . . , tK 〉, where ti ∈ T , of K tags relevant to

the document query q.
Our proposed algorithm comprises two main steps:

STEP 1 P(t |q, T, D, M), the probability of tag t being rel-
evant to q, is computed for each t ∈ T . M is the
document similarity measure, which can be either
TF-IDF or TM.

STEP 2 Return top K tags ranked by the P(t |q, T, D, M)

probability.

P(t |q, T, D, M) is the normalization of the relevance
score of the tag t to the document query q and is defined
as:

13 http://snowball.tartarus.org/algorithms/english/stemmer.html.

P(t |q, T, D, M) = TagScoreM (t, q, D)
∑

τ∈T TagScoreM (τ, q, D)
(10)

TagScoreM (t, q, D) =
∑

d∈D
DocSimM (q, d, D) · isT ag(t, d)

(11)

TagScoreM (t, q, D) calculates the tag score determining
how relevant the tag t is to document query q. This score can
be any real non-negative number. DocSimM (q, d, D) mea-
sures the similarity between two documents, i.e. q and d,
given a document corpus D and returns a similarity mea-
sure ranging between [0,1]. isTag(t, d) is a binary function
that returns 1 if t ∈ d.tags and 0 otherwise. We propose
two approaches to compute the document similarity: Term
Frequency-Inverse Document Frequency (TF-IDF) based
(DocSimTF−IDF(q, d, D)) and Topic Modeling (TM) based
(DocSimT M (q, d, D)). These two approaches are described
in the next subsections.

5.1 TF-IDF-based document similarity

The TF-IDF-based document similarity scoring function,
DocSimTF−IDF(q, d, D), relies on the TF-IDF principle dis-
cussed in Sect. 2.2. The function aims to quantify the content
similarity based on term overlap between two documents. To
compute the IDF part of the equation, all the documents in
D are first indexed. Hence the training phase (preprocess)
involves indexing all the documents. The similarity between
the query q and a source document d is then computed using
DocSimTF−IDF(q, d, D) as defined in Eq. 6.

5.2 TM-based document similarity

The TM-based document similarity, DocSimT M (q, d, D),
utilizes topic distributions of the documents computed by
the LDA algorithm described in Sect. 2.3. The algorithm
further extracts the document semantics using its topic dis-
tribution. With this knowledge in mind, one can measure the
semantic similarity between two documents by quantifying
the similarity between their topic distributions. Indeed, our
proposed TM-based algorithm transforms the topic distribu-
tion of a document into a numerical vector, wherein cosine
similarity is used to compute the topic similarity between
two documents using Eq. 9.
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6 Evaluation and results

We evaluate our methods using the tag prediction protocol.
We artificially create a test query document by removing the
tags from an annotated document. The task is to predict the
removed tags. There are two reasons behind the choosing of
this evaluation scheme:

1. The evaluation can be done fully automatically. Since our
datasets are large, manual evaluation (i.e. having human
identify whether a recommended tag is relevant or not)
would be infeasible.

2. The evaluation can be done against the existing gold stan-
dard established (manually tagged) by expert annotators
(i.e. data collectors, project principal investigators, etc.)
who have good understanding about the data, while man-
ual evaluation by individuals who are not familiar with
the data could lead to evaluation biases.

We evaluate our TF-IDF- and TM-based algorithms
against the baseline KEA document annotation algorithm
with controlled vocabulary. In our setting, the tag library
is used as the vocabulary by the KEA algorithm. The
document-wise tenfold cross-validation is performed, where
each dataset is first split into 10 equal subsets, and for each
fold i ∈ {1, 2, 3, . . . , 10} the subset i is used for the testing
set, and the other 9 subsets are combined and used as the
source (training set). The results of each fold are summed up
and the averages are reported.

For the TF-IDF-based algorithm, we use LingPipe14 to
perform the indexing and calculating the TF-IDF-based sim-
ilarity. For the TM-based algorithm, the training process
involves modeling topics from the source using LDA algo-
rithm as discussed in Sect. 2.3. We use the Stanford Topic
Modeling Toolbox15 with the collapsed variational Bayes
approximation [2] to learn topics in the source documents.
For each document we generate uni-grams, bi-grams, and tri-
grams, and combine them to represent the textual content of
the document. The algorithm takes two input parameters: the
number of topics to be identified and the maximum number
of training iterations. After some experiments on varying the
two parameters, we fix them at 300 and 1000, respectively.
The inferencemethod proposed byAsuncion et al. [2] is used
to assign a topic distribution to a given document. The eval-
uation is done on a Windows 7 PC with Intel Core i7 2600
CPU 3.4 GHz and 16GB of RAM.

6.1 Evaluation metrics

This section presents the evaluation metrics used in our
tasks, including precision, recall, F1, Mean Reciprocal Rank

14 http://alias-i.com/lingpipe/.
15 http://nlp.stanford.edu/software/tmt/tmt-0.4/.

(MRR), and Binary Preference (Bpref). These metrics, when
used in combination, have shown to be effective for evalua-
tion of recommending systems [10,15,38].

6.1.1 Precision, recall, and F1

Precision, recall, and F1 (F-measure) are well-known evalua-
tion metrics in information retrieval literature [16]. For each
document query in the test set, we use the original set of
tags as the ground truth Tg. Assume that the set of recom-
mended tags are Tr, so that the correctly recommended tags
are Tg

⋂
Tr. Precision, recall, and F1 measures are defined

as follows:

precision = |Tg ⋂
Tr|

|Tr| , recall = |Tg ⋂
Tr|

|Tg| ,

F1 = 2 · precision · recall
precision + recall

In our experiments, the number of recommended tags ranges
from 1 to 30. It is wise to note that better tag recommendation
systems tend to rank correct tags higher than the incorrect
ones. However, the precision, recall, and F1 measures do not
take ranking into account. To evaluate the performance of the
ranked results, we employ the following evaluation metrics.

6.1.2 Mean reciprocal rank

Mean reciprocal rank (MRR) measure takes ordering into
account [34]. It measures how well the first correctly recom-
mended tag is ranked. The reciprocal rank of a query is the
multiplicative inverse of the rank of the first correctly recom-
mended tag. The mean reciprocal rank is the average of the
reciprocal ranks of the results of the query set Q. Formally,
given a testing set Q, let rankq be the rank of the first cor-
rected answer of the query q ∈ Q, then MRR of the query
set Q is defined as follows:

MRR = 1

|Q|
∑

q∈Q

1

rankq

If the set of recommended tags does not contain a correct
tag at all, 1

rankq
is defined to be 0.

6.1.3 Binary preference

Binary preference (Bpref) measure considers the order of
each correctly recommended tag [5]. Let S be the set of rec-
ommended tags by the system, R be the set of correct tags
(Note that it is not necessary that R ⊆ S), r ∈ R be a correct
recommendation, and i ∈ S − R be an incorrect recommen-
dation. Bpref is defined as follows:
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Bpref = 1

|R|
∑

r∈R

1 − |i ranked higher than r |
|S|

Bpref can be thought of as the inverse of the fraction of
irrelevant tags that are recommended before relevant ones.
Bpref and mean average precision (MAP) are similar when
used with complete judgments. However, Bpref normally
gives a better evaluation when used in a system with incom-
plete recommendations.

6.2 Results

Figures 2, 3, and 4 plot the precision@K, recall@K, F1@K,
respectively, evaluated at the top K tags recommended by
the proposed TF-IDF- and TM-based algorithms against the
baseline KEA algorithm on each dataset. Figure 5 summa-
rizes the precision vs. recall on each dataset.

According to the results, our proposed algorithms outper-
form the baseline KEA algorithm on the DAAC and KNB
datasets (TM-based approach outperforms at every K and
TF-IDF-based approach outperforms at larger K ). This is
because the tags used to annotate DAAC and KNB docu-
ments are drawn from the libraries of topics. Hence, there is

a high chance that a tag is reused for multiple times, result-
ing in high tag utilization. Since our algorithms give higher
weight to tags that have been used frequently, datasets with
high tag utilization (such as DAAC and KNB) tend to benefit
from our algorithms.

However, our proposed algorithms perform worse than
the baseline on the DRYAD dataset. This is because tags
in each DRYAD document are manually made up at the
curation process. Manually making up tags for each docu-
ment results in a large size of tag library where each tag
is used only a few times, leading to the low tag utiliza-
tion. Datasets with low tag utilization would not benefit
from our proposed algorithms since the probability distri-
bution given to the tags tends to be uniform and not very
discriminative.

All the algorithms perform poorly on the TreeBASE
dataset. This is becauseTreeBASEdocuments are very sparse
(some do not even have textual content) and have very few
tags. From the dataset statistics, each document on the Tree-
BASEdataset has only 11words and only 0.7 tags on average.
Such sparse texts lead to weak relationship when finding tex-
tually similar documents in the TF-IDF-based approach, and
the poor quality of the topic model used by the TM-based
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Fig. 2 Precision of the TF-IDF, TM, KEA (baseline) algorithms on the four datasets
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Fig. 3 Recall of the TF-IDF, TM, KEA (baseline) algorithms on the four datasets

approach. The small number of tags per document makes it
even harder to predict the right tags.

Table 2 lists the MRR, BPref, average learning time (in
seconds) per fold, and average testing time (in seconds)
per fold of the proposed TF-IDF- and TM-based algorithms
against the baseline KEA algorithm on each dataset. MRR
quantifies how the first correct recommendation is ranked. In
terms of MRR, our TM-based algorithm performs the best
on the DAAC and KNB datasets, TF-IDF-based algorithm
performs the best in the TreeBASE dataset, and the KEA
algorithm performs the best on theDRYADdataset. The TM-
based algorithm achieves notable MRR scores of 0.75 and
0.92 on the DAAC and KNB datasets, respectively, and out-
performing the baseline by 47.70 and 33.22 %, respectively.

Bpref measures the ranking of all the correctly recom-
mended keywords. In terms of Bpref, our TM algorithm per-
forms the best on the DAAC, DRYAD, and KNB datasets
with theBpref scores of 0.90, 0.49, and 0.91 respectively. The
TF-IDF-based algorithm performs the best on the TreeBASE
dataset. Similar to the MRR results, notable BPref scores are
achieved by the TM-based algorithm on the DAAC andKNB
datasets, outperforming the baseline by 285.32 and 274.33%
respectively.

Table 3 shows sample recommended tags by our proposed
TF-IDF/TM based algorithms and the baseline KEA algo-
rithm to the DAAC metadata record titled “ISLSCP II IGBP
DISCOVERAND SIB LANDCOVER, 1992-1993”16, against
the 15 actual ground-truth tags associated with the record.
Our TM-based algorithm performs well on this particular
example by capturing all the actual tags within the top 15
recommended tags.

7 Discussion

This section provides additional discussions about the pro-
posed algorithms.

7.1 TM- vs. TF-IDF-based approaches

According to the results, our TM-based approach performs
better than the TF-IDF-based approach on DAAC, DRYAD,
and KNB datasets, in terms of precision, recall, and F1 mea-
sure, while the TF-IDF-based approach performs better on
the TreeBASE dataset. Since the only difference between

16 http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=930.
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Fig. 4 F1 of the TF-IDF, TM, KEA (baseline) algorithms on the four datasets

the two proposed methods is the document similarity func-
tion DocSim(q, d, D), which computes the similarity score
between thequerydocumentq and a sourcedocumentd ∈ D,
the analysis on the differences between the two document
similarity measures could provide explanation about the per-
formance difference.

The TF-IDF document similarity quantifies the cosine
similarity between two TF-IDF vectors representing the two
documents. Loosely speaking, the TF-IDF document simi-
laritymeasures the quantity of term overlap, where each term
has a different weight, in the two documents.

The TM-based approach first derives a set of topics from
the document source, each ofwhich is represented by a distri-
bution of terms. The ranked terms in each topic bare coherent
semantic meanings. Table 4 provides an example of the top
10 terms of each of the sample 9 topics derived from the
DAAC dataset using the LDA algorithm with 300 topics and
1000 iterations. Once the set of topics has been determined, a
document is assigned a distribution of topics using the infer-
ence algorithm mentioned in Sect. 2.3. The TM document
similarity then measures the cosine similarity between the
topic distribution vectors representing the two documents.
Loosely speaking, the TM document similarity quantifies the
topic similarity between the two documents.

The performance difference of both the proposed meth-
ods could be impacted by the semantic representation of
each document. It is evident from the experimental results
on the DAAC, DRYAD, and KNB datasets that representing
a document with a mixture of topics leads to more accu-
rate semantic similarity interpretation, resulting in better
recommendation. However, the reason why the TM-based
approach performs worse than the TF-IDF-based approach
on the TreeBASE dataset could be that the documents in
such a dataset are very sparse (each TreeBASE document
has only 11 words on average). Such sparsity could lead to
a poor set of topics, consisting of idiosyncratic word combi-
nations.

Hencewe recommend theTM-based algorithm for datasets
whose documents are rich in textual content, and the TF-
IDF-based algorithmapproach for thosewith textually sparse
documents.

7.2 Limitations

Regardless of the promising performance, our proposed
document annotation algorithms may face the following
limitations:
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Fig. 5 Precision vs. recall of the TF-IDF, TM, KEA (baseline) algorithms on the four datasets

Table 2 MRR, Bpref, average
learning time (ALT) and average
test time (ATT) of TF-IDF, TM,
KEA (baseline) algorithms on
the four datasets

Bold values represent the best
performance achieved by the
corresponding methods in each
dataset and evaluation metric

Dataset Method MRR Bpref ALT (s) ATT (s)

DAAC TFIDF 0.5649 0.8183 5.29 0.99

TM 0.7546 0.9005 2430.82 49.63

KEA 0.5109 0.2337 75.45 6.50

DRYAD TFIDF 0.2022 0.4404 6.32 1.19

TM 0.3264 0.4934 4486.09 83.76

KEA 0.3423 0.2851 102.59 8.85

KNB TFIDF 0.4944 0.6659 6.06 1.23

TM 0.9226 0.9100 1159.81 49.60

KEA 0.6823 0.2431 64.11 5.61

TREEBASE TFIDF 0.0893 0.0695 6.15 1.08

TM 0.0750 0.0636 401.50 16.99

KEA 0.0745 0.0257 6.26 1.04

1. The proposed algorithms rely on the existence of a good
document source (training set). The quality of the result-
ing annotation directly reflects the quality of the annota-
tion of each document in the training data. Fortunately,
the current ONEMercury system only retrieves the meta-
data from the archives wherein each metadata record is
manually and carefully annotated by principal investi-

gators and data managers. In the future, however, the
system may expand to collect metadata from sources in
which the metadata records may have poor or no anno-
tation. Such problems urge the need for a method that
allows the automatic annotator trainedwith ahigh-quality
training dataset to annotate the documents in different
datasets. Indeed, we briefly discuss the possibility of

123



122 S. Tuarob et al.

Ta
bl
e
3

C
om

pa
ri
so
n
of

th
e
re
co
m
m
en
de
d
ke
yw

or
ds

by
th
e
T
F-
ID

F,
T
M
,a
nd

K
E
A
(b
as
el
in
e)
al
go
ri
th
m
s
on

a
sa
m
pl
e
do
cu
m
en
t“
IS
L
SC

P
II
IG

B
P
D
IS
C
O
V
E
R
A
N
D
SI
B
L
A
N
D
C
O
V
E
R
,1
99
2–
19
93
”

A
ct
ua
lT

ag
s

T
FI
D
F

T
M

K
E
A
(B

as
el
in
e)

1.
al
be
do

1.
fie

ld
in
ve
st
ig

1.
la
nd

co
ve
r

1.
m
od
el

2.
la
nd

co
ve
r

2.
an
al
ys
i

2.
m
od

im
od

er
re
so
lu
t
im

ag
sp
ec
tr
or
ad

io
m
et

2.
ge
og
ra
ph

di
st
ri
bu
t

3.
ve
ge
tc
ov
er

3.
la
nd

co
ve
r

3.
te
rr
a
m
or
n
eq

ua
to
ri
cr
os
s
ti
m
e
sa
te
lli
t

3.
cl
as
si
f

4.
ve
ge
ti
nd
ex

4.
co
m
pu
tm

od
el

4.
fie

ld
in
ve
st
ig

4.
lb
a

5.
le
af

ar
ea

m
et
er

5.
re
fle

ct
5.
ve
ge
t
co
ve
r

5.
am

az
on
ia

6.
te
rr
a
m
or
n
eq
ua
to
ri
cr
os
s
tim

e
sa
te
lli
t

6.
ve
ge
t
co
ve
r

6.
re
fle

ct
6.

ar
ea

7.
no

aa
na
tio

n
oc
ea
n
am

p
am

p
at
m
os
ph

er
ad
m
in
is
tr

7.
bi
om

as
s

7.
ve
ge
t
in
de
x

7.
so
ut
h
am

er
ic
a

8.
pl
an
tc
ha
ra
ct
er
is
t

8.
pr
im

ar
ip

ro
du
ct

8.
le
af

ch
ar
ac
te
ri
st

8.
ec
ol
og

9.
st
ee
lm

ea
su
r
ta
pe

9.
st
ee
lm

ea
su
r
ta
pe

9.
ca
no

pi
ch
ar
ac
te
ri
st

9.
re
fle

ct

10
.c
an
op
ic
ha
ra
ct
er
is
t

10
.w

ei
gh

ba
la
nc

10
.p

la
nt

ch
ar
ac
te
ri
st

10
.c
al
ib
r

11
.m

od
im

od
er

re
so
lu
ti
m
ag

sp
ec
tr
or
ad
io
m
et

11
.p

re
ci
pi
ta
m
ou
nt

11
.a

lb
ed
o

11
.fi

el
d
in
ve
st
ig

12
.l
ea
f
ch
ar
ac
te
ri
st

12
.c
an

op
ic
ha

ra
ct
er
is
t

12
.s
te
el
m
ea
su
r
ta
pe

12
.s
pe
ci

13
.a
vh
rr
ad
va
nc

hi
gh

re
so
lu
tr
ad
io
m
et

13
.l
ea
f
ch

ar
ac
te
ri
st

13
.a
vh

rr
ad

va
nc

hi
gh

re
so
lu
t
ra
di
om

et
13
.f
ac
to
r

14
.fi

el
d
in
ve
st
ig

14
.w

at
er

va
po
r

14
.n

oa
a
na

ti
on

oc
ea
n
am

p
am

p
at
m
os
ph

er
ad

m
in
is
tr

14
.s
eq
ue
nc

15
.r
efl
ec
t

15
.q

ua
dr
at
sa
m
pl

fr
am

e
15
.l
ea
f
ar
ea

m
et
er

15
.h

aw
ai
ia
n
is
la
nd

16
.r
ai
n
ga
ug

16
.a
na
ly
si

16
.g

en
er
a

17
.s
ur
fa
c
ai
r
te
m
pe
ra
tu
r

17
.c
om

pu
tm

od
el

17
.f
er
n

18
.a
ir
te
m
pe
ra
tu
r

18
.n

oa
a

18
.s
ys
te
m
at

19
.m

et
eo
ro
lo
g
st
at
io
n

19
.a
vh
rr

19
.s
te
el
m
ea
su
r
ta
pe

20
.h

um
an

ob
se
rv

20
.p

op
ul

di
st
ri
bu
t

20
.c
or
re
l

T
he

fir
st
co
lu
m
n
lis
ts
th
e
ac
tu
al
ta
gs
.T

he
bo

ld
,u

nd
er
lin

ed
te
rm

s
ar
e
co
rr
ec
tly

re
co
m
m
en
de
d
ite

m
s

123



A generalized topic modeling approach 123

Ta
bl
e
4

To
p
10

te
rm

s
in

sa
m
pl
e
9
to
pi
cs

de
ri
ve
d
us
in
g
L
D
A
al
go

ri
th
m

fr
om

th
e
D
A
A
C
da
ta
se
t

To
pi
c1

To
pi
c2

To
pi
c3

To
pi
c4

To
pi
c5

To
pi
c6

To
pi
c7

To
pi
c8

To
pi
c
9

am
az
on

pi
ne

ab
ov
eg
ro
un
d

pa
rk

ca
rb
on

di
ox
id
e

so
il
m
oi
st
ur
e

pl
an
t

bi
gf
oo
t

en
vi
ro
nm

en
t

ri
ve
r

te
am

ye
ar

m
on
gu

ss
a

si
te
av
er
ag
e

w
at
er

po
te
nt
ia
l

m
od
ip

ro
du
ct

ra
da
r

ba
si
n

bl
ac
k
sp
ru
ce

m
or
ta
l

sa
fa
ri

en
er
gy

m
oi
st
ur
e
be
tt

de
te
rm

in
ev
er
gr
ee
n

m
os
ai
c

ec
ol
og
y

ch
am

be
r

w
oo
dy

bi
om

as
s

za
m
bi
a

ex
ch
an
ge

ne
ut
ro
n

le
af

op
tic

la
nd

co
ve
r

ge
ot
if
f
fo
rm

at

flo
od
pl
ai
n

m
et
ha
ne

ha
rd
w
oo
d

w
et
se
as
on

so
il
te
m
pe
ra
tu
re

ai
rb
or
n

ra
di
om

et
er

bi
gf
oo
tp

ro
je
ct

ba
nd

ba
nd

te
am

co
lle

ct
br
ow

n
ph

ot
os
yn

th
et
ic

te
am

fif
e
ex
pe
ri
m
en
t

pl
an
tw

at
er

na
sa

ba
ck
sc
at
te
r
im

ag
e

in
un
da
te

ch
am

be
r
flu

x
ea
st
er
n

ka
la
ha
ri

to
w
er

flu
x

ga
m
m
a

gr
as
s

flu
x
to
w
er

sy
nt
he
si
ze

m
et
er

tr
ac
e
ga
s

so
ft
w
oo
d

bo
ts
w
an
a

va
po
r

gr
av
im

et
er

le
af

w
at
er

gr
as
sl
an
d

to
po
gr
ap
h

sc
al
e

pl
an
t

sc
hr
oe
de
r

st
or
e

w
at
er

va
po

r
w
at
er

co
nt
en
t

le
af

tis
su
e

ev
er
gr
ee
n
ne
ed
le
le
af

sr
tm

m
os
ai
c

sp
ru
ce

co
m
m
er
ci
al

ac
tiv

ity
flu

x
m
ea
su
re

ga
s
flu

x
su
m
m
er

ec
ol
og

y
de
ve
lo
p

123



124 S. Tuarob et al.

applying the proposed method for cross-archive anno-
tation in Sect. 7.5.

2. Our TM-based algorithm needs to model topics from
scratch every time a significant amount of newdocuments
are added to the training corpus, so that the modeled top-
ics can reflect the new documents added. Since our TM-
based algorithm utilizes the traditional LDA algorithm to
model topics, wherein incremental training is not a fea-
ture, we plan to explore methods such as [1] and [11]
which may enable our algorithm to adaptively model the
topics from a dynamic corpus.

3. Regardless of the promising performance of our proposed
TM-based algorithm, the scalability can be an issuewhen
it comes to mining topics from a larger corpus of docu-
ments. The scalability issues of our TM-based algorithm
is discussed in detail in the next subsection.

7.3 Scalability of the TM approach

Scalability issues should be taken into account since the
algorithms will eventually be incorporated as part of the
ONEMercury system, which currently hosts much larger
datasets than the ones we use in the experiments. Since the-
oretical time and space complexities of the underlying LDA
algorithm have been extensively investigated (see [22]), we
instead focus on the scalability issues from the practical point
of view. This section discusses two scalability issues pre-
sented in the TM-based algorithm: the increase in number of
topics and the increase in size of the corpus.

We examine the scalability issues of the proposed TM-
based algorithmon theKNBdataset, using theStanfordTopic
Modeling Toolbox with collapsed variational Bayes approx-
imation and fixed 1000 iterations, on the same machine we
use for earlier experiments.

As the data grow larger, new topics emerge, urging the
need for a newmodel that captures such increasing variety of
topics. Figure 6 plots the training time (in seconds) as a func-
tion of number of topics. The training time grows approxi-
mately linearly with the number of topics up to 400 topics.
The program runs out of physical memory, however, at 500
topics, leading to a dramatic increase in the training time.
Hence, this study points out that a more memory-efficient
topic model algorithm should be explored.

Another scalability concern lieswith theprojected increase
in the number of training documents. Figure 7 shows the
training time of the TM-based algorithm as the number of
documents increases. The results also show a linear scale
with the number of training documents. Note that the experi-
ment is only donewith up to 1000 documents, while there are
roughly 47 thousands, and definitely increasing in the future,
metadata records in the current system. Evenwith the current
size of theONEMercury repository, the algorithmwould take
approximately 5.3 h to model topics, which is not feasible
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Fig. 7 Learning time in seconds of the TM-based algorithm as a func-
tion of numbers of training documents

in practice. Hence a large-scale parallel algorithm such as
MapReduce [6] should be investigated.

7.4 Employing topic coherence to find optimum numbers
of topics

Multiple studies on topic modeling have shown that the
coherence of the term distribution in each topic has a direct
impact on the effectiveness of the learned topics in var-
ious applications [3,7,9,35]. Newman et al. [21] defined
the coherence of a topic as the ability to be interpreted by
human as a semantically meaningful topic. Since our TM-
based method utilizes LDA to learn topical knowledge from
the source documents to compute topical similarity between
documents, the coherence of the learned topics could have
an impact on the relevance of the recommended tags.

In this section, the coherence of topics learned from each
dataset is investigated. The results do not only shed light on
the quality of the learned topics, but also help determine the
optimal number of topics to be learned from each archive.
Too few topics would typically result in very broad topics;
while too many topics will result in random, meaningless
topics that pick out idiosyncratic word combinations [24].
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Newman et al. [21] proposed a set of schemes for automatic
evaluation of topic coherence, divided into three groups:
WordNet,Wikipedia, and Google search engine-basedmeth-
ods. For our topic coherence analysis, we adopt the similar
evaluation scheme as their Wikipedia-based method using
pair-wise mutual information (PMI) as the word-pair scoring
function, since this scheme was reported the most accurate
in the authors’ work.

Since we aim to find the optimal number of topics to
learn from each archive, the aggregate topic coherence score
is calculated for each topic set. In particular, let ZT =
{z1, z2, . . . , zT } be the set of T learned topics. We aim to
calculate the aggregate topic coherence (ATC) score for the
topic set ZT by taking the arithmetic mean and median of
the coherence scores of all the topics in ZT , as follows:

ATCmean(ZT ) = mean{C(zi ); i ∈ 1 . . . T } (12)

ATCmedian(ZT ) = median{C(zi ); i ∈ 1 . . . T } (13)

C(z) is a coherence score of the topic z and is calculated
as follows:

Let z be a topic, and W10 = {w1, . . . , w10} be the top
10 words in z. Then, the coherence score of a topic z is the
average of pair-wise mutual information (PMI) scores of all
possible unique pairs of the words in W10.

C(z) = mean{PMI(wi , w j ); i j ∈ 1 . . . 10; i < j} (14)

PMI(wi , w j ) = log

(
p(wi , w j )

p(wi ) · p(w j )

)
(15)

p(wi ) and p(w j ) are calculated using the portions of doc-
uments that contain at least one occurrence of wi and w j ,

respectively. p(wi , w j ) is the portion of the documents that
contain both wi and w j . Mathematically, let D be the doc-
ument collection, D(w) ∈ D be the set of documents con-
taining at least one occurrence of w.

p(wi ) = |D(wi )|
|D| , p(w j ) = |D(w j )|

|D| (16)

p(wi , w j ) = |D(wi ) ∩ D(w j )|
|D| (17)

Instead of using Wikipedia articles as the external knowl-
edge source as in [21], we use the documents in the datasets
as the external knowledge. This is because, most metadata
records in our datasets are fromvery specific subfields of eco-
logical and environmental sciences, whichWikipedia articles
do not well cover. Plus, these metadata records contain many
technical and scientific keywords which are not normally
used in general encyclopedias. For each dataset, a set of ran-
domly chosen 1000 documents is used to model the topics.
The numbers of topics, T , are varied by 50 during 0–600
topics, and by 100 during 600–2000 topics. At each T , the
LDA algorithm is run with 1000 iterations to learn a set of
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Fig. 8 Themean aggregate topic coherence scores of the four datasets
as a function of number of topics
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Fig. 9 The median aggregate topic coherence scores of the four
datasets as a function of number of topics

T topics, ZT . Then, the mean and median aggregate topic
coherence scores are calculated for each ZT .

Figures 8 and 9 plot the mean and median of the aggre-
gate topic coherence scores, respectively, of each dataset as
a function of number of topics. According to Fig. 8, the opti-
mal numbers of topics to be learned from datasets DAAC,
DRYAD, KNB, and TreeBASE are 550, 1000, 450, and 250,
respectively. Note that, according to Table 1, the approx-
imated data sizes for DAAC, DRYAD, KNB, and Tree-
BASE used in this analysis are 104,261, 129,926, 63,324,
and 11,405 words, respectively. Surprisingly, there is a cor-
relation between the optimal numbers of topics and the sizes
of the document collections. An explanation of this phenom-
enon could be that richer archives tend to have more content,
and hence are composed by more topical subjects. It is also
interesting to note that the effect of too many topics is appar-
ent in the TreeBASE dataset, where the mean aggregate topic
coherence scores significantly drop closed to zero after 700
topics. This is because the size of the TreeBASE document
collection used in this analysis is so small that additional top-
ics beyond 700 topics become random and spurious, hence
impeding overall quality of the learned topics.
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Fig. 10 The standarddeviationof the aggregate topic coherence scores
of the four datasets as a function of number of topics

Figure 10 plots the standard deviation of the topic coher-
ence scores of the four datasets at different numbers of topics.
Interestingly, the standard deviation directly correlates with

the aggregate topic coherence scores in Figs. 8 and 9. This
is because, with too small numbers of topics (less than the
optimum), the learned topics tend to be general resulting in
similar semantics across all the topics, leading to lower stan-
dard deviation. At the other extreme, larger numbers of topics
(beyond the optimum point) may cause all the learned topics
to be equally random, hence lower standard deviation.

7.5 Experiments on cross-archive annotation

In most cases, the documents used to model the annotator
are selected from the same archive as the target document
(self-archive annotation), with the intuition that documents
in the same archive tend to have similar topical composition.
However, the annotator modeled frommultiple archives may
also be useful. This method is call cross-archive annotation
and can provide the following benefits:

Fig. 11 Precision, recall, F1, and precision-vs.-recall of the TM-based method performed on different data sets and source selection modes.
a Precision, b recall, c F1, d precision vs. recall
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1. Mitigating the cold start problem. The cross-archive
annotation can solve the cold-start problem where the
documents needed to be annotated do not have an associ-
ated richly annotated source archive to train the annotator.

2. Introducing new but relevant topical knowledge. Dif-
ferent archives bare a wide variety of topical knowledge
and annotation. Modeling an annotator from multiple
sources hence would introduce new concepts and tags
to the annotator.

To investigate the possibility of applying the proposed
methodology on cross-archive annotation, an experiment is
conducted using the TM-based method to compare the per-
formance between self-archive and cross-archive annotation.
For the self-archive annotation evaluation, the documents in
the training set are selected from the same dataset as the tar-
get document; while the cross-archive annotation evaluation
combines the training documents from all the four datasets
together.We evaluate the proposed TM-based algorithmwith
different source modes using document-wise tenfold cross-
validation, where each data set is split into ten equal subsets,
and for each fold i ∈ {1, 2, 3, . . . , 10} the subset i is used
for the testing set, and the other nine subsets are combined
and used as the source (training set).

Figure 11 shows the comparison of precision, recall, F1,
and precision vs. recall of the self- and cross-archive evalu-
ations on the test documents from the four datasets. Inter-
estingly, the cross-archive performance is worse than the
self-archive evaluation for all the four test datasets. This is
because the prediction protocol is used as the evaluation cri-
teria, where we try to predict the pre-existing tags of the test
documents. As a result, the tags from different tag vocabu-
laries may be unknown to the target documents. Hence, even
though cross-archive annotation has the potential to bring a
new variety of relevant annotations to the target documents,
the evaluation criteria used here are too strict (due to being
automatic), and hence an expert evaluationwhere profession-
als manually review the results of the annotation would be
needed to enhance the evaluation of the cross-archive anno-
tation methodology.

8 Conclusion and future work

This paper presents a set of algorithms for automatic anno-
tation of metadata. We are motivated by the real-world prob-
lems faced by ONEMecury, a search system for environmen-
tal science metadata harvested from multiple data archives.
One of the important problems includes the different levels
of curation of metadata from different archives, whichmeans
that the systemmust automatically annotatemetadata records
which are poorly annotated.We treat eachmetadata record as

a tagged document, and then transform the problem into the
tag recommendation problem with a controlled tag library.

We propose two algorithms for tag recommendation, one
based on term frequency-inverse document frequency (TF-
IDF) and the other based on topic modeling (TM) using
the Latent Dirichlet Allocation. The evaluation is done on
four different datasets of environmental science metadata
using the tag prediction evaluation protocol, against the well-
known KEA document annotation algorithm. The results
show that our TM-based approach yields better results on
datasets characterized by high tag utilization and rich in
textual content such as DAAC and KNB than those which
do not (i.e. DRYAD and TreeBASE), though with the cost
of longer learning times. The scalability issues of the TM-
based algorithm necessitate investigation intomorememory-
efficient and scalable approaches. Finally, future steps could
be implementing an automatic metadata annotation algo-
rithm on the ONEMercury search service or exploring online
tagging [23].
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