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Abstract
Matrix metalloproteinases (MMPs) and their major source, endometrial stromal cells (ESCs), play important roles in men-
struation. However, other mechanisms in endometrial shedding may be unexplored. This study focused on four proteins: 
S100A8 and S100A9 (alarmins) are binding partners and induce MMPs, MMP-3 cycle-dependently plays a key role in the 
proteolytic cascade, and CD147, which has S100A9 as its ligand, induces MMPs. Immunostaining for these proteins was 
performed on 118 resected specimens. The percentage and location of each positive reaction in ESCs were measured and 
compared using Image J. The influence of leukocytes on S100A8 or S100A9 immunopositivity was also examined. From 
the premenstrual phase, S100A8 and MMP-3 began to have overlapping expressions in ESCs of the superficial layer, and 
ESC detachment was found within these sites. S100A9 was expressed from the late secretory phase and CD147 already 
from earlier. Later, the expression sites of S100A9 and CD147 included those of S100A8. Before menstruation, S100A8 
or S100A9 expression was not affected by leukocytes. These results suggest that the local formation of S100A8/S100A9 
complex, which occurs specifically in ESCs upon progesterone withdrawal, induces the local expression of MMP-3 and 
serves as a switch to the lysis phase.
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Introduction

Menstruation is characterized by physiologic inflammation 
with self-programmed tissue destruction induced by pro-
gesterone withdrawal [1–5], which also has various anti-
inflammatory effects [1, 2, 4], and in this respect, it may 
be a type of sterile inflammation [6, 7]. A critical event of 

endometrial shedding in menstruation is extracellular matrix 
degradation in the functional stromal layer [1–5], mainly 
in the superficial layer of the endometrium [1, 5], in which 
matrix metalloproteinases (MMPs) and endometrial stro-
mal cells (ESCs, their primary source) play important roles 
[1–5]. However, the inflammatory process that begins during 
the secretory phase [1–5] remains unclear because of the 
complex interplay of the endocrine and immune systems 
[1–5]. Intermediate mechanisms in menstruation appear to 
be unexplored, such as unknown factors involved in the local 
regulation of specific MMP expression, triggering an irre-
versible progesterone-independent conversion to the lysis 
phase [1, 2]. De-coordination of various factors involved in 
menstruation leads to heavy menstrual bleeding and dys-
menorrhea, which are not infrequent problems [1–3]. Thus, 
menstrual mechanisms must be further elucidated to treat 
menstruation-related diseases and maintain menstrual health 
[1, 2].

Expressions of MMPs are locally regulated by various 
paracrine or autocrine stimuli [8–10]. MMPs are secreted 
locally in an inactive form and activated by proteolysis in a 
chain reaction [10]. The production of MMP-3, one of the 
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MMPs, is selectively and markedly increased in ESCs during 
the premenstrual and menstrual phases [8, 11]. MMP-3 is self-
activating and plays a key role in the proteolytic cascade for 
MMP activation [10, 12]. In addition, MMP-3 has the ability 
to dissolve basement membrane matrices, such as laminin and 
heparin sulfate proteoglycan, which are known to increase in 
the stroma during the late secretory phase [13]. MMP-2 is also 
self-activating [14], but its increase after progesterone with-
drawal is relatively small compared to that of MMP-3 [15], 
and whether it is cycle-dependent or not is controversial [10, 
16]. MMP-9 is also self-activating [14], but its activation is 
rather highly dependent on MMP-3 [12]. MMP-1 is signifi-
cantly increased during premenstrual and menstrual phases, 
but, like MMP-7, it is not capable of self-activation [10].

CD147 (an extracellular MMP inducer, EMMPRIN) is 
a transmembrane glycoprotein that belongs to the immuno-
globulin superfamily [17]. Oligomerized CD147 can induce 
the production and secretion of MMPs, including MMP-3 
[17, 18]. ESCs and endometrial glandular epithelium express 
CD147, which is involved in endometrial shedding during 
menstruation [18, 19]. However, after the late secretory phase, 
CD147 in ESCs extends to the deep layer of the endometrium 
[18, 19], which alone cannot explain the local regulation of 
MMP expression. Therefore, we focused on S100A9, one 
of the CD147 ligands and inflammatory mediators [20], and 
S100A8, a natural binding partner of S100A9 [20].

S100A8 and S100A9 belong to the superfamily of cal-
cium-binding S100 proteins and are involved in various bio-
logical processes [21]. Both proteins are mainly expressed in 
neutrophils and activated macrophages [21–23]. During cel-
lular stress, they are locally secreted extracellularly as alarm-
ins [6, 7, 24] and contribute to inflammatory responses such 
as induction of cytokines and MMPs, including MMP-3, and 
leukocyte chemotaxis, in an autocrine or paracrine manner 
[21–25]. S100A8 and S100A9, which trigger inflammatory 
responses, have attracted attention in obstetrics for their 
involvement in pregnancy-related diseases such as preec-
lampsia and miscarriage [26]. However, to our knowledge, 
the involvement of S100A8 and S100A9 in endometrial 
shedding during the menstrual cycle has not been investi-
gated. In this study, we examined their involvement with 
the aim of finding novel therapeutic targets for excessive 
endometrial shedding. Subsequently, during menstruation, 
S100A8 and S100A9 were suggested as a switch to an irre-
versible lytic phase.

Materials and methods

Study design

Immunostaining for S100A8, S100A9, MMP-3, and 
CD147 in the endometrium from the secretory phase to the 

menstrual phase was performed on resected uterine speci-
mens. The percentage and location of respective positive 
reactions in ESCs were measured, and the expression kinet-
ics of each protein during the menstrual cycle was compared. 
To determine whether the positive S100A8 or S100A9 reac-
tion in ESCs is influenced by secretion from infiltrating 
leukocytes [21–25], the density of infiltrating leukocytes 
expressing the respective proteins in each positive and nega-
tive part for S100A8 or S100A9 was compared.

All study participants provided informed consent, 
and the study design was approved by the Ethics Com-
mittee of Shizuoka General Hospital (Approval no. 
SGHIRB#2018091/3).

Samples

Human endometrial tissues during the secretory or men-
strual phase were obtained from hysterectomy specimens 
of 118 premenopausal patients (mean age, 44 years; range, 
33–47 years). All patients had regular menstrual cycles 
(25–35 days) and had not received hormonal treatment in 
the previous 3 months. Hysterectomies were performed 
to treat non-endometrial diseases, i.e., uterine leiomyoma 
and cervical intraepithelial neoplasm, at Shizuoka General 
Hospital between January 2011 and December 2018. All of 
those resected samples were fixed in 10% neutral buffered 
formalin, and paraffin-embedded tissue sections were rou-
tinely stained with hematoxylin and eosin. Only histologi-
cally normal endometrial tissues were included in the study. 
Menstrual cycle staging, using an idealized 28-day cycle, 
was determined according to previously published criteria 
[27]: early (days 15–20, n = 11), mid- (days 21–23, n = 22), 
and late (days 24–26, n = 36) secretory phase, premenstrual 
phase (days 27–28, n = 31), and menstrual phase (day 1 of 
menstruation) (n = 18). For the menstrual phase, only the 
endometrium equivalent to day 1 of menstruation was used 
as a sample because various measurements become difficult 
when endometrial shedding progresses.

Immunohistochemistry

All antibodies used are listed in Table 1. Monoclonal anti-
bodies against S100A8 and S100A9 showed no cross-reac-
tion with other members of the S100 protein family [28, 29]. 
Immunohistochemistry was performed with serial sections 
from one representative tissue block from each case using 
Leica Bond-Max (Leica Biosystems, Melbourne, Victoria, 
Australia).

Evaluation of immunostaining

In the representative sections from each case, the endome-
trium was considered for study within a horizontal length 
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of 10 mm. The expression of each protein was examined, 
focusing on ESCs. In the endometrium of the examined 
part, positive parts for each antibody in ESCs, as well as the 
area and thickness of the endometrium, were analyzed using 
Image J (version 1.52) (https:// imagej. nih. gov/ ij/). Cyto-
plasmic positivity for S100A8 and S100A9 was considered 
important [28, 29]. For the percentage of the positive parts, 
the area of the positive parts (total of the scattered positive 
parts) was measured and divided by the area of the endome-
trium. Minute positive parts with a total area of < 0.3  mm2 
were considered negative. The percentage trend of positive 
parts for each protein during the menstrual cycle was exam-
ined. Furthermore, the percentage of positive parts during 
each menstrual cycle was compared between S100A8 and 
S100A9. For the location of the positive parts, we used the 
depth of their midpoint from the endometrial surface as the 
index. Specifically, the upper and lower depth limits for all 
positive parts in each case were individually measured from 
the endometrial surface, and the formula ([average of lower 
depth limits–average of upper depth limits/2] + average of 
upper depth limits = midpoint of positive parts) was used. 
If the shapes of the positive parts were irregular, the upper 
and lower depth limits were measured at 3–6 locations for 
such positive parts, depending on their shape and size, and 
the average of these measurements was used. The location of 
the midpoint of the positive parts in each case was compared 
based on the depth of 1/4 or 1/2 of the endometrium from the 
surface. In each case, the endometrial thickness was meas-
ured at four different places, and the thickness was averaged.

Density of S100A8‑ or S100A9‑expressing 
infiltrating leukocytes

The density of S100A8- or S100A9-expressing infiltrating 
leukocytes was calculated by visually counting the total num-
ber of positive extravascular leukocytes in all positive areas 
in the examined endometrium and dividing by the total area 
of the positive parts. The density of S100A8- or S100A9-
expressing infiltrating leukocytes in the negative parts was 

calculated by visually counting the number of such leuko-
cytes in five random locations at × 40 objective lens with a 
field area of 0.307  mm2, and the average value was taken.

Statistical analysis

For both trends in the percentage and location of each posi-
tive part in ESCs, Student’s t test was used for between-
group comparisons, and one-way analysis of variance 
(ANOVA) was used for comparisons among three or more 
groups. The paired t test was used to compare the percent-
age of each positive part for S100A8 and S100A9 during 
each menstrual cycle. The two-way ANOVA was used to 
compare the density of S100A8- or S100A9-expressing infil-
trating leukocytes. The p values for multiple comparisons 
in the ANOVA were adjusted for Bonferroni correction. 
Data analysis was performed using jamovi (version 2.3.18) 
(https:// www. jamovi. org/). A p value < 0.05 was considered 
significant.

Results

Percentage of each protein expression in ESCs 
from the secretory phase to day 1 of menstruation

For all of four proteins, the percentage of their immunopo-
sitivity in ESCs significantly increased until menstruation.

S100A8

Immunopositivity was not seen during the early to late secre-
tory phases but was found in all cases after the premenstrual 
phase (Table 2). The percentage of the positive parts on day 
1 of menstruation was significantly greater than that during 
the premenstrual phase (p < 0.001) (Fig. 1a).

S100A9

Immunopositivity was already present in some cases 
during the late secretory phase (16 of 36 cases, 44.44%) 
(Table 2). The percentage of the positive parts increased 
significantly until day 1 of menstruation (p < 0.001) (Fig. 1b) 
and was significantly greater than that of S100A8 both dur-
ing the premenstrual phase and on day 1 of menstruation 
(means ± standard deviations for the positive percentage of 
S100A9 vs. S100A8: premenstrual phase, 19.1 ± 4.62 vs. 
11.2 ± 4.16, p < 0.001; day 1 of menstruation, 51.8 ± 9.45 
vs. 45.3 ± 9.59, p = 0.003).

Table 1  Antigens used in this study

ER1, pH 6.0 (Leica); ER2, pH 9.0 (Leica); MMP metalloproteinase; 
PK 0.2 mg/mL proteinase K (DAKO/Agilent, Carpinteria, CA, USA); 
Ref reference

Antigen Clone Source Antigen 
retrieval

Dilution rate

S100A8 #83 Original [Ref. 28] ER2 1/100
S100A9 60B8 Original [Ref. 28, 

29]
ER2 1/750

MMP-3 55-2A4 Kyowa Pharma 
Chemical

PK 1/100

CD147 MEM-M6/2a MyBioSource.com ER1 1/7500

https://imagej.nih.gov/ij/
https://www.jamovi.org/
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MMP‑3

Immunopositivity was absent during the early to late secre-
tory phases but was present in all cases after the premen-
strual phase (Table 2). The percentage of the positive parts 

on day 1 of menstruation was significantly greater than that 
during the premenstrual phase (p < 0.001) (Fig. 1c).

CD147

Immunopositivity was already observed from the early 
secretory phase. The percentage of the positive parts 
increased significantly until day 1 of menstruation 
(p < 0.001) (Fig. 1d).

Histological findings of each immunoreactivity

In ESCs, the immunopositivity for each of the four proteins 
was found in the functional layer, but not in the basal layer.

S100A8

During the premenstrual phase, clusters of positively stained 
ESCs were sporadically distributed around the glands and 

Fig. 1  Changes in the percent-
age of the immunopositivity of 
S100A8, S100A9, matrix metal-
loproteinase-3 (MMP-3), and 
CD147 in endometrial stromal 
cells (ESCs). For S100A8 (a), 
S100A9 (b), MMP-3 (c), and 
CD147 (d), the percentage of 
their immunopositivity in ESCs 
significantly increases until 
menstruation. The immunopo-
sitivity of S100A8 and MMP-3 
is found after the premenstrual 
phase and that of S100A9 
after the late secretory phase. 
The box-and-whisker plots 
indicate the median, inter-
quartile range, minimum, and 
maximum values. Asterisks 
indicate p < 0.001. EMS early 
to mid-secretory phases; ESCs 
endometrial stromal cells; 
LS late secretory phase; M1 
menstruation day 1; MMP-3 
matrix metalloproteinase-3; PM 
premenstrual phase

Table 2  Expressions of S100A8, S100A9, and MMP-3 during the 
secretory phase to day 1 of menstruation

The number in parentheses represent the percentage of positive cases
ES early secretory phase; LS late secretory phase; M1 menstruation 
day 1; MS mid-secretory phase; PM premenstrual phase

Menstrual cycle S100A8 S100A9 MMP-3

ES (n = 11)  −  −  − 
MS (n = 22)  −  −  − 
LS (n = 36)  − 16 (44.44)  − 
PM (n = 31) 31 (100) 31 (100) 31 (100)
M1 (n = 18) 18 (100) 18 (100) 18 (100)
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blood vessels throughout the superficial and middle layers, 
although many of them were weak in the staining intensity 
(Fig. 2a). Small detachment foci of positively stained ESCs 
were also seen (Fig. 2a and b). On day 1 of menstruation, 
positively stained ESCs were zonally distributed throughout 
the superficial and middle layers (Fig. 2c), where they coin-
cided with the detachment foci of ESCs (Fig. 2d). The posi-
tive intensity was weaker than that of infiltrating leukocytes 
regardless of the menstrual phase (Fig. 2a–d).

S100A8 immunopositivity in the epithelium was not 
observed from the early secretory to the premenstrual phases. 
However, on day 1 of menstruation, immunopositivity was 

observed in some of the glandular epithelia within or near 
the ESC detachment foci (Fig. 2c and d).

S100A9

Clusters of positively stained ESCs were initially scattered 
primarily around superficial glands and vessels (Fig. 3a). 
After the premenstrual phase, positive parts became fused 
or banded, containing or overlapping S100A8-positive parts 
(Fig. 3b–d). As with S100A8, the positive intensity was 
weaker than that of infiltrating leukocytes (Fig. 3a–d). For 
the epithelium, on day 1 of menstruation, immunopositivity 

Fig. 2  Immunohistochemistry for S100A8 in the endometrium. a 
Premenstrual phase (day 28 of the menstrual cycle). Positive reac-
tions in the stroma are scattered throughout the superficial and mid-
dle layers (arrowheads), although many of them have weak staining 
intensity, and some overlap with dissociation of the stroma. Scale bar: 
500 μm. b Magnified image of a. Clusters of positively stained endo-
metrial stromal cells (ESCs) are seen around a gland or blood vessel, 
and some of them are detached (arrowheads). Scale bar: 100 μm. c 

Day 1 of menstruation. Positive reactions in the stroma are zonally 
seen throughout the superficial and middle layers. Scale bar: 500 μm. 
d Day 1 of menstruation. The ESCs under the surface epithelium are 
diffusely detached, and almost all of them show a positive reaction. 
Positive glands are also seen. Asterisks indicate the lumina of the 
glands. Scale bar: 100 μm. In all images a–d, the positive intensity of 
ESCs is weaker than that of infiltrating leukocytes (arrows)
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was observed in the surface and glandular epithelia within 
or near the ESC detachment foci (Figs. 3c and d).

MMP‑3

During the premenstrual phase, clusters of ESCs with 
positively stained cytoplasms were sporadically distrib-
uted around the glands and blood vessels throughout the 
superficial and middle layers, although many of them had 
weak staining intensity (Fig. 4a and b). They also over-
lapped with S100A8- and S100A9-positive parts (Fig. 4a), 
and small detachment foci were also seen (Fig. 4a and b). 
On day 1 of menstruation, the positive parts showed a 
zonal distribution and overlapped with the S100A8- and 

S100A9-positive parts (Fig. 4c and d). No immunopositiv-
ity for MMP-3 was seen in the epithelium.

CD147

Already during the late secretory phase, the positivity of 
ESCs expanded toward the deeper layer, whereas the glan-
dular epithelium had a diffuse positivity regardless of the 
menstrual phase (Fig. 4e). The positivity was membranous 
with or without cytoplasmic.

Fig. 3  Immunohistochemistry for S100A9 in the endometrium. a 
Late secretory phase (day 24 of the menstrual cycle). Positive reac-
tions in the stroma are mainly scattered around the superficial glands 
or vessels (arrowheads). Scale bar: 500  μm. b Premenstrual phase 
(day 28 of the menstrual cycle). The image corresponds to Fig. 2a). 
Positive reactions in the stroma contain S100A8-positive parts. Scale 
bar: 500  μm. c Day 1 of menstruation. The image corresponds to 
Fig.  2c). Like S100A8, positive reactions in the stroma are zonally 

seen throughout the superficial and middle layers. Scale bar: 500 μm. 
d Day 1 of menstruation. Image corresponds to Fig. 2d. Endometrial 
stromal cells show a diffuse positive reaction, overlappingly with 
that for S100A8, and positive glands are also seen. Asterisks indicate 
the lumina of the glands. Scale bar: 100 μm. In all images a–d, like 
S100A8, the positive intensity of ESCs is weaker than that of infil-
trating leukocytes (arrows)
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Fig. 4  Immunohistochemistry for matrix metalloproteinase-3 (MMP-
3) and CD147 in the endometrium. a Premenstrual phase (day 28 of 
the menstrual cycle). The image corresponds to Figs. 2a and 3b. Posi-
tive reactions in the stroma (surrounded by arrowheads) overlapped 
with the S100A8- and S100A9-positive parts, including detachment 
foci, although many of them have weak staining intensity. MMP-3 
immunostain. Scale bar: 500 μm. b Magnified image of a. Clusters of 
positively stained endometrial stromal cells (ESCs) are seen around 
a gland or vessels, and some of them are detached (arrowheads). 
Scale bar: 50 μm. c Day 1 of menstruation. The image corresponds to 

Fig. 2c) and 3c. Positive reactions in the stroma are zonally seen from 
the superficial to deep layers. MMP-3 immunostaining. Scale bar: 
500 μm. d Day 1 of menstruation. The image corresponds to Fig. 2d 
and 3d. Most of the ESCs show a positive reaction, overlappingly 
with that for S100A8 or S100A9. The asterisks indicate the lumina of 
the glands. MMP-3 immunostaining. Scale bar: 100 μm. e Late secre-
tory phase (day 25 of the menstrual cycle). Positive reactions in the 
stroma extend to the deep layer, and the glands also show a positivity. 
CD147 immunostaining. Scale bar: 1000 μm
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Location of the midpoint of the positive parts 
for each protein from the secretory phase to day 1 
of menstruation

S100A8

From the premenstrual phase to day 1 of menstruation, the 
midpoint of the positive parts significantly shifted from a 
depth within 1/4 from the endometrial surface to a depth 
between 1/4 and 1/2 (p < 0.001) (Fig. 5a).

S100A9

From the late secretory phase to day 1 of menstruation, the 
midpoint of the positive parts significantly shifted from a 
depth within 1/4 from the endometrial surface to a depth 
between 1/4 and 1/2 (late secretory phase vs. premenstrual 
phase, p = 0.002; premenstrual phase vs. day 1 of menstrua-
tion, p < 0.001) (Fig. 5b).

MMP‑3

From the premenstrual phase to day 1 of menstruation, the 
midpoint of the positive parts significantly shifted from a 
depth within 1/4 from the endometrial surface to a depth 
between 1/4 and 1/2 (p = 0.008) (Fig. 5c).

CD147

During early to mid-secretory phases, the midpoint of the 
positive parts was within 1/4 depth from the endometrial 
surface; however, thereafter, the midpoint of the positive 
parts shifted significantly (early to mid-secretory phases vs. 
late secretory phase, p < 0.001; late secretory phase vs. day 1 
of menstruation, p = 0.002) (Fig. 5d). After the premenstrual 
phase, the midpoint of the positive parts was between 1/4 
and 1/2 depth from the endometrial surface (Fig. 5d).

Density of S100A8‑ or S100A9‑expressing 
infiltrating leukocytes

The density of S100A8-expressing infiltrating leukocytes 
between the positive and negative parts of S100A8 was 
not significantly different during the premenstrual phase 
(p = 0.931) (Fig. 6a). However, the density was signifi-
cantly higher in the positive parts on day 1 of menstrua-
tion (p = 0.025) (Fig. 6a). Similarly, the density of S100A9-
expressing infiltrating leukocytes was significantly higher in 
the positive parts only on day 1 of menstruation (p = 0.009), 
but not significantly different during the late secretory and 

premenstrual phases (p = 0.744, p = 0.202, respectively) 
(Fig. 6b).

Discussion

In this study, S100A8 and MMP-3 were expressed synchro-
nously in ESCs in the functional layer, with expression sites 
overlapping each other and ESC detachment within them. 
The expression of S100A8 in ESCs was slower than that of 
S100A9, with a time lag of 1–3 days. MMP-3 production 
by ESCs also involves the glandular epithelium [5, 10, 18], 
and CD147 was widely expressed in functional layer ESCs 
[13, 14]. These suggest that S100A9 alone is insufficient 
for CD147 to induce MMP-3 expression and that S100A8 
expression is also required [5, 8–10, 18–20].

As previously reported [28, 30], S100A8 expression 
sites overlapped with those of S100A9 and are contained 
by them. S100A8 and S100A9 form a complex (S100A8/
S100A9) for their stability because they are readily degraded 
by proteinases [31]. The overlap suggests the formation of 
S100A8/S100A9 [28, 30, 31]. S100A8/S100A9 is known 
to have unique abilities that differ from that of S100A8 or 
S100A9 alone [21–23]. The S100A9 subunit of S100A8/
S100A9 is suggested to be involved in MMP-3 induction 
through CD147 [5, 8–10, 18–21, 25]. Furthermore, the local 
formation of S100A8/S100A9 in functional layer ESCs 
induce local MMP-3 expression and serve as a switch to the 
irreversible lytic phase [1–3, 5, 8–10, 18–21, 24, 25]. The 
expression sites of MMP-3 did not completely overlap with 
those of S100A8. This may be partly due to the paracrine 
effect of the secreted S100A8/S100A9 [9, 21, 22].

ESCs of the functional layer still retain progesterone 
receptors even during the late secretory phase [1–3, 5]. For 
such ESCs, progesterone withdrawal is a cellular stress [1–5] 
and thereby induces various proinflammatory substances, 
such as reactive oxygen species (ROS), interleukin (IL)-1, 
and tumor necrosis factor (TNF)-α [1–5, 8–10]. Some of 
them have also been reported to stimulate MMP-3 expres-
sion [1–5, 8, 10] and have a reciprocal production-inducing 
relationship with S100A8 and S100A9 [21, 23, 25, 32]. 
To the best of our knowledge, no study has reported that 
S100A9 directly induces S100A8 expression. The time 
lag in the expressions of both proteins was assumed to be 
caused by the degree or duration of cellular stress or amount 
of proinflammatory substances [7, 21, 23, 25, 33, 34]. For 
endometrial shedding in menstruation, S100A8 expression 
may require more intense cellular stress or proinflammatory 
stimuli [34].
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Fig. 5  Changes in the midpoint of the immunopositivity of S100A8, 
S100A9, matrix metalloproteinase-3 (MMP-3), and CD147 in 
endometrial stromal cells (ESCs). In S100A8 (a), S100A9 (b), and 
MMP-3 (c), their midpoints of immunopositivity in ESCs signifi-
cantly shift to a depth between 1/4 and 1/2 from the endometrial sur-
face until menstruation. In CD147 (d), the midpoint of immunoposi-
tivity in ESCs has already significantly shifted to a depth of between 
1/4 and 1/2 from the endometrial surface during the premenstrual 
phase. The bold green line, bold red line, and bold blue line indicate 

the endometrial surface, 1/4 depth from the surface, and 1/2 depth 
from the surface, respectively. The box-and-whisker plots indicate 
the median, interquartile range, minimum, and maximum values. One 
asterisk (*), two asterisks (**), three asterisks (***), and four aster-
isks (****) indicate p < 0.001, p = 0.002, p = 0.008, and p = 0.027, 
respectively. EMS early to mid-secretory phases; ESCs endometrial 
stromal cells; LS late secretory phase; M1 menstruation day 1; MMP-
3 matrix metalloproteinase-3; PM premenstrual phase

The area within 1/4 depth from the endometrial surface, 
where S100A8 and S100A9 began to be expressed, corre-
sponds nearly to the superficial layer of the functional layer 
[1]. As previously reported [1, 5, 9, 19], this area is also the 
site where endometrial detachment begins, further suggest-
ing the involvement of both proteins in endometrial detach-
ment. Furthermore, initial S100A8 and S100A9 expres-
sions are considered the intrinsic property of ESCs [35] in 
response to progesterone withdrawal and to be not affected 
by infiltrating leukocytes. By contrast, the expressions of 
S100A8 and S100A9 on day 1 of menstruation are consid-
ered influenced by a rapid increase in activated macrophage 
infiltrates and an initiated neutrophilic influx [1–4, 27]. The 

expressions of S100A8 and S100A9 in the glandular epithe-
lium within or near ESC detachment sites are presumably 
caused by more intense proinflammatory stimuli [36].

Alarmins localize inflammation [6, 24, 37], which is asso-
ciated with their anti-inflammatory properties [6, 37, 38]. 
Individual cells and proteins, involved in inflammation, have 
dual properties, i.e., pro- and anti-inflammatory, depending 
on the circumstances [6, 7, 21–23, 33, 37–41]. For the endo-
metrium, this duality is necessary in the protection of the 
basal layer, termination of shedding, and subsequent scar-
free repair [1–5, 38]. Recently, a study reported that men-
strual fluid factors mediate endometrial repair and regenera-
tion during and after menstruation; furthermore, S100A8 
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and S100A9 are indicated as proteins elevated in the fluid 
[42]. In S100A8 and S100A9, protein modifications such as 
oxidation and phosphorylation, concentration, and complex 
types are directly related to their dual nature [37, 38, 43].

An imbalance of various menstruation-related factors, 
including  Ca2+ and  Zn2+, could upset the balance of S100A8 
and S100A9 respective dualities [2–5, 21–23, 36–38, 43]. 
Even during gestation, increased extracellular S100A8 and 
S100A9 cause certain pregnancy-related diseases [26]. The 
suppression of the predominant proinflammatory stimuli, 
including persistent neutrophil influx, may be an effective 
treatment for excessive endometrial shedding and certain 
pregnancy-related diseases [1–5, 8, 10, 26]. We believe that 
S100A8 and S100A9 are worthy of further investigation as 
targets for such treatment [6, 21, 23, 25, 26, 44–46].

This study has several limitations. First, although 
S100A8 and S100A9 expressions in ESCs have been 
genetically confirmed in cultured bovine cells [35], we 
have only examined them immunohistochemically. Future 

validation using cultured ESCs, such as the progesterone 
withdrawal model [47], is highly anticipated. Second, 
immunohistochemistry for other menstruation-related 
MMPs has not been performed. In this study, we targeted 
MMP-3, which is assumed to be the most important MMP 
contributing to the initial step of the cycle-dependent 
proteolytic cascade [10–12]. Once the MMP cascade is 
activated in vivo, immunohistochemistry alone may make 
it difficult to examine the direct relationship between 
S100A8 or S100A9, and the MMPs affected by MMP-3. 
Third, the immunohistochemical overlap between S100A8 
and S100A9 has not been identified as to whether it is 
dimeric or tetrameric, to what extent components other 
than heterogeneous complexes are mixed, or whether 
respective proteins are phosphorylated or oxidized. Fourth, 
the relationship with proinflammatory substances such as 
ROS, IL-1 and TNF-α has not been examined. Fourth, 
although S100A8/S100A9 is known to have apoptotic 
effects [16, 18], the relationship with apoptosis, which is 
also considered one of the triggers in endometrial shed-
ding [1], has not been investigated.

Conclusion

The expression of alarmins, S100A8 and S100A9, in 
the superficial layer ESCs is triggered by progesterone 
withdrawal. However, S100A9 alone was insufficient for 
CD147 to induce expression of MMP-3, a cycle-dependent 
key player in ESC detachment. S100A8 was locally co-
expressed with S100A9 from the premenstrual phase, later 
than the initial expression of S100A9. During this phase, 
MMP-3 was also expressed in a synchronous and over-
lapping manner, and ESC detachments exist within these 
expression sites. These findings suggested that local for-
mation of S100A8/S100A9 in ESCs induces local expres-
sion of MMP-3 and serves as a switch to an irreversible 
lysis phase, which may be mediated at least in part by 
the binding of the S100A9 subunit to CD147. Menstrual 
mechanisms must be further elucidated to treat menstrua-
tion-related diseases. We believe that S100A8 and S100A9 
are worthy of further investigation as treatment targets of 
not only abnormal pregnancy but also excessive endome-
trial shedding.
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