
Vol.:(0123456789)1 3

Extremophiles (2022) 26:14 
https://doi.org/10.1007/s00792-022-01256-1

ORIGINAL PAPER

Study of osmoadaptation mechanisms of halophilic Halomonas 
alkaliphila XH26 under salt stress by transcriptome and ectoine 
analysis

Tiantian Zhang1 · Xin Zhang1 · Yongzhen Li1 · Ning Yang1 · Lijuan Qiao1 · Zengqiang Miao1 · Jiangwa Xing1 · 
Derui Zhu1

Received: 7 April 2021 / Accepted: 4 January 2022 / Published online: 1 March 2022 
© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022

Abstract
Halophilic bacteria such as the genus Halomonas are promising candidates in diverse industrial, agricultural and biomedical 
applications. Here, we successfully isolated a halophilic Halomonas alkaliphila strain XH26 from Xiaochaidan Salt Lake, 
and studied its osmoadaptation strategies using transcriptome and ectoine analysis. Divergent mechanisms were involved in 
osmoadaptation at different salinities in H. alkaliphila XH26. At moderate salinity (6% NaCl), increased transcriptions of 
ABC transporters related to iron (III), phosphate, phosphonate, monosaccharide and oligosaccharide import were observed. 
At high salinity (15% NaCl), transcriptions of flagellum assembly and cell motility were significantly inhibited. The transcrip-
tional levels of ABC transporter genes related to iron (III) and  iron3+-hydroxamate import, glycine betaine and putrescine 
uptake, and cytochrome biogenesis and assembly were significantly up-regulated. Ectoine synthesis and accumulation was 
significantly increased under salt stress, and the increased transcriptional expressions of ectoine synthesis genes ectB and 
ectC may play a key role in high salinity induced osmoadaptation. At extreme high salinity (18% NaCl), 5-hydroxyectoine 
and ectoine worked together to maintain cell survival. Together these results give valuable insights into the osmoadaptation 
mechanisms of H. alkaliphila XH26, and provide useful information for further engineering this specific strain for increased 
ectoine synthesis and related applications.
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Introduction

Halophiles are a group of microorganisms which can survive 
in various hypersaline environments such as saline lakes, 
salterns, saline soils and salted food (Almeida et al. 2019; 
Chen et al. 2020; Rathour et al. 2020; Soltan Dallal et al. 
2017; Zhu et al. 2020). Due to their high osmoadaptation 

ability to salt stress, halophiles are potential precious hosts 
for diverse industrial, agricultural and biomedical applica-
tions such as sewage treatment (Huang et al. 2019; Torba-
ghan and Khalili Torghabeh 2019), saline soil improvement 
(Rezaei Somee et al. 2018; SadrAzodi et al. 2019), cultiva-
tion of salt-tolerant plants (Sagar et al. 2020; Saghafi et al. 
2019; Vega et al. 2019), enzyme production (Martinez-Perez 
et al. 2020), anti-inflammatory product development (Brands 
et al. 2019; Kiefer et al. 2018) and skin care (Bujak et al. 
2020; Cho et al. 2017). They adapt to high salinities mainly 
using two osmoadaptation strategies, the “salt-in” strategy 
and the accumulation and synthesis of compatible solutes 
(Brown 1976). Cells apply the “salt-in” strategy to mainly 
accumulate KCl in their cytoplasm, which is commonly 
found in extreme halophiles who need salt for growth (Oren 
2013). Compatible solutes are small organic compounds 
which do not disturb cell metabolism even at high concen-
tration, therefore halotolerant and halophilic bateria could 
either intake these compatible solutes from surrounding 
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environment or synthesize by themselves to cope with high 
salinity growth conditions (Brown 1976; Kuhlmann and 
Bremer 2002; Yancey 2005). Common compatible solutes 
include ectoine, glycine betaine, trehalose and small amino 
acids. The compatible solute accumulation/synthesis strat-
egy is adopted by a wider range of halophiles than “salt-in” 
strategy, among which some halophiles could combine both 
strategies to better adapt to the salt environment (Edbeib 
et al. 2016; Gunde-Cimerman et al. 2018; Peng et al. 2020).

With persist efforts on studying the osmoadaptation 
mechanisms of halophiles, researchers have found that 
within the same genus, different halophiles may secrete 
different type and level of compatible solutes to survive in 
a diverse range of salinity (Joghee and Jayaraman 2016). 
Halomonas belongs to the phylum Gammaproteobacteria 
class Oceanospirillales family Halomonadaceae, and is one 
of the largest halophilic genus so far with over 100 spe-
cies and diverse salinity growth range. Halomonas elongata 
and Halomonas sp. NY-011 rely on the synthesis of ectoine 
to adapt to high-salt environments (Kraegeloh and Kunte, 
2002; Wang et al. 2010), Halomonas sp. SBS 10 mainly 
accumulates betaine (Kushwaha et al. 2019) and Halomonas 
sp. AAD12 relies on proline (Ceylan et al. 2012). Among 
all these compatible solutes, ectoine is of special interest 
to researchers. It is the most widespread compatible solute 
among bacteria, and has wide applications as DNA, protein 
and cell protectant and stabilizer in extreme environmen-
tal conditions (Hahn et al. 2020; Nayak et al. 2020; Tsai 
et al. 2020), anti-inflammatory reagent (Bilstein et al. 2021; 
Moffa et al. 2019; Rieckmann et al. 2019), and a useful 
ingredient in new bio-cosmetics (Bujak et al. 2020; Hseu 
et al. 2020). Ectoine is biosynthesized by three enzymes 
encoded by ectA, ectB and ectC respectively within halo-
philes (Göller et al. 1998), and 5-hydroxyectoine usually 
coexists as its hydroxylated derivative synthesized by the 
hydroxylase enzyme encoded by the ectD gene (Prabhu et al. 
2004; Garcia-Estepa et al. 2006; Bursy et al. 2007). Since 
ectoine is difficult to synthesize through chemical synthesis, 
many researchers have been committed to the discovery of 
high-yielding ectoine halophilic strains and the improvement 
of ectoine biosynthesis yield.

In this paper, we successfully isolated a halophilic bacte-
ria strain Halomonas alkaliphila XH26 from Xiaochaidan 
Salt Lake located in Qaidam Basin, Qinghai province, 
China, which can survive in 0–18% NaCl and produce high 
yield of ectoine. We sequenced its complete genome and 
performed quantitative RNA-seq under different salt stress 
to study its mechanism of osmoadaptation and its relevant 
metabolic regulating pathways for ectoine production. This 
work may enlarge the knowledge of osmoadaptation mecha-
nism of Halomonas and provide theoretical references for 
the future development and application of this specific Halo-
monas strain.

Materials and methods

Bacteria strain and culture conditions

Halomonas alkaliphila XH26 was isolated in our laboratory 
from Xiaochaidan Salt Lake (altitude 3171 m) located at the 
northeast part of Qaidam Basin in Qinghai Province, China. 
The basal culture medium contains 2 g/L yeast extract, 
25 g/L  MgSO4·7H2O, 55 g/L KCl, 0.2 g/L  CaCl2, 6.5 g/L 
sodium glutamate, 3.0 g/L sodium citrate and 7.5 g/L casein 
enzymatic hydrolysate. For transcriptome analysis, cells of 
H. alkaliphila XH26 were cultured in basal medium with 
0%, 6% and 15% NaCl respectively at pH of 8.0.

Reference genome sequencing, assembly 
and annotation

Halomonas alkaliphila XH26 complete genome was 
sequenced using PacBio Sequel platform and assembled 
using HGAP4 software and Canu (v1.6) software by Fraser-
gen Co., Ltd. Glimmer (v3.02) was applied for CDS pre-
diction. For functional annotation, Diamond was applied to 
annotate genes across NR (http:// www. ncbi. nlm. nih. gov/ 
prote in), Swiss-Prot (https:// web. expasy. org/ docs/ swiss- 
prot_ guide line. html), eggNOG (http:// eggnog. embl. de/) 
and KEGG (http:// www. genome. jp/ kegg/) databases, while 
hmmer3 and Blast2go were applied for Pfam (http:// pfam. 
xfam. org/) and GO (http:// www. geneo ntolo gy. org/) annota-
tions respectively.

Phylogenetic analysis

The total DNA of XH26 was extracted using Ezup Column 
Bacteria Genomic DNA Purification Kit (SK8255, Sangon 
Biotech) and characterized by 16S rRNA sequencing. The 
acquired 16S rRNA sequence was aligned in the EzBioCloud 
(http:// www. ezbio cloud. net/ ident ify) and NCBI GenBank 
(http:// blast. ncbi. nlm. nih. gov/ Blast. cgi) databases to obtain 
its taxonomic status. MEGA v7.0 (https:// www. megas oftwa 
re. net/) was used to compare 16S rRNA sequences of XH26 
and reference gene sequences of closely related species with 
high similarity downloaded from NCBI database. Escheri-
chia coli K-12 (LT899983) was used as an outgroup. The 
neighbor-joining method with 1000 bootstrap replicates was 
adopted for phylogenetic analysis. The complete genome of 
XH26 was uploaded to the Type (Strain) Genome Server 
(TYGS), a free bioinformatics platform available under 
https:// tygs. dsmz. de, for a whole genome-based taxonomic 
analysis (Meier-Kolthoff and Göker 2019; Meier-Kolthoff 
et al. 2022). A whole-genome sequence-based phylogenetic 
tree was constructed using the Genome BLAST Distance 
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Phylogeny approach (GBDP) and the digital DNA-DNA 
hybridization (dDDH) values were calculated (Meier-
Kolthoff et al. 2013).

RNA extraction, RNA library preparation 
and sequencing

Cells were harvested after 18 h of culture by centrifuga-
tion. Total RNA of each sample was extracted using TRI-
zol Reagent (Invitrogen)/RNeasy Mini Kit (Qiagen). Total 
RNA of each sample was quantified and qualified by Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, 
CA, USA), NanoDrop (Thermo Fisher Scientific Inc.) and 
1% agarose gel. 1 μg total RNA with RIN value above 7 
was used for following library preparation. Next generation 
sequencing library preparations were constructed according 
to the manufacturer’s protocol (NEBNext® Ultra™ Direc-
tional RNA Library Prep Kit for Illumina®). The rRNA was 
depleted from total RNA using Ribo-Zero rRNA Removal 
Kit (Bacteria) (Illumina). The ribosomal depleted mRNA 
was then fragmented and reverse-transcribed. First strand 
cDNA was synthesized using ProtoScript II Reverse Tran-
scriptase with random primers and Actinomycin D. The 
second-strand cDNA was synthesized using Second Strand 
Synthesis Enzyme Mix (include dACGTP/dUTP). The puri-
fied double-stranded cDNA by AxyPrep Mag PCR Clean-up 
(Axygen) was then treated with End Prep Enzyme Mix to 
repair both ends and add a dA-tailing in one reaction, fol-
lowed by a T-A ligation to add adaptors to both ends. Size 
selection of Adaptor-ligated DNA was then performed using 
AxyPrep Mag PCR Clean-up (Axygen), and fragments of 
~360 bp (with the approximate insert size of 300 bp) were 
recovered. The dUTP-marked second strand was digested 
with Uracil-Specific Excision Reagent (USER) enzyme 
(New England Biolabs). Each sample was then amplified 
by PCR for 11 cycles using P5 and P7 primers, with both 
primers carrying sequences which can anneal with flow cell 
to perform bridge PCR and P7 primer carrying a six-base 
index allowing for multiplexing. The PCR products were 
cleaned up using AxyPrep Mag PCR Clean-up (Axygen), 
validated using an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Palo Alto, CA, USA), and quantified by Qubit 2.0 
Fluorometer (Invitrogen, Carlsbad, CA, USA). The RNA-
seq was performed using HiSeq (2 × 150) paired-end (PE) 
configuration (Illumina).

RNA‑seq data analysis

Clean RNA-seq data were aligned to the reference genome 
using Bowtie2 software (v2.1.0). Gene expression lev-
els were estimated using HTSeq (v0.6.1p1), and dif-
ferential expression analysis was performed using the 

DESeq Bioconductor package, and differential expressed 
genes (DEGs) were identified if |log2(fold change)|≥ 1, 
FDR < 0.05.

Swarming motility assay

Swarming motility assay in semisolid agar plates was con-
ducted based on the procedure described by (Salvador et al. 
2018) and modified for agar concentration. Swarming plates 
of basal medium containing 0%, 6% or 12% NaCl were pre-
pared with an optimized agar concentration of 1.9%. Cells 
were grown in tubes with basal medium containing 0%, 
6% or 12% NaCl, and incubated at 37 °C, 160 rpm until 
 OD600 = 0.6. Aliquots of 3 µl of each culture were seeded at 
the centre of the respective swarming plates, and incubated 
at 37 °C in a humid environment. The migration halo was 
monitored during 96 h and the swarming diameters were 
measured. Three independent experiments were conducted 
to avoid artifacts caused by handling.

Quantitative real time polymerase chain reaction 
(qPCR) validation

The cDNA was synthesized from the extracted RNA using 
PrimeScript™ RT reagent Kit with gDNA Eraser (RR047A, 
Takara). The qPCR was performed using TB Green™ Pre-
mix Ex Taq™ II (RR820A, Takara) according to the manu-
facturer’s standard protocol. The internal reference gene was 
GADPH and the relative transcript quantification of each 
gene was calculated using the ΔΔCT method. The primers 
used in this study were synthesized by Nanjing GenScript 
Biotechnology Co., Ltd., and the primer sequences of the 
target genes can be found in Table S1.

Compatible solute extraction and accumulation 
detection

After 48 h of cultivation, cells were measured for their 
 OD600 value and ectoine and 5-hydroxyectoine accumu-
lation. Ectoine and 5-hydroxyectoine extraction was con-
ducted as described by (Parwata et al. 2019). First, 1 mL of 
the bacterial culture was cold centrifuged at 10,625×g for 
5 min, and the supernatant was discarded. Then an equal 
volume (1 mL) of ultrapure water was added to the tube 
and ground for 5 min with the 3rd Gen Variable Speed 
TGrinder (OSE-Y50, Tiangen Biotech (Beijing) Co., Ltd). 
After centrifugation at 10,625×g for 5 min, the water phase 
containing the compatible solutes was separated and fil-
tered with a 0.22 µm filter membrane for high-performance 
liquid chromatography (HPLC) analysis. A standard curve 
was built using compatible solute standard product diluted 
in a gradient. Ectoine and 5-hydroxyectoine was identified 
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using Agilent Technologies 1260 Infinity HPLC (USA) with 
a SeQuant ZIC- HILIC, 15.0 cm by 4.6 mm (5 μm) col-
umn (Sigma-Aldrich, USA). Detection conditions were as 
follows: mobile phase acetonitrile/pure water (v/v: 80/20), 
detection wavelength of 210 nm, flow rate of 1.0 mL/min, 
column pressure of 3.486–4.761 MPa, column temperature 
of 30 °C, and sample volume of 10 µl. The measured ectoine 
and 5-hydroxyectoine content was standardized by the cell 
dry weight (CDW).

Results

16S rRNA sequencing, phylogenetic analysis 
and genome sequencing of XH26

The 16S rRNA gene of XH26 was sequenced and under-
gone sequence alignment and phylogenetic analysis (Fig. 1). 
Results showed that XH26 belongs to the Halomonas genus, 
and its 16S rRNA gene is most closely related to Halomonas 
alkaliphila X3 (Yue et al. 2019) and Halomonas campanien-
sis LS21 (Yue et al. 2014) with 99.93% nucleotide identity. 
After that, the whole genome of XH26 was sequenced using 
PacBio Sequel platform. The XH26 circular genome was 
4,112,053 bp in size, with 52.62% GC content and 3927 
genes. We compared its whole genome with genomes of 
bacterial type strains using TYGS, and results confirmed 
that XH26 belongs to H. alkaliphila, and is most related 
to H. alkaliphila DSM16354 (dDDH > 80%, Fig. S1). The 

functional annotation details across databases could be 
found in Table S2.

Morphology and growth conditions of H. alkaliphila 
XH26

Halomonas alkaliphila XH26 could survive in a pH range 
of 6.0–10.0 with optimal pH of 8.0. To test XH26 tolerance 
to salinity, cells were cultured in a NaCl concentration range 
of 0–18% at optimal pH and measured for their  OD600 values 
for 72 h (Fig. 2a). XH26 could survive in 0–18% NaCl, with 
fastest growth rate at 3% NaCl (Fig. 2b). After 48 h of cul-
ture, similar  OD600 values could be measured in 3–9% NaCl. 
Morphologically, H. alkaliphila XH26 colonies were milky 
white, moist, opaque, small and round with smooth edges, 
and exhibited adhesion and swelling properties (Fig. 2c). 
Scanning electron and transmission electron micrographs 
revealed that H. alkaliphila XH26 was long rod-shaped with 
peritrichous flagella, and normally 3.0–5.0 μm in length and 
0.5–0.75 μm in width (Fig. 2d, Fig. S2).

Transcript analysis under different salt stress

To address the key mechanisms of salt tolerance for H. alka-
liphila XH26, cells were cultured in basal medium with 0%, 
6% and 15% NaCl respectively for 18 h before collected 
for RNA-seq. Three biological replicates were obtained for 
each treatment condition. The number of raw reads obtained 
ranged from 13,407,768 to 21,569,442, with Q30 no lower 

Fig. 1  Phylogenetic analysis of 
XH26. The phylogenetic tree 
was constructed based on 16S 
rRNA gene sequences using the 
neighbor-joining method with 
1000 bootstraps. The reference 
sequences were downloaded 
from NCBI Genbank. Scale bar, 
0.002 substitutions per nucleo-
tide position
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than 92.56% (Table S3). After filtering out the contaminated 
and low-quality sequences, the clean reads were mapped 
to its own genome sequence. The total mapped rate of all 
samples ranged from 93.2% to 99.6%, with unique mapped 
reads ratio ranged from 91.16% to 97.21%.

Transcriptionally expressed gene analysis

Gene transcriptional expression levels of each sample were 
analyzed using Transcripts per Million (TPM). Similar number 

of genes could be found for all groups, ranging from 3656 in 
15% NaCl group to 3704 in 0% NaCl group. Strong correla-
tions existed within each treatment group (≥0.82), with high-
est correlation scores in 15% NaCl group (≥0.97) (Fig. S3a). 
The results were consistent with principle component analysis 
(PCA) (Fig. S3b). Samples in 15% NaCl group showed more 
distinct expression level patterns compared with 6% and 0% 
NaCl groups and had lowest intra-group variation.

Differentially expressed genes (DEG) analysis 
on the transcriptional level

Significant changes of gene transcriptional expressions 
were observed in 15%/0% and 15%/6% comparison groups 
(Fig. S4, Table 1). There were 786 down-regulated genes 
and 521 up-regulated genes at 15% NaCl when compared 
to 0% NaCl (the  DEG15%/0% set) (FDR < 0.05, |log2FC|≥ 1). 
A slightly less number of DEGs were found at 15% NaCl 
when compared to 6% NaCl (the  DEG15%/6% set), with 734 
down-regulated genes and 492 up-regulated genes, respec-
tively. More genes were transcriptionally down-regulated 
than up-regulated in 15% NaCl culture. The gene transcrip-
tion levels were quite similar for H. alkaliphila XH26 in 
0% and 6% NaCl, with only 116 down-regulated genes and 
182 up-regulated genes at 6% NaCl when compared to 0% 
NaCl (the  DEG6%/0% set). All three DEG sets were annotated 
across eggNOG (http:// eggnog. embl. de/), GO (http:// www. 
geneo ntolo gy. org/), KEGG (http:// www. genome. jp/ kegg/), 
Swiss-Prot (https:// web. expasy. org/ docs/ swiss- prot_ guide 
line. html), Pfam (http:// pfam. xfam. org/) and NR (http:// 
www. ncbi. nlm. nih. gov/ prote in) databases and the respec-
tive statistical results are shown in Table 1.

Global transcriptional response to osmotic stress

We first analyzed the Cluster of Orthologous Groups (COG) 
functional categories of each DEG set (Fig. 3a). COG Type 
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Table 1  Statistics of DEGs and annotations

Gene number DEG15%/0% set DEG15%/6% set DEG6%/0% set

DEGs 1307 1226 298
Up-regulated genes 521 492 182
Down-regulated genes 786 734 116
COG annotated genes 1108 1033 246
GO annotated genes 956 874 217
KEGG annotated 

genes
781 728 163

Swissprot annotated 
genes

954 888 230

Pfam annotated genes 1145 1078 269
NR annotated genes 1287 1214 297
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S had the largest number of genes among all three DEG 
sets which were poorly characterized and therefore excluded 
from the following analysis. In  DEG6%/0% set, functional 

categories related to inorganic ion transport and metabo-
lism (P), amino acid transport and metabolism (E), carbo-
hydrate transport and metabolism (G), energy production 
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and conversion (C) and transcription (K) were mostly rep-
resented (> 5% of  DEG6%/0% no.). Functional categories 
related to posttranslational modification, protein turnover, 
chaperones (O), signal transduction mechanisms (T), repli-
cation, recombination and repair (L) and coenzyme transport 
and metabolism (H) also increased their representations to 
a lesser extent (4–4.88% of  DEG6%/0% no.). In 15% NaCl 
condition, besides the functional categories E, C, P, K, O, L 
mentioned above, category related to cell wall/membrane/
envelope biogenesis (M) was also mostly represented com-
pared to both 0% NaCl and 6% NaCl condition (4.15% of 
 DEG15%/0% no. and 4.84% of  DEG15%/6% no. respectively), 
indicating different mechanisms involved in high salinity-
induced osmoadaptation.

For GO annotation, the top ten GO groups comprising 
most number of DEGs for all three DEG groups were unani-
mous, with four GO groups belonging to biological process 
category (cellular process, metabolic process, localization 
and biological regulation), three belonging to cellular com-
ponent category (cell part, membrane part and membrane) 
and three belonging to molecular function category (cata-
lytic activity, binding and transporter activity) (Fig. 3b).

For KEGG annotation, top represented KEGG pathways 
were quite similar among all three DEG groups except for 
cell motility pathway, which was among the top ten most 
represented pathways in  DEG15%/0% and  DEG15%/6% sets 
but not in the  DEG6%/0% set, indicating possible role of cell 
motility regulation in high salinity-induced osmoadaptation 
(Fig. 3c).

GO and KEGG enrichment analysis for three DEG sets

To figure out top GO groups and KEGG signaling path-
ways involved in different salinity-induced osmoadapta-
tion, GO and KEGG enrichment analysis were performed 
for all three DEG sets (Figs. 4, 5, 6). Total 62 GO groups 
were significantly represented in the  DEG6%/0% set, with 14 
annotated to biological process category, 4 annotated to cel-
lular component category and 44 annotated to molecular 

function category (FDR < 0.05). The top 20 GO groups were 
most related to transmembrane transporter activity (10 GO 
groups containing 30 DEGs) and fatty acid catabolism (4 
GO groups containing 3 DEGs), the latter of which were 
down-regulated (Fig. 4a). In KEGG enrichment analysis, 
the genes were annotated to 95 signaling pathways and ABC 
transporters (map02010) was the only significantly mapped 
reference canonical pathway with 21 up-regulated DEGs and 
11 down-regulated DEGs (Fig. 4b).

For high-salinity induced osmoadaptation, there were 117 
GO groups significantly enriched in the  DEG15%/6% set and 
51 in the  DEG15%/0% set (FDR < 0.05), the top 20 of which 
were shown in Fig. 5a and Fig. 6a, respectively. For KEGG 
enrichment analysis, there were 161 and 160 annotated sign-
aling pathways for the  DEG15%/6% set and the  DEG15%/0% set 
respectively. Significantly enriched signaling pathways were 
flagellar assembly (map02040) and phenylalanine metabo-
lism (map00360) in both  DEG15%/6% and  DEG15%/0% sets, 
and valine, leucine and isoleucine degradation (map00280), 
fatty acid degradation (map00071) and propanoate metabo-
lism (map00640) in the  DEG15%/0% set (Fig. 5b, Fig. 6b).

Role of transmembrane transport 
in osmoadaptation

Both GO and KEGG enrichment analysis of the  DEG6%/0% 
set suggested that transmembrane transport may play a 
major role in moderate salinity-induced osmotic adapta-
tion (Fig. 4). For high-salinity induced osmoadaptation, a 
relatively large number of genes related to transmembrane 
transport were also differentially expressed at the transcrip-
tion level in 15% NaCl compared to 0% and 6% NaCl. There 
were 32, 66 and 56 DEGs in the  DEG6%/0%,  DEG15%/6% and 
 DEG15%/0% sets annotated to ABC transporters (map02010) 
respectively, comprising a gene set of 92 (Table S4). These 
genes were mostly related to mineral and organic ion trans-
port, phosphate and amino acid transport, as well as trans-
port of monosaccharides, oligosaccharides and lipids.

As for mineral ion transport, iron transport seemed 
important in both moderate and high salinity-induced osmo-
adaptation. In moderate salinity (6% NaCl), the transcription 
levels of ABC transporter genes related to iron (III) trans-
port including fbpB1, fbpB2, idiA, cysA2, potA, HI_0301 
and NGR_a03680 were significantly up-regulated. In high 
salinity (15% NaCl), the transcriptions of most of these 
genes stayed up-regulated compared to 0% NaCl, but some-
how stayed no changes or even down-regulated compared to 
those in 6% NaCl. Instead, iron import in high salinity was 
implemented by both single ion transport and iron complex 
import in the form of  iron3+-hydroxamate indicated by sig-
nificantly up-regulation of fhuB, fhuC and fhuD transcrip-
tions. At the same time, transcriptions of cytochrome bio-
genesis and assembly-related transporter genes ccmA, ccmB, 

Fig. 3  Functional categories of DEGs in H. alkaliphila XH26. a 
COG annotation. B: Chromatin structure and dynamics; C: Energy 
production and conversion; D: Cell cycle control, cell division, chro-
mosome partitioning; E: Amino acid transport and metabolism; F: 
Nucleotide transport and metabolism; G: Carbohydrate transport and 
metabolism; H: enzyme transport and metabolism; I: Lipid transport 
and metabolism; J: Translation, ribosomal structure and biogenesis; 
K: Transcription; L: Replication, recombination and repair; M: Cell 
wall/membrane/envelope biogenesis; N: Cell motility; O: Posttrans-
lational modification, protein turnover, chaperones; P: Inorganic ion 
transport and metabolism; Q: Secondary metabolites biosynthesis, 
transport and catabolism; S: Function unknown; T: Signal transduc-
tion mechanisms; U: Intracellular trafficking, secretion, and vesicular 
transport; V: Defense mechanisms. b GO annotation. c KEGG anno-
tation

◂
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ccmC, cydC and cydD were significantly up-regulated, indi-
cating possible role of cytochrome in high salinity-induced 
osmoadaptation in H. alkaliphila XH26. In addition, sulfate 
import-related ABC transporter genes were transcriptionally 
down-regulated under both moderate and high salt stress, 
tungstate transporter genes were down-regulated in high 
salinity-induced osmoadaptation while manganese trans-
porter genes were down-regulated in moderate salinity con-
dition. Molybdate transporter genes were transcriptionally 
up-regulated under high salt stress while stayed unchanged 
under moderate salt stress.

In high salinity condition, transcriptions of ABC trans-
porter genes related to glycine betaine (GB) and putrescine 
uptake were significantly up-regulated. Trehalose, malt-
ose, ribose and sn-Glycerol 3-phosphate transporter genes 

were up-regulated under salt stress, but stayed no change or 
even down-regulated in 15% NaCl compared to 6% NaCl. 
Amino acid transport seemed most complicated, with 
mixed changes of ups and downs for different amino acid 
transporter transcription levels, which needed to be further 
analyzed with changes of amino acid metabolism path-
ways. Together these results indicated that transmembrane 
transport and the transcription levels of ABC transporter 
genes might play an important role in salt-induced osmo-
adaptation in H. alkaliphila XH26, and divergent mecha-
nisms were involved in moderate and high salinity-induced 
osmoadaptation.

In addition, we checked the existence and the 
transcriptional changes of the Tripartite ATP-inde-
pendent periplasmic transporter (TRAP-T) and the 
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betaine-choline-carnitine-transporter (BCCT) families 
for compatible solute transport in XH26 (Table S5). H. 
alkaliphila XH26 has the TRAP-T system for ectoine 
transport, and the teaABCD gene cluster corresponds to 
orf03787-orf03784 on the XH26 genome respectively. 
TeaABC is an osmoregulated ectoine transporter with 
TeaA as the substrate-binding protein (Tetsch and Kunte 
2002; Grammann et al. 2002), and the universal stress 
protein TeaD negatively regulates the transport of ectoine 
and hydroxyectoine (Schweikhard et al. 2010). Under salt 
stress, the transcriptions of teaB and teaC were not signifi-
cantly changed. The transcription of teaA was significantly 

up-regulated in 6% NaCl compared to 0% NaCl, and the 
transcription of teaD was significantly down-regulated 
in 15% NaCl compared to both 0% and 6% NaCl. As for 
the BCCT system, H. alkaliphila XH26 doesn’t have the 
sodium-coupled BCCT gene betP for betaine transport 
(Krämer and Morbach 2004). Instead, it has the BCCT 
genes ectT, betS, betT, VP1456 (bccT1), VP1723 (bccT2) 
and VPA0356. Under salt stress, the transcriptional levels 
of all these BCCT genes were not significantly changed 
except VP1456, which encodes VP1456 for GB, proline, 
choline, and ectoine uptake (Ongagna-Yhombi et al. 2015). 
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In 15% NaCl, the transcription of VP1456 was signifi-
cantly up-regulated compared to 0% NaCl.

Reduced flagellum assembly and cell motility 
in high salinity‑induced osmoadaptation

For high-salinity induced osmoadaptation, there were 48 
DEGs in  DEG15%/6% group annotated to 16 significantly 
enriched GO groups related to cell motility (FDR < 0.005, 
Table S6), which were all transcriptionally down-regulated, 
showing reduced flagellum assembly and cell motility in 
high salinity condition. Similarly, 12 significantly enriched 

GO groups related to cell motility (FDR < 0.005) were down-
regulated in the  DEG15%/0% group, which contained 43 DEGs 
mostly included in the  DEG15%/6% set except two (orf00232 
and orf00240). Checking the transcription levels of all these 
50 genes in  DEG6%/0% group, we found that only two of them 
were significantly up-regulated (orf00123 and orf02416) 
while others were not significantly changed (Table S6). 
This was consistent with previous KEGG annotation result 
showing a significant larger number of cell motility genes 
represented in the 15% NaCl condition (Fig. 3c). In addition, 
KEGG enrichment analysis showed that flagellar assembly 
(map02040) was the top significantly enriched signaling 
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pathway in 15% NaCl group compared with both 6% and 
0% NaCl groups, which was down-regulated (Fig. 5b and 
Fig. 6b). Together these results indicated that in 15% NaCl 
which was less optimal for cell growth (Fig. 2a), reduced 
flagellum assembly and cell motility might be maintained 
compared to 6% and 0% NaCl culture conditions.

To verify the role of cell motility in high salinity-induced 
osmoadaptation, swarming motility assay was performed to 
test cells’ migration ability under various salt stress (Fig. 7). 
Results showed that cells moved at a slightly slower speed 
on agar in 6% NaCl compared to those in 0% NaCl, and 
migrated much slower in 12% NaCl compared to those in 
both 0% and 6% NaCl. The swarming motility test results 
confirmed the significant decrease of cell motility in high 
salt induction.

Ectoine synthesis for osmoadaptation

The synthesis and accumulation of compatible solute ectoine 
has been found to be important in many halophilic bacteria 
including Halomonas. The typical ectoine and hydroxyec-
toine biosynthesis and degradation pathways were shown 
in Fig. 8a. Those genes all exist in H. alkaliphila XH26 
genome. As in H. elongata DSM 2581 (Schwibbert et al. 
2011), the position of the ectD gene (3,346,765–3,347,748) 
is apart from the ectABC cluster (19,453,512–1,945,966), 
and the ectoine catabolic genes also form a doeABCD 
gene cluster which is located at 3,091,719–3,104,268 in 
the genome (Table S7). In 15% NaCl condition, the tran-
scriptions of ectoine and 5-hydroxyectoine synthesis genes 
including lysC, ectB, ectC and ectD were all significantly 
up-regulated compared to those in 0% NaCl while the deg-
radation genes including doeC and doeD were significantly 

down-regulated (Fig. 8b, Table S7). In 6% NaCl condition, 
the transcription levels of most genes were not significantly 
different from those in 0% NaCl, except for a significant 
increase in the transcription of the 5-hydroxyectoine syn-
thesis gene ectD. The fold change of ectC was 2.836. How-
ever, due to large intra-group variations, the increase was 
considered not significant. From 6 to 15% NaCl, significant 
increase of ectB transcription and decrease of doeC and 
doeD transcriptions were observed. We further performed 
qPCR to measure the mRNA expression levels to confirm 
the transcription changes of these ectoine and hydroxyec-
toine synthesis and degradation genes found in RNA-seq. 
Results showed consistent trends for all of the ten genes 
tested with the RNA-seq data, and a significant increase of 
ectC and asd mRNA expressions in the 15%/6% compari-
son group (p < 0.05, |log2FC|≥ 1) as well as an increased 
lysC and doeC mRNA expressions in the 6%/0% comparison 
group were observed (Fig. 8b). Although decreases of doeC 
and doeD transcriptions were shown in the 15%/0% compar-
ison group as in the RNA-seq data, the decreases were not 
significant. Together these data indicated that ectoine and 
5-hydroxyectoine synthesis might be an important metabolic 
pathway for osmoadaptation in H. alkaliphila XH26. When 
exposed to medium salinity stress (6% NaCl), the transcrip-
tions of ectoine and 5-hydroxyectoine synthesis genes lysC 
and ectD were increased. When exposed to high salinity 
stress (15% NaCl), besides lysC and ectD, the increased 
transcriptions of ectB and ectC played a key role. The tran-
scription changes of asd and ectA seemed not significant in 
ectoine and 5-hydroxyectoine synthesis for osmoadaptation 
in H. alkaliphila XH26.

To validate the important role of ectoine synthesis in 
osmoadaptation, we measured the intracellular ectoine 
and 5-hydroxyectoine contents and respective  OD600 val-
ues under different NaCl concentrations after 48 h of cul-
ture (Fig. 8c). High salinity such as 18% NaCl can signifi-
cantly inhibit cell growth. The accumulation of ectoine was 
quite small at 0% NaCl (32.53 mg/g CDW), and increased 
with increasing salinity, reaching the maximum value of 
219.35 mg/g at 9% NaCl; then started to decrease with the 
increase of NaCl concentration. At 15% NaCl, the ectoine 
content dropped to 76.74 mg/g, which was similar to that at 
3% NaCl (65.93 mg/g), and further dropped to 20.97 mg/g 
at 18% NaCl. The 5-hydroxyectoine was not synthesized at 
0% NaCl. From 3% NaCl, the synthesis of 5-hydroxyectoine 
started to slowly increase with increasing salinity, reaching 
21.29 mg/g at 15% NaCl. At 18% NaCl, the 5-hydroxyec-
toine production was 10.22 mg/g, which was a little less 
than the ectoine production at the same salinity. Together 
with transcriptome analysis results, these findings confirmed 
that H. alkaliphila XH26 accumulated ectoine as one of the 
main compatible solutes for salt-induced osmoadaptation. 
In extreme high salinity condition (18% NaCl) when cell 
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growth was significantly inhibited, 5-hydroxyectoine and 
ectoine contributed together to maintain cell survival.

Discussion

Osmoadaptation strategies in H. alkaliphila XH26

Halophiles usually adopt two strategies to adapt to salt 
stress, which are the “salt-in” strategy and the accumulation 
and synthesis of compatible solutes (Brown 1976; Kindzier-
ski et al. 2017; Chen et al. 2017). Our study showed that salt-
induced osmoadaptation could be quite complicated in H. 
alkaliphila XH26 and divergent mechanisms were involved 

in osmoadaptation to moderate and high salinity conditions. 
In moderate salinity condition (6% NaCl), transmembrane 
transport and ectoine synthesis played a major role for osmo-
adaptation. Increased transcriptions of iron (III), phosphate 
and phosphonate transporters and decreased transcriptions 
of sulfate and manganese transporters were observed. Tran-
scriptions of monosaccharide and oligosaccharide import 
genes including trehalose, maltose, ribose and sn-Glycerol 
3-phosphate were up-regulated, and ectoine synthesis and 
accumulation was significantly increased. In high salinity 
condition (15% NaCl), besides transmembrane transport 
and ectoine and 5-hydroxyectoine synthesis which were 
crucial for osmoadaptation, flagellum assembly and cell 
motility were significantly inhibited compared to both 0% 
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NaCl and 6% NaCl. This was different to Chromohalobac-
ter salexigens which showed up-regulated transcriptions of 
flagellum synthesis related genes and increased cell motil-
ity at 15% NaCl (Salvador et al. 2018). In Bacillus subtilis, 
similar findings to our H. alkaliphila XH26 were observed 
when cultured in 7.2% NaCl, which exhibited a repressed 
transcription of chemotaxis and motility genes and severe 
impairment of the swarming ability (Steil et al. 2003). How-
ever, the growth salinity range of this sigB mutant strain was 
not reported in the article.

Role of amino acid and glucose metabolism 
and citrate cycle in osmoadaptation and ectoine 
synthesis

Compatible solute ectoine is a cyclic amino acid deriva-
tive with hydrophilic and zwitterionic characteristics which 
can protect cells from extreme environments such as high 
osmotic pressure and high temperature (Bursy et al. 2008; 
Galinski and Trüper 1994; Garcia-Estepa et al. 2006; Malin 
and Lapidot 1996). Under salt-induced conditions, halo-
philic bacteria of different genera can biosynthesize ectoine, 
such as Chromohalobacter (Galinski and Trüper 1994; Sal-
vador et al. 2018), Marinococcus (Galinski and Trüper 1994; 
Louis and Galinski 1997; Wei et al. 2011), Bacillus (Anbura-
jan et al. 2019; Galinski and Trüper 1994; Kuhlmann and 
Bremer 2002), Stenotrophomonas (Sajjad et al. 2018), and 
Halomonas (Chen et al. 2018; Galinski and Trüper 1994; 
Kraegeloh and Kunte, 2002; Zhao et al. 2019). In our study, 
ectoine was synthesized and accumulated under salt stress 
from l-aspartate in H. alkaliphila XH26. At high salinity 
(15% NaCl), the transcriptional levels of lysC, ectB and 
ectC were significantly up-regulated compared to 0% NaCl 
which were verified by qPCR analysis while the transcrip-
tions of asd and ectA stayed unchanged (Fig. 8b). This result 
was not exactly the same as that found in H. elongata DSM 
2581 (Kindzierski et al. 2017). In H. elongata DSM 2581, 
the transcriptions of ectABC were all significantly elevated 
at 12% NaCl compared to 0.6% NaCl, and the correspond-
ing enzymes EctA, EctB and EctC were up-regulated at 
6% NaCl compared to cells from 0.6% NaCl whereas the 
enzymes LysC and Asd were not significantly changed under 
salt stress (6% and 12% NaCl). While not consistent with H. 
elongata DSM 2581, the significant increase of lysC tran-
scription in H. alkaliphila XH26 was also found in Vibrio 
parahaemolyticus under salt stress (Yang et al. 2010), and 
an increased lysC expression could lead to a 9% increase 
of ectoine production in E. coli (Ning et al. 2016). Since 
the gene transcriptional levels do not represent the actual 
protein expression levels, further validation studies need 
to be performed to confirm our findings in H. alkaliphila 
XH26. Besides, the decrease of doeD in transcription at high 

salinity (15% NaCl) was consistent with H. elongata DSM 
2581, which showed a significant decrease of doeD tran-
scription and DoeD protein level under salt stress (Kindzier-
ski et al. 2017).

The ectoine synthesis could be regulated by general 
amino acid metabolism and citrate cycle (TCA cycle) within 
the cell. The amino acid metabolism (E) was among the 
top 3 represented KEGG pathways, whose transcription 
was up-regulated under salt stress (Fig. 3c). A summary 
of KEGG enrichment analysis for top enriched amino acid 
metabolic pathways is shown in Table S8 (FDR < 1). Both 
valine, leucine and isoleucine degradation (map00280) and 
phenylalanine metabolism (map00360) were significantly 
down-regulated under high salt stress. Alanine, aspartate 
and glutamate metabolism (map00250) can be related to 
ectoine synthesis pathways through oxaloacetate within 
the citrate cycle (map00020), and L-glutamate can serve as 
the carbon source for ectoine synthesis (Fig. 9). The tran-
scriptions of relevant genes along this signaling pathway 
mostly stayed unchanged under moderate salinity condition 
(6% NaCl), and significantly increased at high salinity (15% 
NaCl), including glutamate synthase genes gltB and gltD, 
glutaminase gene glsA, 4-aminobutyrate transaminase gene 
davT, succinate semialdehyde dehydrogenase genes sad 
and gabD, succinate dehydrogenase genes sdhA and sdhD, 
and aconitate hydratase gene acnA. L-glutamate also serves 
as the nitrogen source for ectoine synthesis by generating 
L-2,4-diaminobutanoate through the transamination reaction 
catalyzed by EctB (Peters et al. 1990; Ono et al. 1999; Rich-
ter et al. 2019). In addition, glucose metabolism can serve as 
the carbon source for ectoine synthesis as well. Both Entner-
Doudoroff (ED) and Embden-Meyerhof-Parnas (EMP) path-
ways were significantly up-regulated in 15% NaCl, and the 
generation of oxaloacetate from pyruvate was up-regulated 
under salt stress (Fig. 9).

Possible role of betaine synthesis and uptake 
in osmoadaptation

Besides ectoine, glycine betaine has also been shown to be 
an important compatible solute in halophile osmoadaptation, 
which could be synthesized through either choline oxidation 
or glycine methylation (Gunde-Cimerman et al. 2018; Nyys-
sola et al. 2000). In our study, H. alkaliphila XH26 only pos-
sesses choline oxidation genes betA, betB and betI2, which 
is consistent with existing studies (Canovas et al. 2000; 
Gadda and McAllister-Wilkins 2003; Gu et al. 2008). The 
transcriptions of these three genes were significantly up-
regulated in 15% NaCl condition compared to both 0% NaCl 
and 6% NaCl conditions, while no significant changes were 
found in 6% NaCl condition compared to 0% NaCl condi-
tion (Table S9). Together with the ABC transporter analysis 
results which showed significantly increased transcriptional 
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expressions of glycine betaine uptake genes at 15% NaCl 
(Table S4), these data indicate that glycine betaine uptake 
and synthesis may also play a role in high salt stress-induced 
osmoadaptation in H. alkaliphila XH26. Interestingly, gly-
cine betaine might be also involved in ectoine synthesis. 
Studies have shown that inhibition of betaine synthesis may 
increase ectoine production under low salt stress (Kushwaha 
et al. 2019), and whether it is the case in H. alkaliphila 
XH26 need to be further studied and verified.

Conclusions

In this work, we have investigated the osmoadaptation 
mechanism of H. alkaliphila XH26 under differential salt 
stress conditions. To adapt to low salt stress, H. alkaliphila 
XH26 increased ectoine synthesis and the transcriptions of 
the transmembrane import of iron (III), phosphate, phospho-
nate, monosaccharide and oligosaccharide. When exposed 

to high salinity stress, H. alkaliphila XH26 tried to survive 
by significantly decreased transcriptions of flagellum assem-
bly and cell motility genes together with reduced cell motil-
ity, increased ectoine and 5-hydroxyectoine synthesis, and 
increased transcriptions of ABC transporters related to iron 
(III) and  iron3+-hydroxamate import, glycine betaine and 
putrescine uptake, and cytochrome biogenesis and assembly. 
The synthesis and accumulation of ectoine and 5-hydrox-
yectoine under salt stress could be preferentially regulated 
by the increased transcriptions of lysC, ectB, ectC and ectD 
genes. The transcription of TRAP-T gene teaA was increased 
while the transcription of teaD was decreased under salt 
stress, indicating a potential increase in ectoine import. 
Besides, other compatible solutes such as glycine betaine 
may also play a role in the high salinity-induced osmoadap-
tation of H. alkaliphila XH26.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00792- 022- 01256-1.
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