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Abstract
The haloalkalitolerant bacterium Egicoccus halophilus EGI 80432T exhibits high adaptability to saline–alkaline environment. 
The salinity adaptation mechanism of E. halophilus EGI 80432T was fully understood based on transcriptome analyses and 
physiological responses; however, the alkaline response mechanism has not yet been investigated. Here, we investigated the 
alkaline response mechanism of E. halophilus EGI 80432T by a transcriptomic comparison. In this study, the genes involved 
in the glycolysis, TCA cycle, starch, and trehalose metabolism for energy production and storage, were up-regulated under 
highly alkaline condition. Furthermore, genes responsible for the production of acidic and neutral metabolites, i.e., acetate, 
pyruvate, formate, glutamate, threonine, and ectoine, showed increased expression under highly alkaline condition, compared 
with the control pH condition. In contrast, the opposite results were observed in proton capture or retention gene expression 
profiles, i.e., cation/proton antiporters and ATP synthases. The above results revealed that E. halophilus EGI 80432T likely 
tended to adopt an “acidic metabolites production” strategy in response to a highly alkaline condition. These findings would 
pave the way for further studies in the saline–alkaline adaptation mechanisms of E. halophilus EGI 80432T, and hopefully 
provide a new insight into the foundational theory and application in ecological restoration with saline–alkaline strains.
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cDNA	� Complementary DNA
TCA​	� Tricarboxylic acid

Introduction

Typical saline–alkaline environments like saline–alkaline 
lakes and soil harbor a number of halo(alkali)philic and 
halo(alkali)tolerant microorganisms (Banciu and Sorokin 
2013). To thrive in those habitats, microorganisms deploy 
some adaptive strategies to cope with highly saline and/or 
alkaline stress. Microorganisms adopt the “salt-in-cyto-
plasm” strategy and the “compatible solute” strategy to 
withstand the salt stress (Chen et al. 2020, 2021). Besides, to 
overcome the burden of alkaline pH, microorganisms rely on 
some mechanisms of cytoplasmic pH homeostasis, e.g., the 
capture or retention of proton by the primary proton pumps 
(e.g., ATP synthase) and secondary active transporters [e.g., 
monovalent cation/proton antiporters (CPA)]; the production 
of acidic metabolites (e.g., acetate, pyruvate, and glutamate) 
through carbohydrate and amino acid metabolism; the modi-
fication of cell membrane by the alteration in membrane 
fatty acids components; the changes of secondary cell wall 
polymer containing various negatively charged residues, 
which favor H+ accumulation and deter OH− penetration 
(Slonczewski et al. 2009; Guo et al. 2019; Mamo 2020).

The class Nitriliruptoria, a higher taxon of phylum Act-
inobacteria, has six culturable members, namely Nitrili-
ruptor alkaliphilus ANL-iso2T, Euzebya tangerina F10T, 
Euzebya rosea DSW09T, Euzebya sp. DY32-46, Egicoccus 
halophilus EGI 80432T, and Egibacter rhizosphaerae EGI 
80759T, which exhibit great adaptability to various high-salt 
environments (Sorokin et al. 2009; Kurahashi et al. 2010; 
Zhang et al. 2016a, b; Yin et al. 2018; Xu et al. 2019). The 
genomic features playing a role in the adaptation to high-salt 
environments in Nitriliruptoria were analyzed by a com-
parative genomics approach (Chen et al. 2020). The research 
revealed that a similar synthesis systems of solutes, namely 
trehalose, glutamine, glutamate, and proline, were present 
in Nitriliruptoria. On the other hand, the specific mecha-
nisms likely contributing to withstand various salt environ-
ments were found in each member of Nitriliruptoria species, 
including K+ influx and efflux, betaine and ectoine synthesis, 
and compatible solutes transport. Chen et al. (2021) per-
formed physiological and transcriptomic analysis to reveal 
the salinity adaptation strategy in E. halophilus EGI 80432T. 
They proposed that E. halophilus EGI 80432T adopted the 
“salt-in-cytoplasm” strategy and the “compatible solute” 
strategy in response to moderate salinity condition, while 
the “compatible solute” strategy acted as a dominant strategy 
to withstand high salt stress. It is noteworthy that E. halo-
philus EGI 80432T is a haloalkalitolerant bacterium isolated 
from saline–alkaline soil. The salt-tolerant mechanism of E. 

halophilus EGI 80432T was elucidated by Chen et al. (2021), 
but the alkaline response mechanism of E. halophilus EGI 
80432T still remains unknown.

Here, we tried to elucidate the alkaline response mecha-
nism of E. halophilus EGI 80432T by comparing the tran-
scriptome profile under highly alkaline condition with a con-
trol condition. We are confident that our research would be 
helpful for deeply understanding the adaptation mechanism 
of E. halophilus EGI 80432T to the saline–alkaline environ-
ment, and provide a theoretical support for its application in 
environmental domination.

Materials and methods

Strains and culture conditions

E. halophilus EGI 80432T (= CGMCC 1.14988T = KCTC 
33612T) grown in the pH between pH 8.0 and pH 10.0, and 
optimally at pH 8.0–9.0, was isolated from a saline–alkaline 
soil in Xinjiang Province, north-west China (Zhang et al. 
2016a). The strain was maintained on modified marine 
2216E agar (Difco, Sparks, MD, USA) supplemented with 
2% NaCl (w/v) and pH adjusted to 8.0 at 30 °C (Zhang et al. 
2016a). The cells from modified marine 2216E agar were 
transferred to 50 mL fresh modified marine 2216E liquid 
medium in 250 mL Erlenmeyer flasks and incubated for 
3 days at 30 °C with 150 rpm shake. The pre-cultures were 
used as inocula for the study.

Alkaline pH stress experiment and sample 
preparation

The pre-cultures were transferred to fresh modified marine 
2216E liquid medium with different pH, namely pH 8.0 
(control check, CK) and pH 10.0 (high alkali, HA), and cul-
tured at 30 °C with shake of 150 rpm. The cultures grown 
to the mid-exponential growth phase in different alkaline 
conditions were harvested by centrifuging at 5,000 g for 
10 min and washed three times with ddH2O for subsequent 
transcriptomic analysis.

RNA‑seq sample preparation and transcriptome 
sequencing

Six RNA samples obtained from cells grown under con-
trol (pH 8.0) and high alkali (pH 10.0) treatments with 
three biological replicates were used to generate sequenc-
ing libraries. Total RNA per sample was extracted with 
a modified RNeasy midi kit (Qiagen Science, CA, USA) 
and treated with RNase-free DNase I (TaKaRa, China) 
to remove genomic DNA. Subsequently, the extracts 
were monitored on 1% agarose gels and checked with 



461Extremophiles (2021) 25:459–470	

1 3

the NanoPhotometer® spectrophotometer (IMPLEN, CA, 
USA). The quantity and quality of RNA were measured 
using Qubit® 2.0 fluorometer with Qubit® RNA assay kit 
(Life Technologies, CA, USA), and Agilent Bioanalyzer 
2100 system with the RNA Nano 6000 assay kit (Agilent 
Technologies, CA, USA), respectively. Sequencing librar-
ies were constructed using NEBNext® Ultra™ Directional 
RNA library prep kit (NEB, USA) and sequenced on an 
Illumina Hiseq 2500 platform at Novogene Bioinformatics 
Technology Co. Ltd. (Beijing, China).

RNA‑seq data analysis

Raw reads were deposited in the National Center for Bio-
technology Information (NCBI) Sequence Read Archive 
(SRA) database (Bioproject: PRJNA718721 and the 
accession numbers: SRR14116862-SRR14116867). The 
raw data of fastq format were firstly processed through 
in-house perl scripts to remove reads containing adapter, 
ploy-N, and low-quality reads. The quality of clean data 
was assessed with Q20 and Q30 (Table 1). The high-qual-
ity clean data were aligned to E. halophilus EGI 80432T 
genome using Bowtie2-2.2.3 (Langmead and Salzberg 
2012). The identification of novel genes and prediction of 
gene structure were performed by Rockhopper (McClure 
et al. 2013). The single-nucleotide polymorphisms (SNP) 
calling was performed by GATK (McKenna et al. 2020). 
Subsequently, the Shine–Dalgarno (SD) sequence and ter-
minator sequence were predicted by RBSfinder and Tran-
sTermHP, respectively (Suzek et al. 2001; Kingsford et al. 
2007). Finally, we used IntaRNA and RNAfold to predict 
the sRNA targets and RNA secondary structures, respec-
tively (Hofacker and Stadler 2006; Busch et al. 2008).

Differentially expressed genes (DEGs) analysis 
and annotation

To estimate the levels of gene expression, the read num-
bers mapped to each gene were counted by HTSeq v0.6.1, 
and the effect of sequencing depth and gene length for each 
gene was calculated based on the fragments per kilobase 
of transcript sequence per millions of base pairs sequenced 
(FPKM) (Trapnell et al. 2010). Subsequently, we used the 
DESeq R package (1.18.0) to analyze the DEGs between 
the control group and the highly alkaline group (Anders and 
Huber 2013). In this study, we performed three biological 
replicates per group, such that the DEGs were identified 
with an adjusted P value < 0.05 (Anders and Huber 2013). 
Finally, the Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis of DEGs 
identified between two groups were implemented by the 
GOseq R package and KOBAS software, respectively (Mao 
et al. 2005; Young et al. 2010).

Validation of RNAseq data by quantitative real‑time 
PCR

Quantitative real-time PCR (qPCR) was performed to vali-
date the RNA-seq data. Six randomly selected genes, namely 
ELR47_RS03560, ELR47_RS05540, ELR47_RS09510, 
ELR47_RS09675, ELR47_RS11550, and ELR47_RS14440, 
were used as target genes, and the chaperonin Cpn60 gene 
as an internal control. The primers used in this study were 
generated with DNAMAN 6.0 software and listed in Sup-
plementary Table S1. The treated RNA (1 ng/μL) per sam-
ple was used to synthesize complementary DNAs (cDNAs) 
by the Hifair™ II super mix plus gDNA digester with the 
Oligo(dT) (Yeasen, China). The qPCR reaction was per-
formed in the mixture containing Hieff® qPCR SYBR® 

Table 1   Summary of RNA-sequencing and assembly results

CK control check, HA high alkali
a CK and HA-1, -2, -3 represent three biological replicates of E. halophilus EGI 80432T under optimum pH and high pH conditions, respectively

Sample namea CK-1 CK-2 CK-3 CK_group HA-1 HA-2 HA-3 HA_group

Raw reads 18,580,600 15,358,214 16,776,214 16,905,009 33,696,494 26,238,266 33,726,920 31,220,560
Clean reads 18,488,732 

(99.51%)
15,086,069 

(98.23%)
16,652,445 

(99.26%)
16,742,415 

(99%)
33,160,745 

(98.41%)
25,624,772 

(97.66%)
33,354,850 

(98.9%)
30,713,455 

(98.32%)
Multiple 

mapped
579,489 

(3.12%)
780,026 

(5.08%)
630,028 

(3.76%)
663,181 

(3.99%)
996,244 

(2.96%)
1,386,829 

(5.29%)
1,015,432 

(3.01%)
1,132,835 

(3.75%)
Uniquely 

mapped
17,909,243 

(96.39%)
14,306,043 

(93.15%)
16,022,417 

(95.51%)
16,079,234 

(95%)
32,164,501 

(95.45%)
24,237,943 

(92.38%)
32,339,418 

(95.89%)
29,580,620 

(94.57%)
Q20 (%) 97.51 97.38 97.46 97.45 97.37 97.40 97.35 97.37
Q30 (%) 93.44 93.24 93.34 93.34 93.13 93.17 92.96 93.08
GC content 

(%)
70.56 71.15 71.17 70.96 71.68 70.73 71.38 71.26

Genes 3767 3833 3833 3840 3825 3822 3819 3837
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Green master mix (Yeasen, China), a forward/reverse primer, 
a cDNA template, and ddH2O, with the procedure: 95 °C 
for 10 min, followed by 40 cycles of 95 °C for 15 s, and 
60 °C for 1 min, on a QuanStudio3 real-time PCR system 
(Applied Biosystems, USA). The 2−ΔΔCT method was used 
to calculate the relative expression of randomly selected 
genes (Livak and Schmittgen 2001). Three biological and 
three technical replicates were performed for the control and 
highly alkaline groups.

Results

Transcriptome sequencing and assembly analysis

To investigate the response mechanism to high pH shock in 
E. halophilus EGI 80432T, six libraries were generated and 
sequenced from cells grown under pH 8.0 (control check, 
CK) and pH 10.0 (high alkali, HA) conditions. Table 1 
shows the results obtained from RNA-sequencing and 
assembly. After removing reads containing adapter, ploy-N, 
and low-quality reads, average 99% and 98.32% clean reads 
were obtained from average 16,905,009 and 31,220,560 
raw reads generated for control and highly alkaline condi-
tions, respectively. Moreover, average 16,079,234 (95%) 
and 29,580,620 (94.57%) reads were uniquely mapped to 
E. halophilus EGI 80432T reference genome and assembled 
into 3,840 and 3,837 genes. To validate the RNA-seq data 
reliability, we randomly selected 6 genes, ELR47_RS03560, 
ELR47_RS05540, ELR47_RS09510, ELR47_RS09675, 
ELR47_RS11550, and ELR47_RS14440, and performed 
the qPCR analysis. The qPCR results were in agreement 
with RNA-seq data (Supplementary Fig. S1).

Differentially expressed genes (DEGs) analysis 
and annotation

The overall transcription levels of genes were quantified by 
the FPKM metrics (Trapnell et al. 2010), and DEGs were 
identified with the standard threshold of P value < 0.05 
(Anders and Huber 2013). Compared with the control, 1,129 
genes were identified as DEGs at highly alkaline treatment, 
including 536 genes up-regulated and 593 genes down-
regulated (Fig. 1a, Table 2). Furthermore, 733 DEGs (355 
genes up-regulated and 378 genes down-regulated) and 606 
DEGs (303 genes up-regulated and 303 genes down-regu-
lated) were functionally annotated with GO and KEGG data-
base, respectively (Table 2). According to KEGG pathway 
enrichment analysis, DEGs were classified into seventeen 
functional categories and mainly involved in the categories 
including “carbohydrate metabolism”, “energy metabo-
lism”, “nucleotide metabolism”, “amino acid metabolism”, 

“metabolism of cofactors and vitamins”, “membrane trans-
port”, and “signal transduction” (Fig. 1b).

Response of carbohydrate metabolism to highly 
alkaline stress

The highly alkaline environment significantly affected the 
expression of genes involved in carbohydrate metabolism, 
i.e., glycolysis, tricarboxylic acid cycle (TCA cycle), starch, 
and trehalose metabolism (Fig. 2). Six unigenes encoding 
enzymes, including fructose-1,6-bisphosphatase II, fruc-
tose-bisphosphate aldolase II, glyceraldehyde-3-phosphate 
dehydrogenase, phosphoglycerate kinase, phosphopyruvate 
hydratase, and pyruvate dehydrogenase E1, involved in gly-
colysis, were up-regulated under pH 10.0 condition. As for 
TCA cycle, four genes encoding fumarate hydratase class 
II, aconitate hydratase, and succinate-CoA ligase subunit 
alpha/beta, were up-expressed under highly alkaline condi-
tion. Similarly, the genes responsible for trehalose synthesis, 
i.e., treS (trehalose synthase), treY (malto-oligosyltrehalose 
synthase), and treX (glycogen debranching enzyme), showed 
positive response under highly alkaline shock. Moreover, 
genes required to synthesize starch from amylose (ELR47_
RS05355) and the degradation of starch to dextrin (ELR47_
RS11515) were highly expressed in highly alkaline stress.

Response of proton transport to highly alkaline 
stress

Proton capture or retention, performed by the primary 
proton pumps (e.g., respiratory chain complexes) and sec-
ondary active transporters [e.g., monovalent cation/pro-
ton antiporters (CPA)], is one major microbial strategy of 
maintaining intracellular pH homeostasis under a high pH 
environment (Slonczewski et al. 2009; Mamo 2020). The 
present work demonstrated up-regulated genes involved in 
the respiratory chain complexes (complex I, complex III, 
and complex IV) such as NADH–quinone oxidoreductase 
subunit I, cytochrome b subunit, cytochrome c1 subunit, 
and cytochrome c oxidase subunit I/II/III (Fig. 3). The main 
function of these genes is the proton production and trans-
location (Papa et al. 1994). In contrast, gene encoding ATP 
synthase for proton influx was down-regulated under high 
pH condition (Fig. 3).

The monovalent cation/proton antiporters regulate the 
influx of proton and the efflux of cations (Krulwich et al. 
2011). Those antiporters were categorized into two super-
families, the CPA families [CPA1, CPA2, and CPA3 (also 
known as Mrp-type)] and the Nha (Na+/H+ antiporter) 
families (NhaA, NhaB, NhaC, and NhaD) (Krulwich 
et al. 2009; Ito et al. 2017). Here, one Na+/H+ antiporter 
gene (ELR47_RS08060) and two cation/proton antiporter 
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genes (ELR47_RS01215 and ELR47_RS08070) were 
down-expressed under higher alkaline condition (pH 10.0) 
(Fig. 3).

These findings suggested that E. halophilus EGI 80432T 
likely decreased the proton capture or retention under 
highly alkaline condition (pH 10.0), compared with the 
control pH condition (pH 8.0).
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Fig. 1   Distribution of differentially expressed genes (DEGs) under highly alkaline condition compared with control condition (pH 10.0 vs pH 
8.0). a Volcano plots of DEGs. b Kyoto Encyclopedia of Genes and Genomes (KEGG) classification of DEGs

Table 2   Summary of DEGs of E. halophilus EGI 80432T transcrip-
tome in response to high alkali stress

CK control check, HA high alkali

HA vs CK

All Up Down

DEG 1129 536 593
DEG_GO 733 355 378
DEG_KEGG 606 303 303
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Response of organic acid metabolism to highly 
alkaline stress

The production of acidic metabolites that lower internal 
pH is another microbial strategy of maintaining intracel-
lular pH homeostasis under a high pH environment (Slon-
czewski et al. 2009; Mamo 2020). We analyzed and com-
pared the expression of genes involved in the production of 
common organic acids in E. halophilus EGI 80432T under 
highly alkaline treatment (pH 10.0) with those in the con-
trol treatment (pH 8.0) (Fig. 4a, c). Figure 4a shows that 

the highly alkaline stress showed positive effect on the pro-
duction of acetate, which was performed by two pathways. 
One was performed by three up-regulated genes encoding 
pyruvate dehydrogenase, dihydrolipoyl dehydrogenase, 
and acetyl–CoA synthetase. The other one was performed 
by aldehyde dehydrogenase and alcohol dehydrogenase. 
Under highly alkaline condition, aldehyde dehydroge-
nase was encoded by two up-regulated genes (ELR47_
RS06225 and ELR47_RS13150) and one down-regulated 
gene (ELR47_RS16010), and alcohol dehydrogenase was 
encoded by two up-regulated genes (ELR47_RS12650 and 

Down-regulated                NS                 Up-regulated

b
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Descriptions Locus_tag EC numbers Putative Function CK HA
ELR47_RS03990 3.1.3.11 Fructose-1,6-bisphosphatase II
ELR47_RS07380 4.1.2.13 Fructose-bisphosphate aldolase II
ELR47_RS09380 1.2.1.12 Glyceraldehyde-3-phosphate dehydrogenase
ELR47_RS09385 2.7.2.3 Phosphoglycerate kinase
ELR47_RS16800 4.2.1.11 Phosphopyruvate hydratase
ELR47_RS00695 1.2.4.1 Pyruvate dehydrogenase E1
ELR47_RS03785 4.2.1.2 Fumarate hydratase class II
ELR47_RS09730 4.2.1.3 Aconitate hydratase
ELR47_RS03675 6.2.1.5 ADP-forming succinate-CoA ligase subunit beta
ELR47_RS03680 6.2.1.5 Succinate-CoA ligase subunit alpha
ELR47_RS05320 2.4.1.25 4-Alpha-glucanotransferase
ELR47_RS05360 5.4.99.16 Trehalose synthase
ELR47_RS05325 5.4.99.15 Malto-oligosyltrehalose synthase
ELR47_RS05330 3.2.1.68 Glycogen debranching enzyme 
ELR47_RS11515 3.2.1.1 Alpha-amylase
ELR47_RS05355 2.4.1.18 1,4-Alpha-glucan branching enzyme

Glycolysis

Citrate cycle
(TCA cycle)

Starch and
trehalose

metabolism

Fig. 2   The DEGs involved in carbohydrate metabolism. a Pathways 
for carbohydrate metabolism in E. halophilus EGI 80432T. b Heat 
maps of the different expression levels of genes responsible for car-
bohydrate metabolism in E. halophilus EGI 80432T under highly 

alkaline condition. CK control check (pH 8.0) and HA high alkali (pH 
10.0). The information of genes involved in carbohydrate metabolism 
is shown in the Supplementary Table S2
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ELR47_RS17805) and two down-regulated genes (ELR47_
RS08185 and ELR47_RS13890). In addition, genes encod-
ing formate C-acetyltransferase and D-lactate dehydrogenase 
responsible for the pyruvate production from formate and 
lactate, respectively, were up-regulated under the pH 10.0 
condition. The enhanced expression of a gene that encodes 
formyltetrahydrofolate deformylase involved in the for-
mate synthesis and the decreased expression of a gene that 
encodes enoyl-CoA hydratase responsible for butanoate pro-
duction were found under highly alkaline treatment.

We further analyzed the expression of genes involved 
in the acidic amino acid metabolism in E. halophilus EGI 
80432T under highly alkaline condition (Fig. 4b, d). No 
significant difference was found in the expression of genes 
involved in the aspartate synthesis between highly alkaline 
treatment and control treatment. However, the highly alka-
line stress led to the positive regulation in glutamate synthe-
sized by genes encoding glutamate dehydrogenase, l-gluta-
mate gamma-semialdehyde, carbamoyl-phosphate synthase, 
and aminotransferase. Surprisingly, the highly alkaline treat-
ment also played a positive role in the gene encoding threo-
nine synthase required for threonine synthesis. Furthermore, 

three ectoine and 5-hydroxyectoine synthesis genes encod-
ing diaminobutyrate acetyltransferase, ectoine synthase, and 
ectoine hydroxylase were increased expression under high 
pH condition.

The above results revealed that E. halophilus EGI 80432T 
likely increased the production of acidic and neutral metabo-
lites, i.e., acetate, pyruvate, formate, glutamate, threonine, 
ectoine, and 5-hydroxyectoine, in response to highly alkaline 
condition (pH 10.0).

Discussion

The development and popularization of next-generation 
sequencing provided more possibility to investigate the 
adaptation mechanism of microorganisms at various lev-
els, e.g., gene, genome, and transcriptome (Cheng et al. 
2016; Chen et al. 2020; Shu et al. 2020). Recently, RNA-
sequencing, an effective method to evaluate the gene expres-
sion of organisms at various stage and state, was used to 
reveal the molecular mechanism of environmental stress 
response in microorganisms, e.g., temperature, salt, and pH 
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CPA

H+Cation

H+Cation

NHA

H+Na+

H+Na+

Outside cell

Inside cell

a

b
Descriptions Locus_tag Putative Function CK HA
NHA ELR47_RS08060 Na+/H+ antiporter 

ELR47_RS01215 Cation/proton antiporter 
ELR47_RS08070 Cation/proton antiporter 

CI ELR47_RS02730 NADH-quinone oxidoreductase subunit I
ELR47_RS12625 Cytochrome b subunit 
ELR47_RS12615 Cytochrome c1 subunit
ELR47_RS17970 Cytochrome c oxidase polypeptide I 
ELR47_RS01470 Cytochrome c oxidase polypeptide I 
ELR47_RS17975 Cytochrome c oxidase polypeptide II 
ELR47_RS01475 Cytochrome c oxidase polypeptide II 
ELR47_RS17965 Cytochrome c oxidase polypeptide III

ATP synthase ELR47_RS05885 ATP synthase

CPA

CIII

CIV

Down-regulated                NS                 Up-regulated

Fig. 3   The DEGs involved in proton transport. a Schematic diagram 
of proton transport in E. halophilus EGI 80432T. b Heat maps of the 
different expression levels of genes responsible for proton transport 
in E. halophilus EGI 80432T under highly alkaline condition. CK 

control check (pH 8.0), HA high alkali (pH 10.0), CI complex I, CIII 
complex III,and CIV complex IV. The information of genes involved 
in proton transport is shown in the Supplementary Table S2
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c

d

Down-regulated                NS                 Up-regulated

Locus_tag EC numbers Putative Function CK HA
ELR47_RS06680 1.4.1.4 Glutamate dehydrogenase
ELR47_RS12425 1.2.1.88 L-glutamate gamma-semialdehyde dehydrogenase
ELR47_RS10780 6.3.5.5 Carbamoyl-phosphate synthase large subunit
ELR47_RS10785 6.3.5.5 Carbamoyl-phosphate synthase small subunit
ELR47_RS13155 2.6.1.19 Aminotransferase class III-fold pyridoxal phosphate-dependent enzyme
ELR47_RS17550 4.2.3.1 Threonine synthase
ELR47_RS14550 23.1.178 Diaminobutyrate acetyltransferase
ELR47_RS14540 42.1.108 cupin domain-containing protein
ELR47_RS14535 1.14.1155 ectoine hydroxylase

Locus_tag EC numbers Putative Function CK HA
ELR47_RS03720 1.1.1.28 2-hydroxyacid dehydrogenase
ELR47_RS00695 1.2.4.1 Pyruvate dehydrogenase
ELR47_RS11300 1.8.1.4 Dihydrolipoyl dehydrogenase
ELR47_RS08125 6.2.1.1 Acetyl-coenzyme A synthetase
ELR47_RS06225 1.2.1.3 Aldehyde dehydrogenase 
ELR47_RS13150 1.2.1.3 Aldehyde dehydrogenase 
ELR47_RS16010 1.2.1.3 Aldehyde dehydrogenase 
ELR47_RS12650 1.1.1.1 Alcohol dehydrogenase 
ELR47_RS08185 1.1.1.1 Alcohol dehydrogenase
ELR47_RS13890 1.1.1.1 Alcohol dehydrogenase
ELR47_RS17805 1.1.1.1 Alcohol dehydrogenase 
ELR47_RS08685 2.3.1.54 Formate C-acetyltransferase
ELR47_RS15915 3.5.1.10 Formyltetrahydrofolate deformylase 
ELR47_RS09675 4.2.1.17 Enoyl-CoA hydratase 

Pyruvate

2-Hydroxyethyl-ThPP

Acetyl-CoA

S-Acetyldihydrolipoamide-E

Dihydrolipoamide-E

Lipoamide-E 1.2.4.1

1.8.1.4

Acetate

Acetaldehyde

Ethanol

1.2.4.1

ThPP

Formate

2.3.1.54

6.2.1.1

Acetyladenylate

Glycolysis

3.5.1.10

N-Formylderiyatives

(S)-3-Hydroxybutanoyl-CoA

4.2.1.17

Crotonoyl-CoA

Butanoate

D-Lactate

1.1.1.28

6.2.1.1

1.2.1.3

1.1.1.1

L-Glutamate

L-Glutamate 5-semialdehyde

2-Oxo-glutarate

1.2.1.88

1.4.1.4

Citrate cycle

Oxaloacetate

L-Aspartate

6.3.5.5

4.2.3.1

O-Phospho-L-homoserine

Threonine

L-Glutamine

L-Aspartate-4-semialdehyde

1.14.1155

5-Hydroxyectoine

42.1.108

L-2,4-Diamino-butanoate

2.6.1.76

Ectoine

N-γ-Acetyl-L-2,4-diaminobutyrate

Succinate semialdehyde

Succinate

2.6.1.19

a b

Fig. 4   The DEGs involved in the production of acidic metabolites. 
Pathways for common organic acids production (a) and acidic amino 
acid metabolism (b) in E. halophilus EGI 80432T. Heat maps of the 
different expression levels of genes responsible for common organic 
acids production (c) and acidic amino acid metabolism (d) in E. halo-

philus EGI 80432 T under highly alkaline condition. CK control check 
(pH 8.0) and HA high alkali (pH 10.0). The information of genes 
involved in acidic metabolites metabolism is shown in the Supple-
mentary Table S2
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(Raymond-Bouchard and Whyte 2017; Liang et al. 2020; 
Songserm et al. 2020; Chen et al. 2021). In this study, the 
alkaline response mechanism of haloalkalitolerant bacterium 
E. halophilus EGI 80432T was investigated by comparing 
the transcriptome profile under highly alkaline condition 
(pH 10.0) with control condition (pH 8.0). The clean reads 
were efficiently mapped to E. halophilus EGI 80432T refer-
ence genome (control condition for 95% and highly alkaline 
condition for 94.57%). Furthermore, 1129 DEGs (536 genes 
up-regulated and 593 genes down-regulated) were identified 
with the standard threshold of P value < 0.05 (Anders and 
Huber 2013).

It is a well-known fact that energy is required when 
microorganism adapt the environmental stress. The expres-
sion of genes responsible for energy production was signifi-
cantly affected by environmental stress (Raymond-Bouchard 
and Whyte 2017; Wang et al. 2019; Songserm et al. 2020). 
The up-regulated genes involved in glycolysis and TCA 
cycle, which are the major pathways for ATP generation, 
were reported in E. halophilus EGI 80432T withstanding 
salt stress (Chen et al. 2021). Our transcriptomic analyses 
showed that the high alkali treatment also showed a posi-
tive effect on glycolysis and TCA cycle in E. halophilus 
EGI 80432T. Furthermore, we found that the expression 
of genes involved in the synthesis of trehalose and starch, 
which are used as the main source of carbon and energy, was 
increased under highly alkaline condition. These findings 
suggested that E. halophilus EGI 80432T likely increased 
energy production and reserve compounds synthesis to sur-
vive and grow in a highly alkaline environment. Previous 
researches proposed that trehalose was used not only as a 
source of carbon and energy but also as a stress protect-
ant to cope with various environmental stresses, such as the 
compatible solute for coping with high salt environments 
(Wang et al. 2019; Chen et al. 2021) and the thermopro-
tectant for withstanding to high temperature environments 
(Reina-Bueno et al. 2012; Liu et al. 2019). The elevated 
expression of genes in trehalose synthesis pathways under 
highly alkaline condition suggested that trehalose may act as 
stress protectant in the highly alkaline response of E. halo-
philus EGI 80432T.

Even in a high pH environment, most microbes tend to 
maintain their cytoplasmic pH close to neutral (Slonczewski 
et al. 2009). For this, maintaining a relatively higher intra-
cellular concentration of H+ is necessary. One important 
component of the cell membrane that contributes to cyto-
plasmic pH homeostasis is the primary proton pump, such 
as the respiratory system (Hicks and Krulwich 1995). Lewis 
et al. (1983) proposed that the proton translocation concomi-
tant with respiration, and the H+ was extruded with a high 
H+/O ratio in the alkaliphiles. In the respiratory system of 
alkaliphiles, the NADH dehydrogenase was believed to be a 
proton--translocating complex (Hicks and Krulwich 1995), 

and the cytochrome c was thought to have a function in the 
transfer of electron-coupled H+ and the storage of electron 
and H+ for ATP production (Matsuno and Yumoto 2015). In 
E. halophilus EGI 80432T, the expression of genes encoding 
NADH–quinone oxidoreductase subunit I and cytochrome 
c1 subunit under pH 10.0 condition were higher than those 
under pH 8.0 condition, suggesting that E. halophilus EGI 
80432T likely transferred and accumulated a large number 
of electron and H+ on the outer surface of membrane under 
higher alkaline condition. Researches proposed that ATP 
synthase utilize the electrochemical gradients of H+ on the 
surface of membrane to synthesize ATP and transfer H+ into 
the cytoplasm (Hicks et al. 2010). Here, the expression of 
ATP synthase gene was decreased under pH 10.0 condition, 
suggesting that the transfer of H+ to the cytoplasm by ATP 
synthase was lowered when E. halophilus EGI 80432T under 
higher alkaline condition.

The monovalent cation/proton antiporters that perform 
the exchange of the intracellular cations (e.g., Na+, Li+, and 
K+) and the extracellular H+ are thought to be a very crucial 
mechanism for proton capture (Mamo 2020). The monova-
lent cation/proton antiporters were encoded by diverse genes 
(Krulwich et al.  2009). However, not all the antiporter genes 
show differential expression during an alkaline pH environ-
ment. Desulfovibrio vulgaris possesses several putative Na+/
H+ antiporter genes, but only one (DVU3108) was up-regu-
lated in response to high alkali stress (Stolyar et al.  2007). 
Furthermore, the study of Cheng et al. (2016) revealed that 
the antiporter genes exhibited different transcriptional pro-
files under alkaline conditions. Compared with the pH 8.0 
condition, antiporter genes, mrpA, mrpD, mrpE, nhaD2, 
and nhaP, were down-regulated in Halomonas sp. Y2 in 
response to higher alkaline condition (pH 10.17), whereas 
opposite results were detected in genes, mrpB, mrpC, mrpF, 
mrpG, and nhaD1. Fifteen putative monovalent cation/pro-
ton antiporter genes were detected in E. halophilus EGI 
80432T (Chen et al.  2020). However, only three antiporter 
genes exhibited decreased expression in response to higher 
alkaline condition (pH 10.0), suggesting that the proton 
capture by monovalent cation/proton antiporters was low in 
E. halophilus EGI 80432T in response to a higher alkaline 
condition.

It is known that metabolic processes are significantly 
affected by extracellular pH. Under an alkaline environment, 
cells produce acidic compounds to maintain intracellular 
pH homeostasis (Mamo 2020). The increased production 
in lactate, formate, acetate, and butanoate were observed 
in Fusobacterium nucleatum cultured at pH 8.2 compared 
to pH 7.4 (Chew et al. 2012). Here, the transcription levels 
of genes involved in the synthesis of acidic end products 
from carbohydrate metabolism, i.e., acetate, pyruvate, and 
formate, exhibited increasing trends in E. halophilus EGI 
80432T in response to higher alkaline condition. High pH 
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favors the production of acid substances from carbohydrate 
and amino acid metabolism (Mamo 2020). The intracellular 
glutamate content of Streptomyces hygroscopicus in alkaline 
pH treatment was higher than the control (Jiang et al. 2018). 
The study of Chew et al. (2012) reported that the expression 
of glutamate dehydrogenase responsible for glutamate bio-
synthesis was significantly increased in F. nucleatum under 
alkaline condition. The positive effects in the four pathways 
for glutamate biosynthesis, namely glutamate dehydroge-
nase, l-glutamate gamma-semialdehyde, carbamoyl-phos-
phate synthase, and aminotransferase, were detected in E. 
halophilus EGI 80432T under higher alkaline condition. 
Moreover, the elevated expression of genes responsible for 
the synthesis of threonine, ectoine, and 5-hydroxyectoine, 
which were used for E. halophilus EGI 80432T withstanding 
higher salinity stress (Chen et al. 2021), was observed under 
highly alkaline stress, indicating that these compounds were 
responsible for E. halophilus EGI 80432T in response to a 
higher alkaline environment.

In summary, we compared the transcriptome of E. halo-
philus EGI 80432T under highly alkaline condition (pH 10.0) 
with control condition (pH 8.0), and proposed the putative 
mechanism of E. halophilus EGI 80432T in response to 
higher alkaline shock (Fig. 5). The energy production path-
ways, i.e., glycolysis and TCA cycle, and storage pathways, 
i.e., starch and trehalose metabolism, were extremely active, 
when E. halophilus EGI 80432T was cultured under higher 
alkaline condition, indicating that E. halophilus EGI 80432T 
may produce and store a large amount of energy to cope 
with higher alkaline environment. In some alkaliphilic and 

alkalitolerant microorganisms, the monovalent cation/pro-
ton antiporters and ATP synthase are the effective channels 
for trapping proton (Slonczewski et al. 2009; Mamo 2020). 
However, they likely were not the major strategy for E. halo-
philus EGI 80432T in response to higher alkaline condition, 
since the gene expression of cation/proton antiporters and 
ATP synthases was decreased under pH 10.0 condition. On 
the other hand, the acidic metabolites are thought to increase 
the cytoplasmic H+ concentration, which would relieve the 
burden of capturing proton to the cytoplasm (Mamo 2020). 
The higher gene expression was observed in the production 
of acidic and neutral metabolites, i.e., acetate, pyruvate, for-
mate, glutamate, threonine, and ectoine, when E. halophilus 
was incubated under highly alkaline condition (pH 10.0), 
revealing that under higher alkaline condition, E. halophilus 
EGI 80432T likely tended to produce acidic metabolites to 
adjust the intracellular pH change.
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