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Abstract
Psychrophilic fungi are a critical biotic component in cold deserts that serves a central role in nutrient recycling and biogeo-
chemical cycles. Despite their ecological significance, culture-independent studies on psychrophilic mycobiome are limited. 
In the present study, the fungal diversity patterns across the Drass, an Indian cold desert in the Himalaya, were indexed by 
targeted amplicon pyrosequencing (ITS). In the Drass dataset, Ascomycota was represented by 92 genera, while 22 genera 
represented Basidiomycota. The most abundant genus was Conocybe (20.46%). Most of the identified genera were reported 
in the literature to be prolific extracellular hydrolytic enzyme producers. To identify whether the Drass fungal assemblages 
share similarities to other cold deserts, these were further compared to Antarctic and Arctic cold deserts. Comparative analy-
sis across the three cold deserts indicated the dominance of Dikarya (Ascomycota and Basidiomycota). The observed alpha 
diversity, Shannon index as well as Pielou’s evenness was highest in the Antarctic followed by Drass and Arctic datasets. 
The genera Malassezia, Preussia, Pseudogymnoascus, Cadophora, Geopora, Monodictys, Tetracladium, Titaea, Mortierella, 
and Cladosporium were common to all the cold deserts. Furthermore, Conocybe was represented predominantly in Drass. 
Interestingly, the genus Conocybe has not been previously reported from any other studies on Antarctic or Arctic biomes. 
To the best of our knowledge, this is the first fungal metagenome study in Drass soil. Our analysis shows that despite the 
similarities of low temperature among the cold deserts, a significant differential abundance of fungal communities prevails 
in the global cold deserts.
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Introduction

The mycobiome represents the fungal community within a 
biome (Schnecker et al. 2014) and these biotic communities 
participate in crucial ecological processes operating in the 
ecosystems. The literature holds ample reports on the fungal 
community structure of contrasting ecosystems (Zimmer-
man and Vitousek 2012; Moll et al. 2016; Durán et al. 2019). 
However, psychrophilic and psychrotolerant microbes, 
inhabiting ice-covered regions of the cold desert have gained 
much attention in recent decades as they play a significant 
role in decomposing organic matters, nutrient recycling, 
and biogeochemical cycles in intensely cold environments 
(Margesin and Miteva 2011; Gesheva and Vasileva-Tonkova 
2012). Besides, they are a significant producer of cold-toler-
ant enzymes and secondary metabolites with industrial and 
pharmaceutical applications such as cold-adapted lipase in 
detergent Lipoclean® (Duncan et al. 2008; Krishnan et al. 
2011; Wang et al. 2013; Sarmiento et al. 2015; Duarte et al. 
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2018). Moreover, the temperature has an essential role in 
microbial ecology (Pietikäinen et al. 2005). Interestingly, 
about 85% of the earth experiences below 5 °C permanently 
or seasonally (Hassan et al. 2016). Psychrotolerant microbes 
can withstand temperatures close to the freezing point as 
well as mild temperatures (Ahmad et al. 2010). The stud-
ies on cold-adapted fungi in Antarctic, Arctic, Finland, and 
Siberian tundra have reported the dominance by Ascomy-
cetes and Basidiomycetes (Frank-Fahle et al. 2014; Heino 
et al. 2014; Schnecker et al. 2014; Wang et al. 2017).

Drass, a cold desert in the Himalaya, world’s highest 
mountain range, is located at an estimated elevation of 
3280 m above sea level (34.45 °N latitude, 75.77 °E lon-
gitude). It is the coldest human inhabited place in India 
and the second coldest in the world after Siberia. The great 
Himalayan range acts as an obstruction, blocking most of 
the monsoons in Ladakh, converting it into cold arid desert. 
There are reports pertaining to the bacterial diversity in the 
Himalayan habitats (Gangwar et al. 2009; Shivaji et al. 2011, 
2013; Srinivas et al. 2011; Gupta et al. 2015; Gupta and 
Vakhlu 2015; Yadav et al. 2015). However, to the best of our 
knowledge, psychrophilic and psychrotolerant fungal diver-
sity in Drass cold desert remains unexplored. Hence, in this 
study, we have implemented a pyrosequencing approach to 
explore and map the fungal community in Drass soil. Fur-
thermore, microbial communities including mycobiome 
are known to be influenced by geography, elevation, reced-
ing glacier (Siles and Margesin 2016; Dresch et al. 2019; 
Řezáčová et al. 2019). Hence, to identify the similarities 
and dissimilarities between Drass mycobiome and other cold 
deserts, we compared the Drass mycobiome to the Antarctic 
and Arctic cold deserts. In this study, we addressed three 
main questions (i) What are the dominant fungal OTUs that 
inhabit in the soil of Drass (ii) To identify the differentially 
abundant fungal taxa with different ecotypes (Drass, Antarc-
tic and Arctic) (iii) What are the similarities between fungal 
communities in different cold deserts across the globe.

Materials and methods

Sampling sites and ITS metagenomic 
pyrosequencing

Soil samples from different locations (n = 10) in Drass (J&K, 
India) (34.45  N, 75.77 E) were collected. The soil tempera-
ture at the time of sampling was recorded to be between 
10 °C and 15 °C. Soil samples (~ 1 cm below the surface) 
were collected in sterile containers with the help of a sterile 
spatula and transported to the laboratory at 4 °C. Subse-
quently, a composite soil sample was obtained by pooling 
the soil samples and further sieved through 2 mm sieve 
which was eventually stored at  – 20 °C for future analysis. 

Metagenomic DNA was extracted based on sodium dode-
cyl sulfate (SDS) and cetyl trimethyl ammonium bromide 
(CTAB) lysis followed by phenol:chloroform:isoamyl 
alcohol (25:24:1) purification and ethanol precipitation as 
described in Gupta et al. (2015). NanoDrop 1000 Spectro-
photometer (Thermo Scientific, US) confirmed the purity 
and concentration of DNA. Extracted metagenomic DNA 
was pooled, diluted to a final concentration of 50 ng/μl, 
and used as the template for PCR amplification. The inter 
transcribed spacer (ITS) region was amplified using ITS1F 
(5′-TCC​GTA​GGT​GAA​CCT​GCG​G-3′) and ITS4R (5′- TCC​
TCC​GCT​TAT​TGA​TAT​GC-3′) (White et al. 1990). The 
amplification was carried out with initial denaturation at 
95 °C for 5 min followed by 35 cycles of denaturation at 
95 °C for 45 s, annealing at 55 °C for the 30 s, extension at 
72 °C for 60 s, and a final extension at 72 °C for 8 min in 
Eppendorf master cycler Gradient. The length of the PCR 
amplicons was verified using the Low Mass DNA Ladder 
(Invitrogen™, US) by agarose gel electrophoresis (1% w/v). 
The amplicons were purified by gel elution (Qiagen, India) 
and outsourced for pyrosequencing.

Public metagenomic datasets of cold desert

Besides the Drass metagenome dataset, the Antarctic 
and Arctic cold desert metagenome datasets available in 
NCBI and MG-RAST were included in the present study. 
Two metagenomic datasets of the Antarctic cold desert 
were included. The first Antarctic dataset originated from 
the McMurdo Dry Valleys (Dreesens et al. 2014). As the 
metagenomic data was not available in NCBI-SRA, the 
sequences were acquired through electronic mail on request. 
The second Antarctic dataset originated from the Browning 
Peninsula situated in the Windmill Islands, Eastern Antarc-
tica (Pudasaini et al. 2017). The data was obtained from the 
Australian Antarctic Data Centre, Australia (Siciliano et al. 
2014). Two metagenomic datasets of Arctic cold deserts 
were also included in the present study. The first dataset 
originated from the Midtre Lovénbreen Glacier, Svalbard 
(Dong et al. 2016). The data was obtained from the MG-
RAST server (Project ID mgp15403). The second dataset 
originated from the Ny-Ålesund Region, Svalbard (Zhang 
et al. 2016). The data was obtained from NCBI (Accession 
No. SRX1481175). The datasets had different sequencing 
depths that could lead to biased results on comparative anal-
ysis. Hence, the datasets were normalized by rarefying as 
recommended elsewhere (Weiss et al. 2017).

Pyrosequencing and analysis

Tag-encoded FLX amplicon pyrosequencing (TEFAP) was 
done at the research and testing laboratory (Lubbock, TX, 
USA). Raw metagenomic ITS sequences from this study 
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were deposited in NCBI SRA under the project title “Cold 
desert Metagenome” with accession and experiment number 
PRJNA260660S and RX700597 respectively. The raw data 
from this study, as well as the public datasets, were anno-
tated and analyzed with the same pipeline as described in 
Gupta et al. (2015). In brief, sequences below 200 bp or with 
homopolymers of more than 8 bp were discarded during the 
initial quality filtering steps. Sequences that passed the ini-
tial quality check were subsequently subjected to denoising 
by flow gram clustering to omit sequencing errors (Gontch-
arova 2010). Chimeric sequences were removed using the 
Uchime tool (Edgar et al. 2011). The cleaned sequences 
were annotated in Mothur (Schloss et  al. 2009) against 
the UNITE fungal database (Nilsson et al. 2019) with the 
Wang et al. 2007 classification method of 8 kmer length 
and 80% bootstrap confidence threshold. Diversity indices 
(Chao1 richness estimator, Shannon’s H-indices, and Pie-
lou’s evenness index) and rarefaction curves were estimated 
with microbiome v1.8.0, ranacapa v0.1.0, and, phyloseq 
v1.30.0 libraries in R (McMurdie and Holmes 2013; Lahti 
and Shetty 2017; R Team Core 2017; Kandlikar et al. 2018).

Statistical analysis

The difference in microbial abundance was determined using 
PAST (Paleontological Statistics) (Hammer et al. 2001) with 
the Kruskal–Wallis test. The statistical analysis was consid-
ered significant for p values below 0.05.

Results

Fungal diversity of Drass metagenome

Eight phyla, including unclassified fungi (0.43%), repre-
sented the Drass soil metagenome. Ascomycota (67.49%) 
and Basidiomycota (29.07%) represented over 95% of the 
fungal abundance (Fig. 1a). Other representative phyla were 

Mortierellomycota (1.8%), Basidiobolomycota (0.37%), 
Zoopagomycota (0.18%), and Chytridiomycota (0.062%). 
Ascomycota was represented by 92 genera (Fig. 1b) and 
Basidiomycota was represented by 22 genera (Fig. 1c). 
Genus Mortierella represented Mortierellomycota, while 
Basidiobolomycota, Chytridiomycota, Glomeromycota, and 
Zoopagomycota could not be classified at the genus level 
(Fig. 1d). The most abundant genus Conocybe (20.46%) was 
represented under phylum Basidiomycota (Fig. 2). Other 
dominant genera were Rodentomyces (4.42%), Trichocla-
dium (4.24%), Gibberella (3.43%), and Ilyonectria (2.37%) 
including unclassified genera under higher taxonomic classi-
fication such as Ascomycota (3.55%), Glomerellales (3.55%) 
Helotiales (3.49%), and Nectriaceae (4.36%). Overall, the 
Drass metagenome was represented by 118 fungal genera 
(Supplementary data S1). However, a large portion (n = 39) 
of the genera, amounting to 28.88% of the overall abun-
dance, was unclassified, some of which could be classified 
only at the phylum level.

Global cold desert fungal alpha diversities

The Chao1 alpha diversity (R) among the global cold deserts 
showed a strong difference. For instance, the lowest (R = 32) 
and the highest (R = 162) Chao1 diversity was observed 
in Antarctic_1 (McMurdo Dry Valleys) and Antarctic_2 
(Windmill Islands) respectively. Chao1 diversity of the 
Arctic datasets followed a similar trend with over two-fold 
difference between the two Arctic metagenome, i.e., J = 35 
and 77 for Arctic_1 (Midtre Lovénbreen Glacier) and Arc-
tic_2 (Ny-Ålesund Region) respectively (Fig. 2a). Similar 
variations in Shannon index (H) and Pielou’s evenness (J’) 
were observed with Antarctic datasets from McMurdo Dry 
Valleys and Windmill Islands (Fig. 2b, c). Interestingly, the 
Drass metagenome was among the highest Chao1, Shan-
non index, and Pielou’s evenness. However, it should be 
noted that a major proportion of the OTUs in the datasets 
could not be classified even at the phylum level. The relative 
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abundance of unclassified OTUs for Antarctic_1, Antarc-
tic_2, Arctic_1, Arctic_2, and Drass were 33.25%, 2.06%, 
58.33%, 12.54%, and 0.44% respectively. Furthermore, rar-
efaction curves were not saturated, suggesting a requirement 
for extensive sequencing depth (Fig. 3). Hence, the domi-
nance of unclassified OTUs, especially in Antarctic_1 and 
Arctic_1, and the lack of strong plateau in the rarefaction 
curves could be a major factor for their low alpha diversities.

Similarities and differences in Drass, Antarctic 
and Arctic cold desert

The global cold desert was represented by 10 phyla, out of 
which 5 phyla, i.e., Ascomycota, Basidiomycota, Chytridi-
omycota, Unclassified, and Mortierellomycota were com-
mon to all cold deserts (Fig. 4). In all datasets, Ascomycota 
was the dominant phylum followed by Basidiomycota or 
Chytridiomycota. Monoblepharomycota and Rozellomy-
cota were represented in the Antarctic and the Arctic but 
absent in Drass. Interestingly, phylum Basidiobolomycota 

(0.37%) was detected only in Drass. The differences among 
the cold deserts were prominent at the genus level. The pre-
dominant genera in Drass, Conocybe (20.46%) and Roden-
tomyces (4.42%) under phylum Basidiomycota and Asco-
mycota, were not detected in Antarctic or Arctic datasets 
(Fig. 5). Similarly, Amandinea in Antarctic_2 (7.17%) and 
Exophiala (18.77%) in Antarctic_1 were exclusive to Ant-
arctic datasets. Likewise, among the classified genera, genus 
Thelidium was exclusive to Arctic_1 (2.12%) and Arctic_2 
(0.06%) (Supplementary data S2). The similarities among 
the cold deserts were represented by 21 common genera, out 
of which 10 genera were unclassified (Fig. 6).

Discussion

Composition of fungal assemblages in Drass soil

Most of the reported fungi in literature are mesophiles 
that thrive at an optimum temperature of 25  °C–37°C 

(a) (b) (c)

Fig. 2   a Observed alpha diversity, b Shannon diversity index, and c Pielou’s evenness of the Drass, Antarctic and Arctic datasets

Fig. 3   The rarefied rarefaction 
curve of the Drass, Antarctic 
and Arctic datasets
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(Magan 2007). However, cold deserts are inhabited by 
cold-tolerant fungi (psychrotolerant). Understanding the 
ecology of such fungi is essential for a better understand-
ing of cold desert fungal ecology. In this study, we have 
analyzed the fungal community of Drass cold desert using 
next-generation sequencing (NGS) and further compared 
to publicly available datasets of Antarctic and Arctic cold 
deserts (AACD). Ascomycota (67.49%) and Basidiomy-
cota (29.07%) dominated more than 95% of the Drass 
metagenome (Fig. 1). The diversity of phylum Ascomy-
cota, represented by 92 genera, was four-fold higher than 
that of Basidiomycota, which was represented by 22 gen-
era. Ascomycota is the largest fungal phylum predomi-
nant in several aquatic and terrestrial ecosystems (Ken-
drick 2003; Schoch et al. 2009). This could explain the 
high abundance and diversity of Ascomycota in Drass. 
Ascomycota and Basidiomycota were also identified as 
dominated phyla in previous studies on Antarctic soils 
(Connell et al. 2008; Arenz and Blanchette 2011). In tem-
perate environment, Basidiomycota also dominates wood 
decay (Blanchette et al. 2004; Ludley and Robinson 2008). 
At the genus level, Conocybe (20.46%) predominated the 
Drass dataset. However, 28.88% overall abundance was 
unclassified, some of which could be classified only at 
the phylum level. Nonetheless, such a high proportion 
of unclassified fungal OTUs have also been previously 
reported (Hallen-Adams et al. 2015; Nash et al. 2017). 
Some of the fungal genera such as Candida (0.81%), Dio-
szegia (0.93%), Penicillium (0.37%), Thelebolus (0.31%), 
Trichosporon (0.43%), Cadophora (0.06%), and, Clad-
osporium (1.37%) are reported to be prolific producers 
of extracellular hydrolytic enzymes (Bradner et al. 1999; 
Krishnan et al. 2011; Carrasco et al. 2012; Duarte et al. 
2013, 2018). Such fungi are of ecological significance 
because extracellular hydrolytic enzymes degrade soil 
organic matter that is readily absorbed by the producers 
as well as surrounding cells (Redmile-Gordon et al. 2015). 
These microbes also have crucial roles in the food chain 
and nutrient recycling in a cold environment (Wang et al. 
2017). Cadophora has been reported in Antarctic soils, 
indicating its resilience to the cold environment (Malosso 
et al. 2006; Bridge and Newsham 2009). Besides, species 
within the genus Tetracladium (0.81%), mainly involved 
in plant debris degradation, have been documented from 
alpine glaciers, snow-covered soil (Kuhnert et al. 2012) 
and Qinghai Tibet Plateau (Wang et al. 2015). Moreover, 
genus Epicoccum (1.49%) under phylum Dothideomycetes 
has been reported to produce a wide array of secondary 
metabolites with antimicrobial, anticancer, and antioxidant 
activity (Braga et al. 2018). The vast diversity of the Drass 
mycobiome shows fungal diversity richness of ecologi-
cal significance and enzymes of potential application in 
industrial and pharmaceutical processes.

The dominance of global cold desert mycobiome 
by Ascomycota and Basidiomycota

The relative abundance and distribution of dominant fungal 
phyla and genera prevailing across the cold deserts in Drass, 
Antarctic (McMurdo Dry Valleys, Browning Peninsula), 
and Arctic (Midtre Lovénbreen Glacier, Ny-Ålesund Sval-
bard) were compared in order to elucidate their similarities 
and differences (Dreesens et al. 2014; Zhang et al. 2016; 
Dong et al. 2016; Pudasaini et al. 2017). Alpha diversity 
and Shannon index of Antarctic_2 was highest, followed 
by Drass, indicating their richness and heterogeneity of the 
fungal community (Fig. 2). Alpha diversity is the meas-
ure of the observed OTUs in the dataset, while the Shan-
non index measures the observed OTUs as well as even-
ness (Alonso et al. 2019). Similarly, the rarefaction curve 
of Antarctic_2 and Drass exhibited the highest OTU count 
despite the lack of a strong plateau formation (Fig. 3). At the 
phylum level, Dikarya (Ascomycota and Basidiomycota), 
Mortierellomycota, and Chytridiomycota were detected in 
all cold desert datasets with vast differences in abundance, 
indicating selective spatial enrichment (Fig. 4). Ascomy-
cota is known to dominate the fungal community around 
the globe (Egidi et al. 2019). The dominance of Ascomycota 
could be attributed to its wide array of stress tolerance and 
resource acquisition genes that could assist its dominance 
in the soil (Egidi et al. 2019). It should also be noted that 
fungal communities vary greatly between ecosystems. For 
instance, Ascomycota is a dominant phylum in arable soil 
(Moll et al. 2016). However, forest soil is generally domi-
nated by Basidiomycota (Allison SD and Treseder 2008; 
Wubet et al. 2012). The dominance of the Ascomycota in 
the cold desert could be due to the lack of woody materi-
als, which is preferred by Basidiomycota (Moll et al. 2016). 
Chytridiomycota (chytrids) was also abundant in Antarctic_1 
(21.27%) and Artic_2 (8.42%) datasets, but comparatively 
rarer in Drass (0.06%). Chytrids have been detected in high 
altitude soil where melting snowpack supports the growth 
of cyanobacteria and algal populations that, in turn, serves 
as food-substrate for their growth (Schmidt et al. 2012). 
Mortierella sp. of phylum Mortierellomycota is reported to 
release nutrients and decompose pine needles particularly in 
winters or cold environments (Tokumasu 1998). Weinstein 
et al. (2000) reported Mortierella species as psychrophiles 
with intracellular trehalose concentrations and stearidonic 
acid that confers endurance to cold environments. Mor-
tierella sp. are known to produce Long-chain omega-3 fatty 
acids, EPA (eicosapentaenoic acid) and DHA (docosahexae-
noic acid) in their mycelial biomass under low-temperature 
stress condition (Vadivelan and Venkateswaran 2014). Thus, 
the phyla Dikarya, Mortierellomycota, and Chytridiomycota 
represented as a core phyla among all the cold deserts.
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Differences in mycobiome of Drass, Antarctic 
and Arctic cold desert

Out of the 10 identified Phyla, only Basidiobolomycota was 
unique to the Drass dataset, while the remaining 9 phyla 
were common to all cold deserts. As far as we know, there is 
no information documented regarding the existence and role 
played by Basidiobolomycota phylum in cold habitats. Phy-
lum Glomeromycota was represented in Drass and Antarctic 
only. However, in contrast to our findings, Glomeromycota 
was identified in previous fungal ecological studies from the 
North American Arctic Transect (Freeman et al. 2009). This 
disparity could be due to the low sequencing depth indi-
cated by the rarefaction curve. Most of the members of phy-
lum Glomeromycota form arbuscular mycorrhizas (AMs) 
with the roots of land plants or thalli of bryophytes. Such 
symbiotic association offers greater opportunity to obtain 
organic nutrients supplied by their host while living in oli-
gotrophic soils of cold deserts in comparison to other soil-
borne fungi (Nichols and Wright 2004; Rillig 2004). Phylum 
Monoblepharomycota, detected in Arctic and Antarctic data-
sets, was introduced in 2001 (Doweld 2001; Wijayawardene 
et  al. 2018), but not much information is documented 
regarding the existence or the role played by this phylum in 
cold polar habitat. Phylum Rozellomycota, detected in the 
Antarctic and Arctic datasets, was also reported from Ny-
Ålesund harbor seawater, moraine lake water (Picard 2017; 
Tedersoo et al. 2017). The difference in the mycobiome was 
more substantial at the genus level (Fig. 5). Although Basidi-
omycota was represented in all three sample locations, its 
relative abundance varied significantly.

The similarities among the cold desert datasets were 
minimal at the genus  level (Fig. 6). Genus Naganishia 
under phylum Basidiomycota was predominant in the 
Antarctic_1 dataset (21.08%), which was also detected 
significantly lower in Drass (0.31%). The genus Nagan-
ishia has been reported in ample abundance in highly 
elevated soils of Antarctic (Schmidt et al. 2017). They 
are resistant to freeze–thaw cycles and UV radiation that 
could aid in its survival in such harsh climatic conditions 
(Pulschen et al. 2015). However, it has also been hypoth-
esized that the abundance of genus Naganishia might not 
signify its functions but rather it can be present as dor-
mant cells (Schmidt et al. 2017). In addition, Exophiala 
(Ant_1 = 18.77%, Ant_2 = 0.37%) was represented exclu-
sively in the Antarctic dataset. Exophiala spp. are poly 
extremotolerant black yeast found in several types of envi-
ronments ranging from Apennines glacier (Branda et al. 
2010; Gostinčar et al. 2011), Arctic and Antarctic environ-
ments (Vaz et al. 2011) to hot saunas (Blasi et al. 2015). 
They are also known human pathogens that cause infec-
tion even in healthy individuals (Song et al. 2017). The 
mushroom genus, Conocybe (20.46%), was represented 

as the most abundant genus in the soil metagenome of 
Drass followed by Rodentomyces (4.4%). Genus Roden-
tomyces has been reported as saprophytic coprophilous 
fungi. There is no information documented regarding the 
existence and role played by this genus in cold habitats 
(Doveri et al. 2010). Interestingly, the genus, Conocybe, 
was represented exclusive and predominant in Drass. It 
was not detected from Antarctic or Arctic metagenome 
datasets. Furthermore, to the best of our knowledge, there 
are no reports supporting the presence of Conocybe in the 
Antarctic as well as Arctic cold desert soil. Interestingly, 
members of this genus contain psilocybin that causes 
intense hallucinations. Literature reports psilocybin as a 
drug with anticancer potential (Kothari et al. 2018) and 
a myriad of biological activities against obsessive–com-
pulsive disorder, depression, anxiety, and schizophrenia 
(Andersson et al. 2009).

Although next-generation sequencing is a powerful tool, 
it is worth mentioning that the detection of unclassified 
fungal OTUs in high proportion have been noted in the lit-
erature (Hallen-Adams et al. 2015; Nash et al. 2017). The 
presence of such unclassified OTUs could indicate the pres-
ence of uncharacterized species. However, it could also be 
attributed to the rarity of fungal databases. The development 
of a well-curated fungal database has received less attention 
in comparison to bacterial databases (Nash et al. 2017).

Conclusion

The fungal communities in Drass soil were analyzed using 
high throughput sequencing of the ITS gene. Ascomycota 
and Basidiomycota predominated the mycobiome of Drass 
at the phylum level while Conocybe dominated at the genus 
level. Comparative analysis of the Drass mycobiome against 
Antarctic and Arctic datasets also revealed the dominance 
of phyla Ascomycota and Basidiomycota in all three cold 
deserts, although the relative abundance varied. This study 
shows that cold deserts at the global scale are prone to high 
spatial selective enrichment with considerable differences 
in the relative abundance of ecotypes. Besides, genus Cono-
cybe was represented exclusively and dominantly in Drass 
soil among the three different geographical regions, i.e., 
Antarctic, Arctic, and Drass. The genus is of pharmaceu-
tical importance, which could be exploited for novel drug 
discoveries.
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