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Abstract
The thermo-acidophilic archaeon, Sulfolobus tokodaii, was utilized for the production of Pd(0) bionanoparticles from acidic 
Pd(II) solution. Use of active cells was essential to form well-dispersed Pd(0) nanoparticles located on the cell surface. The 
particle size could be manipulated by modifying the concentration of formate (as electron donor; e-donor) and by addition 
of enzymatic inhibitor (Cu2+) in the range of 14–63 nm mean size. Since robust Pd(II) reduction progressed in pre-grown 
S. tokodaii cells even in the presence of up to 500 mM Cl−, it was possible to conversely utilize the effect of Cl− to produce 
even finer and denser particles in the range of 8.7–15 nm mean size. This effect likely resulted from the increasing stability 
of anionic Pd(II)–chloride complex at elevated Cl− concentrations, eventually allowing involvement of greater number of 
initial Pd(0) crystal nucleation sites (enzymatic sites). The catalytic activity [evaluated based on Cr(VI) reduction reaction] 
of Pd(0) bionanoparticles of varying particle size formed under different conditions were compared. The finest Pd(0) bio-
nanoparticles obtained at 50 mM Cl− (mean 8.7 nm; median 5.6 nm) exhibited the greatest specific Cr(VI) reduction rate, 
with four times higher catalytic activity compared to commercial Pd/C. The potential applicability of S. tokodaii cells in the 
recovery of highly catalytic Pd(0) nanoparticles from actual acidic chloride leachate was, thus, suggested.
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Introduction

Palladium (Pd), one of the platinum group metals (PGMs), 
is regarded as one of the most important industrial catalysts. 
To secure a stable world supply of PGMs and other pre-
cious metals, recycling of secondary metal resources (e.g., 
spent catalysts and e-wastes) is considered increasingly 

important. For Pd recycling from such secondary resources, 
strong leaching lixiviants such as aqua regia, HCl, HNO3, 
and H2SO4 are used together with an oxidizing agent. To 
lower environmental impacts, cleaner alternatives, such as 
using diluted HCl with H2O2, are also investigated by dif-
ferent groups (e.g., Barakat et al. 2006). Since Pd catalysts 
today are mostly used as nanoparticles due to their greater 
specific surface area with higher reactivity (De Corte et al. 
2012), developing recycling techniques of the metal in the 
nanoparticle form would be beneficial.

Microbiological production of precious metal nanopar-
ticles is gaining increasing attention as a simple and clean 
technology which proceeds under ambient conditions with-
out the use of hazardous chemicals (Zhang et al. 2011). 
Upon utilization of microbial cells, reduction of aqueous 
Pd(II) ions is triggered by enzymatic activity by an expense 
of externally added e-donor (or intracellular electron carriers 
such as NADH accumulated during pre-growth; Okibe et al. 
2017). They are then deposited as solid Pd(0) nanoparticles 
at different cellular locations as a scaffold (on the cell wall, 
within the periplasmic space and inside cytoplasm), depend-
ing on the microbial species and conditions used (De Windt 
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et al. 2006; Okibe et al. 2017). The enzymes proposed to 
be responsible for Pd(II) reduction include [NiFe]-hydro-
genases in D. fructosivorans (Mikheenko et al. 2008) and 
E. coli (Deplanche et al. 2010), three [NiFe]-hydrogenases 
(Hyd-1, Hyd-2, and Hyd-3), and two formate dehydrogenase 
molybdoenzymes (FDH-N and FDH-H) in anaerobically 
grown E. coli (Foulkes et al. 2016), and molybdoenzyme 
(FDH-O) which is expressed both aerobically and anaero-
bically (Foulkes et al. 2016). These Pd(0) bionanoparticles 
have been effectively utilized as catalyst in reactions such 
as reduction of highly toxic Cr(VI) to Cr(III) (Humphries 
et al. 2007; Mabbett et al. 2004), dehalogenation of poly-
chlorinated biphenyls (PCBs) (De Windt et al. 2006), and 
dechlorination of lindane (Mertens et al. 2007).

So far, the majority of Pd(0) bionanoparticles studies 
employed a variety of neutrophilic bacteria such as Des-
ulfovibrio spp. (Mikheenko et al. 2008; Yong et al. 2002), 
Shewanella oneidensis (De Windt et al. 2006), Geobacter 
sulfurreducens (Yates et  al. 2013), Bacillus sphaericus 
(Creamer et al. 2007), Escherichia coli, Serratia sp., Micro-
coccus luteus, Arthrobacter oxydans (Deplanche et al. 2014), 
Cupriavidus necator, Pseudomonas putida, and Paracoccus 
denitrificans (Bunge et al. 2010). In general, these Pd(0) 
bionanoparticles were observed with the particle size of a 
few tens of nanometers.

On the other hand, considering metallurgical processes 
for the metal extraction reaction being often highly acidic, 
extremely acidophilic microorganisms are worth investigat-
ing for their potential in the precious metal bionanoparticles 
production. However, compared with the number of Pd(0) 
bionanoparticles studies done on neutrophilic microor-
ganisms, limited studies on extreme acidophiles are so far 
available. Enzymatic activity of neutrophiles may be more 
susceptible to acidic leachates. In fact, pre-palladized neutro-
philic cells were prepared prior to exposure to highly acidic 
leachates, to promote autocatalytic chemical Pd(II) reduc-
tion to Pd(0) (Creamer et al. 2006; Mabbett et al. 2006). In 
addition, H2 gas (instead of formate) was used as e-donor to 
promote Pd(II) reduction using neutrophilic D. desulfuricans 
at pH 2.0 (Yong et al. 2002).

As for acidophilic bacteria, Acidocella aromatica PFBC 
and Acidiphilium cryptum SJH were utilized to produce 
Pd(0) bionanoparticles from acidic Pd(II) solutions as well 
as from Pd(II)-containing spent catalyst leachate (Okibe 
et al. 2017). The former strain was also utilized for size-con-
trolled production of Au(0) nanoparticles (Rizki and Okibe 
2018). While, regarding acidophilic archaea, Au(0) and 
Ag(0) nanoparticles were formed using Sulfolobus islandi-
cus (Kalabegishvili et al.2014, 2015). To our knowledge, 
studies on Pd(0) bionanoparticles formation using extremely 
acidophilic archaea are not yet available.

Hence, this study focused on the extremely acidophilic 
archaea to reveal the utility of this third domain of life in 

the production of Pd(0) nanoparticles. From the genome 
sequence, the presence of the putative formate dehydroge-
nase enzyme (FDH) (encoded by the ST0348 gene; http://
www.unipr​ot.org/) was indicated with the thermophilic, 
extremely acidophilic archaeon Sulfolobus tokodaii (optimal 
growth conditions 80 °C and pH 2.5–3; Suzuki et al. 2002). 
This archaeon was also shown to have the Fe3+-reducing 
ability under both anaerobic and micro-aerobic conditions 
(Masaki et al. 2018). The study, therefore, investigated the 
capability of S. tokodaii in Pd(0) bionanoparticles produc-
tion from acidic Pd(II) solutions. The effect of chloride ions 
(Cl−) was also studied to gain fundamental knowledge on its 
potential utility in actual acidic industrial leachates.

Materials and methods

Microorganism

The thermo-acidophilic archaeon, Sulfolobus tokodaii 7T 
(NBRC 100140), was routinely sub-cultured and pre-grown 
aerobically in 300 mL Erlenmeyer flasks containing 100 mL 
heterotrophic basal salts (HBS) medium (per L; 450 mg 
(NH4)2SO4, 50 mg KCl, 50 mg KH2PO4, 500 mg MgSO4 
7H2O, 14 mg Ca(NO3)2 4H2O, 142 mg Na2SO4; pH 2.0 with 
H2SO4) with 10 mM glucose and 0.025% (w/v) yeast extract. 
Flasks were incubated at 70 °C, shaken at 120 rpm.

Pd(II) reduction test by S. tokodaii cell suspension

Sulfolobus tokodaii cells were pre-grown aerobically, 
harvested at the late-exponential phase, and washed 
and resuspended in 50 mL HBS medium in 70 mL vials 
(1.0 × 109 cells/mL; pH 2.0). Pd(II) was added (as Na2PdCl4) 
at 50 mg/L. As e-donor, sodium formate (HCOONa) was 
added at 0, 5 or 10 mM. It should be noted that HCOONa 
(pKa = 3.75) added to the media hereafter was likely present 
predominantly as formic acid (HCOOH) under the acidic 
conditions used in this study. For comparison, active cells 
(± 5 mM Cu2+; as CuSO4·7H2O), heat-killed cells (auto-
claved at 120 °C for 20 min), and cell-free controls were 
prepared. All solutions were prepared aerobically, but vials 
were sealed with butyl-rubber stoppers and aluminum 
crimps to establish the micro-aerobic condition and incu-
bated unshaken at 70 °C. Liquid samples were regularly 
withdrawn using syringe needles and analyzed for Pd(II) 
concentration spectrophotometrically using the PAR method 
(Mizuno and Miyatani 1976). Following Pd(II) reduction, 
cells were harvested, washed, and freeze-dried overnight for 
XRD analysis (Rigaku UltimaIV; CuKα 40 mA, 40 kV). All 
of the experiments were conducted in duplicate.

http://www.uniprot.org/
http://www.uniprot.org/
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Ultra‑thin section transmission electron microscopy 
(TEM) observation

After completion of Pd(II) reduction, S. tokodaii cells were 
fixed with 2% (v/v) paraformaldehyde/2.5% (v/v) glutaral-
dehyde mixture in 0.1 M phosphate buffer solution (PBS) 
(4 °C, 30 min), washed twice with 0.1 M PBS (pH 7.2), post-
fixed with 1% OsO4 in 0.1 M PBS (4 °C, 1–2 h), and washed 
twice again. Cells were then dehydrated using ascending 
series of ethanol concentration (70, 80, 90, and 99.5% for 
5 min each, followed by 100% for 10 min twice), washed 
twice with propylene oxide (5 min each), and finally embed-
ded in epoxy resin (polymerized at 70 °C, 48 h). Ultra-thin 
sectioning (70 nm) was performed using an ultramicrotome 
(Leica EM UC7). Sections were placed onto copper grids, 
stained with EM stainer (Nisshin EM) and lead acetate, and 
sputter-coated with carbon, prior to observation with TEM 
(Tecnai G-20; accelerating voltage 200 kV).

Particle‑size analysis using Image‑J software

TEM images of S. tokodaii cells were analyzed using Image-
J software (National Institute of Health, USA). First, the 
images were calibrated and thresholded by selecting the 
ROI (region of interest) and removing the background noise 
(based on the contrast between nanoparticles and cell com-
ponents). Pd(0) bionanoparticles were then analyzed with 
the “Analyze Particles” function, which calculates the pro-
jected area of an individual particle. The diameter of each 
particle was calculated from its projected area, assuming that 
the particle is spherical. For each condition, 4–5 cells dis-
playing a total of around 180–1400 particles were analyzed 
to calculate the mean and median particle sizes.

In the case of cell-free Pd(0) particles, scanning electron 
microscope (SEM; Keyence VE9800) images were adjusted 
with the “Bandpass filter” function to create a better contrast 
between each particle. The adjusted images were then thres-
holded and analyzed using the same protocol as described 
above.

Functional group analysis

Fourier transform infrared spectroscopy (FTIR) analysis 
was performed to study the overtime change in the func-
tional groups of S. tokodaii biomass upon exposure to Pd(II) 
ions. After addition of 50 mg/L Pd(II) and 5 mM formate 
to S. tokodaii active cell suspensions (at 109 cells/mL in 
50 mL HBS medium; in 70 mL vials under micro-aerobic 
condition, 70 °C, pH 2.0), the cells were collected at 0, 3, 
5 or 10 h [Pd(II) reduction profile corresponding to the 
active cells experiment, as shown in Fig. 1] by centrifu-
gation, washed thoroughly using deionized water, freeze-
dried overnight, and quantitatively mixed with KBr (FTIR 

grade). The infrared spectra were measured in the range of 
400–4000 cm−1 at a resolution of 2 cm−1 with 128 scan 
times (JASCO FTIR-670 Plus).

Zeta‑potential measurement

Sulfolobus tokodaii cells were pre-grown as described above, 
harvested by centrifugation, washed twice, and resuspended 
in 10 mL of 1 mM KCl (pH 3.0, 4.0 or, 5.0 with KOH or 
HCl) at 108 cells/mL. After addition of 50 mg/L Pd(II) (as 
Na2PdCl4), cells were left for 30 min prior to zeta-potential 
measurement (Malvern ZETASIZER Nano series). The 
measurement was conducted in duplicate.

Effect of Cl− on Pd(0) bionanoparticles formation

As an alternative to highly corrosive aqua regia leaching, 
chloride-peroxide leaching was purposed for Pd extraction 
from spent catalysts (Barakat et al. 2006). To study funda-
mental aspects of the effect of Cl− on Pd(0) bionanoparti-
cles formation, Cl− was added (as NaCl) at 10, 50, 100, and 
1000 mM to S. tokodaii active cell suspensions, based on the 
methodology described in the previous section. Formate was 
added as e-donor at 10 mM.

Thermogravimetry analysis

The Pd(0) load on Pd(0) bionanoparticles was estimated 
by thermogravimetry analysis (TG–DTA 2000SA, Bruker 
AXS), by heating 5 mg of a Pd(0) bionanoparticles sam-
ple in the Pt-sample-pan (from room temperature (25 °C) 
to 1200 °C at 10 °C/min) under N2 atmosphere to prevent 
formation of PdO. Pd(0) bionanoparticles samples were 
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regularly collected following the completion of reduction 
of 50 mg/L Pd(II) (in 109 cells/mL cell suspensions).

Evaluation of the catalytic activity of Pd(0) 
bionanoparticles

Catalytic activities of the Pd(0) bionanoparticles produced 
under different conditions as well as cell-free Pd(0) particles 
were compared with that of commercial palladium on car-
bon catalyst [Pd/C; 10% w/w Pd(0) loading; Sigma-Aldrich], 
based on Cr(VI) reduction reaction.

After completion of Pd(0) bionanoparticle formation by S. 
tokodaii from 50 mg/L Pd(II) using 5 or 10 mM formate (as 
described in previous sections), precipitates were collected 
by centrifugation and freeze-dried. An aliquot of the precipi-
tate [equivalent to 0.5 mg net-Pd(0)] was used as a catalyst 
for the following Cr(VI) reduction reaction in 20 mL deion-
ized water containing 10 mg/L Cr(VI) (as Na2CrO4·4H2O) 
and 10 mM sodium formate as e-donor (pH 2.0 with H2SO4; 
25 mL vials). Solutions used in the Cr(VI) reduction reac-
tion were prepared aerobically, but vials were sealed with 
butyl-rubber stoppers and aluminum crimps to establish the 
micro-aerobic condition and incubated unshaken at 30 °C. 
Samples were withdrawn with syringe needles to analyze the 
Cr(VI) concentration using the diphenylcarbazide method 
(Noroozifar and Khorasani-Motlagh 2003).

Results and discussion

Pd(II) reduction and Pd(0) bionanoparticle 
production by S. tokodaii

Without the addition of e-donor, an only negligible amount 
of Pd(II) (3–5 mg/L in 16 h) was reduced in all cases (data 
not shown). Use of 5 mM formate as e-donor resulted in 
complete Pd(II) reduction (under micro-aerobic conditions) 
regardless of the presence/condition of the cells, but with 
different speed; the first “induction phase” before the initia-
tion of rapid Pd(II) reduction was generally shortened by 
the presence of cell biomass, especially with active cells 
(without Cu2+) (Fig. 1). This first “induction phase” cor-
responds to the period of Pd(0) crystal nucleation, which 
takes place most effectively on the active cell surface due 
to the intact enzymatic activity. After which, the autocata-
lytic property of Pd(0) nuclei accelerates the speed of Pd(II) 
reduction [Pd(0) crystal growth phase] (Okibe et al. 2017). 
Upon completion of Pd(II) reduction under each condition, 
black cell-Pd(0) precipitates (confirmed by XRD; Fig. 2) 
were recovered for ultra-thin section TEM observation 
and the following particle-size analysis (Fig. 3). Pd(0) bio-
nanoparticles of relatively homogeneous size were found 
localized mostly on the cell surface when active cells were 

used (Fig. 3a, b). In contrast, Pd(0) particles of diverse size 
were formed randomly (extracellularly and intracellularly) 
with heat-killed cells (Fig. 3c). Partially deactivating the 
enzymatic activity by Cu2+ decreased the number of Pd(0) 
nucleation sites, but instead increased the size of individual 
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Fig. 2   X-ray diffraction patterns of Pd(0) bionanoparticles produced 
by S. tokodaii active cells from 50 mg/L Pd(II) using 5 mM formate 
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Pd(0) bionanoparticle (Fig. 3c). Heat-kill treatment of the 
cells completely disrupted enzymatic activities and selec-
tive cell permeability: Pd(II) ions were able to freely diffuse 
into the cells and deformed cell components with enlarged 
surface area, as the scaffold for Pd(0) nucleation. As a 
result, the Pd(II) reduction speed in heat-killed cells was 
even somewhat higher than that in active cells with Cu2+ 
(Fig. 1). Nonetheless, the lack of intact cell functions pro-
duced highly heterogeneous Pd(0) particles (Fig. 3c). In 
cell-free controls, the resultant Pd(0) particles were highly 
aggregated, as shown in Supplemental Fig. 1.

The presence of putative formate dehydrogenase enzyme 
(FDH) (encoded by the ST0348 gene; http://www.unipr​
ot.org/) may be responsible for the initial Pd(0) crystal 
nucleation in S. tokodaii, by facilitating the production of H2 
from formate (Sinha et al. 2015) on the active cell surface. 
To clarify the mechanism, however, further biochemistry 
studies are needed for the archaeal cells.

Contribution of functional groups on the S. 
tokodaii cell surface for Pd(II) biosorption 
and the following Pd(0) bionanoparticles formation

Overtime changes in FTIR spectra were analyzed during 
microbial Pd(II) reduction and Pd(0) bionanoparticle forma-
tion by S. tokodaii cells (Fig. 4). It was shown from zeta-
potential measurement that the weakly positive cell surface 
charge shifted towards negative upon exposure to Pd(II) 
(from +3.3 to +2.4 mV at pH 2.0; Fig. 5). This implies 
that biosorption of negatively charged Pd(II) ions pre-
cedes microbial Pd(II) reduction. Based on the spectrum of 

original cells (0 h; Fig. 4a) the bands at 1650 and 1535 cm−1 
resulted mainly from v C = O and δ N–H, respectively, of 
amides from proteins (Goormaghtigh et al. 1994). The band 
at 1454 cm−1 is attributed to δ C–H of CH3 and CH2 groups, 
and those at 1398 and 1235 cm−1 are assigned to v C–O from 
carboxylate groups and ʋ P = O of phosphodiester groups 
in nucleic acids and phospholipids, respectively (Giordano 
et al. 2001). The spectral region between 900 and 1200 cm−1 
is assigned to ʋ C–O–C of diverse polysaccharides groups, 
which also derive from EPS (Extracellular polymeric sub-
stances) as well as surface layers (S layers) from Sulfolobus 
spp. (Koerdt et al. 2011; Zhang et al. 2015).

Upon exposure to Pd(II) ions, relatively major shifts 
were observed with the bands at 1650, 1535, and 1235 cm−1 
towards lower energy (Fig. 4). Changes were also observed 
in the region between 900 and 1200 cm−1 (Fig. 4). This 
suggests that amide groups, which are positively charged 
at acidic pH, were responsible for sorption of major anionic 
Pd(II) species under this condition, PdCl3− (Colombo et al. 
2008). Phosphate and polysaccharides groups may have 
electrically attracted minor PdCl+ species (Colombo et al. 
2008).

Effect of Cl− on Pd(0) bionanoparticles production

Since the use of 5 mM formate as e-donor (as in the previ-
ous test) was shown insufficient in the presence of additional 
Cl−, its concentration was increased to 10 mM this time 
(Fig. 6). Without extra Cl− addition, increasing the formate 
concentration in active cells from 5 mM (Fig. 3a) to 10 mM 
(Fig. 7a) upsized the Pd(0) bionanoparticles roughly by two-
fold, but instead decreased the particle density. Addition of 
elevating concentrations of Cl− (0–1000 mM) increasingly 
prolonged the apparent “induction phase” before the initia-
tion of rapid Pd(II) reduction (Fig. 6). This likely resulted 
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from the form of major Pd(II) species increasingly shifting 
from PdCl3− towards more stable PdCl42− at higher Cl− con-
centrations (Colombo et al. 2008), causing the initiation of 
Pd(0) crystal nucleation more time-consuming. Nonetheless, 
the following rapid Pd(II) reduction was triggered in all the 
cases, except at the highest Cl− concentration of 1000 mM 
(Fig. 6). TEM images revealed that this prolonged “induction 
phase” due to the presence of Cl− likely allowed involvement 
of a sufficient number of crystal nucleation site (enzymatic 
sites), leading to the formation of finer and denser Pd(0) 
bionanoparticles (Fig. 7). The smallest and densest parti-
cles (mean size = 8.7 nm; 354/cell) were recovered at 50 mM 
Cl− (Fig. 8c), followed by those (mean size = 12 nm; 330/
cell) at 100 mM Cl− (Fig. 8d). The results suggest that the 
presence of Cl− in the range of up to 50–100 mM does not 
deactivate enzymatic sites for Pd(0) nucleation (Fig. 8c, d), 
unlike the case with Cu2+ (Fig. 3b). At 500–1000 mM for-
mate, cells started to disintegrate, and no evidence of Pd(0) 
deposition was found at 1000 mM. Overall, the enzymatic 
Pd(0) nucleation activity of S. tokodaii at the expense of 
formate seems to be more robust than that of neutrophilic 
Desulfovibrio desulfuricans in the presence of high-con-
centration Cl− (Yong et al. 2002). Therefore, using S. toko-
daii cells, Pd(0) bionanoparticles could be recovered from 
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Fig. 8   Comparison of the catalytic activity (based on the specific 
Cr(VI) reduction rate) of Pd(0) bionanoparticles (a–h) and com-
mercial Pd/C catalyst (i). Pd(0) bionanoparticles were produced by 
S. tokodaii in the presence of either 5 mM formate (a–d) or 10 mM 
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cells + 100  mM Cl−. a–h Mean and median particle sizes of Pd(0) 
nanoparticles are indicated. h The mean particle size of Pd/C catalyst 
is cited from Yang et  al. (2018). The specific Cr(IV) reduction rate 
was calculated for the time interval of 0–5 h (a), 0–30 h (b), 0–30 h 
(c), 0–48 h (d), 0–10 h (e), 0–9 h (f), 0–1 h (g), 0–4 h (h), and 0–4 h 
(i) (Supplemental Fig.  3). As e-donor for Cr(VI) reduction, 10  mM 
formate was used in all cases
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acidic chloride leachates of secondary Pd sources (e.g., spent 
catalyst; Barakat et al. 2006) upon appropriate dilution. In 
abiotic studies by other groups, Cl− was utilized to shape-
control Pd(0) nanoparticles (Nalajala et al. 2016) or size-
control Au(0) nanoparticles in the citrate reduction system 
(the particle size becomes larger at higher Cl− concentra-
tions due to the decrease of the surface charge; Zhao et al. 
2012). The results in this study suggest that the effect of 
Cl− can also be utilized in biological systems to size-control 
Pd(0) nanoparticles by selecting favorable microbial strains.

Catalytic activity of Pd(0) bionanoparticles

Pd(0) bionanoparticles produced under different condi-
tions were compared for their catalytic activity based on the 
Cr(VI) reduction reaction. Based on the thermogravimetric 
analysis [50% (w/w) Pd(0) loaded on dry-cell weight; Sup-
plemental Fig. 3], reaction mixtures were prepared to con-
tain an equivalent amount of Pd(0). Neither Pd(0) bionano-
particles only nor formate only as e-donor reduced Cr(VI) to 
Cr(III) (data not shown). Therefore, formate decomposition 
via Pd(0) catalyst to produce H2 represents the effectiveness 
of Cr(VI) reduction (Okibe et al. 2017). The catalytic activ-
ity of Pd(0) bionanoparticles highly depended on the particle 
size; those of smaller size exhibited higher specific Cr(VI) 
reduction rate (Fig. 8). The finest Pd(0) bionanoparticles 
produced by active cells at 50 mM Cl− possessed the highest 
catalytic activity which was approximately four times greater 
compared to commercial Pd/C (Fig. 8; Supplemental Fig. 3). 
The results here suggested that the size of Pd(0) bionanopar-
ticles can be manipulated by modifying the concentration of 
formate as e-donor and by the use of Cu2+ as enzyme inhibi-
tor (as was observed with Au(0) bionanoparticles; Rizki and 
Okibe 2018), as well as by taking advantage of the effect of 
Cl−. This has the important implication that this approach 
using S. tokodaii cells could be effectively applied to actual 
Pd–chloride leachates even to produce Pd(0) nanoparticles 
of higher catalytic activity.

Most prokaryotes (bacteria and archaea) possess S layers 
(a monomolecular planar array of proteinaceous subunits as 
the outermost component of the cell envelope). Gram-nega-
tive archaea including Sulfolobus spp. possess S layers as the 
only cell-wall component external to the plasma membrane. 
While, in Gram-positive bacteria and Gram-positive archaea, 
S layers are found on the surface of the rigid wall matrix 
(mainly peptidoglycan and pseudopeptidoglycan, respec-
tively). In Gram-negative bacteria, cell envelope is com-
posed of a thin peptidoglycan wall and an outer membrane 
which S layer is attached to (Sleytr and Beveridge, 1999). 
In addition to the particle size, such differences in the cell 
envelope structure could affect the accessibility of the Pd(0) 
bionanoparticle catalyst to reaction substrates. Simpler and 
thinner archaeal cell surface structure may be advantageous 

in this regard. More studies on metal bionanoparticles using 
archaeal cells would further clarify the importance of the 
third domain of life in nanobiotechnology.

Conclusion

Pd(0) bionanoparticles were effectively produced from 
acidic Pd(II) solution using the thermophilic, extremely aci-
dophilic archaeon, S. tokodaii. Use of enzymatically active 
S. tokodaii cells was essential to produce well-dispersed 
Pd(0) bionanoparticles deposited on the cell surface. The 
particle size could be manipulated (14–63 nm mean size) 
by means of modification of the formate concentration and 
addition of enzymatic inhibitor (Cu2+). The effect of addi-
tional Cl− was conversely utilized to produce even finer and 
denser Pd(0) bionanoparticles (8.7–15 nm mean size). The 
finest Pd(0) bionanoparticles produced at 50 mM Cl− (mean 
8.7 nm; median 5.6 nm) exhibited the highest catalytic activ-
ity (four times higher compared to commercial Pd/C). There-
fore, the potential applicability of S. tokodaii cells in the 
recovery of highly catalytic Pd(0) nanoparticles from actual 
acidic chloride leachate was suggested. Further studies on 
extreme archaea for metal bionanoparticles production may 
benefit the development of nanobiotechnology.
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