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community was dominated by predators such as bdelloid 
rotifers (Philodinidae). Microcosm experiments showed 
that bdelloid rotifers in the mat were able to come out of 
dormancy and actively forage even under realistic field 
conditions (diurnal temperature fluctuations of −12 °C at 
night to + 27 °C during the day), and after being frozen 
for 6  years. Our results broaden our understanding of the 
diversity of life in periodically desiccated, high-elevation 
habitats and demonstrate that extreme freeze–thaw cycles 
per se are not a major factor limiting the development of at 
least some members of these unique microbial mat systems.

Keywords  Nostoc · Glacial retreat · Exobiology · Polar 
deserts · Cryobiology · Aeolian zone · Rhodospirillales · 
Philodinidae

Introduction

Global warming is causing the rapid retreat of glaciers in 
most high-mountain areas of the world (Marshall 2014; 

Abstract  This is the first study of the highest elevation 
cyanobacteria-dominated microbial mat yet described. 
The desiccated mat was sampled in 2010 from an ephem-
eral rock pool at 5500 m above sea level in the Cordillera 
Vilcanota of southern Perú. After being frozen for 6 years 
at −20 °C in the lab, pieces of the mat were sequenced to 
fully characterize both the 16 and 18S microbial communi-
ties and experiments were conducted to determine if organ-
isms in the mat could revive and become active under the 
extreme freeze–thaw conditions that these mats experience 
in the field. Sequencing revealed an unexpectedly diverse, 
multi-trophic microbial community with 16S OTU richness 
comparable to similar, seasonally desiccated mats from the 
Dry Valleys of Antarctica and low elevation sites in the 
Atacama Desert region. The bacterial community of the 
mat was dominated by phototrophs in the Cyanobacteria 
(Nostoc) and the Rhodospirillales, whereas the eukaryotic 
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Marzeion et  al. 2014; Rabatel et  al. 2013). One such site 
is an intensively studied high-elevation (5000–6000  m) 
watershed that drains into Laguna Sibinacocha in the Cor-
dillera Vilcanota of Perú (Nemergut et  al. 2007; Seimon 
et al. 2009). This watershed encompasses both a large val-
ley glacier (the Puca Glacier) and ice caps on the surround-
ing mountains. The new lands exposed as a result of the 
rapid retreat of the Puca Glacier are the focus of ongoing 
studies of microbial and plant succession that have revealed 
new insights into the mechanisms of microbial community 
assembly and ecosystem formation following glacial retreat 
(Knelman et al. 2014; Nemergut et al. 2007; Schmidt et al. 
2012).

Less studied than the Puca Glacier, are lands left behind 
by the retreating ice caps that are prominent at higher 
elevations on the north and west sides of the Sibinacocha 
Valley. Due to their higher elevation, these ice caps are 
not retreating as rapidly as the Puca Glacier, but they are 
none-the-less retreating and leaving behind land that has 
not been ice-free for at least 5000  years (cf Buffen et  al. 
2009; Thompson et al. 2013). Newly exposed lands near ice 
caps are generally less disturbed than lands left behind by 
large valley glaciers, such as the Puca Glacier, because ice 
caps are not being driven downhill by the mass of ice above 
them. As a result, ice caps lack much of the grinding action 
of a glacier moving down a valley. Thus, it is possible to 
find remnants of former ecosystems (even intact plants) fol-
lowing retreat of some ice caps (Buffen et al. 2009).

The present study builds on previous microbiological 
studies of the terrain just below an ice-capped ridge on the 
western side of the Sibinacocha watershed (Schmidt et al. 
2008, 2009), and focuses on the highest elevation ice-free 
site yet studied from a microbiological perspective in the 
Andes of Peru. The site is a rocky outcrop (5500 m.a.s.l.) 
that forms a jumble of rock peaks that are surrounded on 
two sides by ice cliffs. Environmental conditions at this site 
include a thin atmosphere and extreme diurnal temperature 
fluctuations (Schmidt et al. 2009). During an expedition to 
this area in 2003, we discovered a small rock pool at the 
high point of this outcrop (Suppl Figs. 1 and 2). During a 
subsequent expedition in 2010, small pieces of the desic-
cated microbial mat were sampled (Suppl Fig. 3).

The microbial mat described here is significant because 
it morphologically resembles seasonally desiccated mats 
found in the Dry Valleys of Antarctica and the high moun-
tains of Central Asia (Hawes et al. 1992; McKnight et al. 
1999; Schmidt et  al. 2011; Zeglin et  al. 2011), and is the 
highest elevation cyanobacterial mat yet studied. Here we 
describe the first microbial community analysis of this mat 
and experiments to determine if the organisms in the desic-
cated mat could be revived from frozen pieces of the mat 
collected during the dry season. This work reveals unex-
pectedly high diversity of both bacterial and eukaryotic 

communities in the mat, and that some of the organisms in 
the mat could be revived even during extreme freeze–thaw 
cycles and after being desiccated and frozen for 6 years.

Materials and methods

Field site and sampling

The study site lies on the western side of the Sibinacocha 
watershed in the Cordillera Vilcanota, Perú, an area that 
has been the focus of long-term climate change monitor-
ing (Seimon et al. 2009; Halloy et al. 2006; Schmidt et al. 
2009). The site is a rocky peak (5500  m.a.s.l., Latitude, 
−13.767, Longitude, −71.088) surrounded on two sides by 
ice cliffs. The small pool containing the microbial mat was 
first photographed in 2003 (Suppl Figs.  1 and 2) but was 
not sampled until the dry season in 2010 (August 5, 2010, 
Suppl Fig.  3). The pool was completely dried out (Suppl 
Fig. 3) when mat samples were taken in 2010; water con-
tent of the samples was 3.97% (SE = 0.07, N = 3). Samples 
were frozen in the field at −10 °C and then transported in 
a cooler to the lab where they were frozen at −20 °C until 
they were processed as described below.

Environmental conditions at this site are extreme and 
include a thin atmosphere and diurnal temperature fluc-
tuations across the freezing point; day-time surface tem-
peratures can reach at least + 30 °C and night-time tempera-
tures can plunge below −10 °C on the same day (Schmidt 
et  al. 2009). Plants are sparse on this ridge and the site 
was recently designated a GLORIA (Gottfried et al. 2012) 
site to monitor the possible migration of plants into this 
recently de-glaciated area due to global change. This GLO-
RIA site is called “Yurak” and was officially established in 
2012. Yurak is the highest elevation GLORIA site in the 
world (Cuesta et al. 2016; Halloy et al. 2010; CONDESAN 
2012), at 5498 m above sea level, and is just 5 m from the 
glacier forefront (see Suppl Fig. 2).

Sequencing

Samples of the desiccated microbial mat were frozen in the 
field and shipped to the University of Colorado at Boulder 
and kept at −20 °C until processing. DNA was extracted by 
using a MO BIO PowerSoil DNA extraction kit (MO BIO 
Laboratories). The 16S rRNA and 18S genes were PCR-
amplified using standard bar-coded primer sets (Caporaso 
et al. 2012), and samples were multiplexed for sequencing 
on the Illumina MiSeq platform at the University of Colo-
rado, Boulder (BioFrontiers Institute) using paired-end 
2 × 150 bp chemistry. A 30% phiX spike was added to the 
run to compensate for otherwise limited amplicon vari-
ability (Caporaso et  al. 2012), and paired-end reads were 
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demultiplexed and joined, and OTUs were picked at 97% 
identity and assigned taxonomy using default parameters in 
QIIME (Caporaso et  al. 2010). Taxonomy for 16S OTUs 
was assigned using the GreenGenes database and taxon-
omy for 18S OTUs was assigned using the SILVA Ref NR 
99 database version 119 (available at http://www.arb-silva.
de/download/arb-files/).

Microcosm studies

Given that high-elevation sites are subject to some of the 
most extreme freeze–thaw cycles on Earth (Lynch et  al. 
2012; Yang et  al. 2002), we carried out an incubation 
experiment to determine if organisms present in the mat 
could revive and become active during freeze–thaw cycles 
similar to those observed in the Sibinacocha watershed 
(Schmidt et al. 2009). Pieces of mats that had been frozen 
for 6 years at −20 °C (since their collection in 2010) were 
rehydrated and subjected to freeze–thaw cycles (experi-
mental group) or left at room temperature (control group). 
Specifically, 0.03  g mat fragments were homogenized 
in 20 mL autoclaved Nice brand spring water for 3  s and 
200 µL aliquots of that slurry were distributed to 20 wells 
in each of 4 Costar 24-well tissue culture plates. Four wells 
in each plate received only 200 µL autoclaved water instead 
of mat slurry as a negative control. Each well, including 
negative controls, also received 800 µL of one of 8 facto-
rial concentrations (Suppl Table 1) of Alga-Gro Freshwa-
ter Medium (Carolina Biological Supply) and inulin (MP 
Biomedicals, LLC), sterilized by autoclaving for 45 min at 
220 °C. Two of the tissue culture plates were placed in a 
growth chamber (Model TH024-LT, Darwin Chamber Co., 
St. Louis, USA) with a light–dark cycle of 12 h each, and 
a freeze–thaw cycle that mimics field conditions at the site 
(Suppl. Figure 5, Vimercati et al. 2016), and the other two 
were placed on a lab bench, where temperatures remained 
between 20 and 24 °C throughout the incubation period 
(Suppl. Figure  5). All culture plates were observed daily 
using a dissecting microscope at 45x magnification.

Results and discussion

Deep Illumina MiSeq sequencing of this mat resulted in 
almost saturated collector’s curves indicating more than 
adequate sampling to describe the community. Figure  1 
shows that there are at least 350 16S OTUs (at the 97% 
identity level) represented in more than 30,000 sequences 
obtained compared to just over 200 18S OTUs out of the 
almost 20,000 eukaryotic sequences obtained. This level of 
OTU richness for 16S OTUs is comparable to seasonally 
desiccated mats in the Dry Valleys of Antarctica, where 
Stanish et  al. (2013) estimated from 168 to 371 bacterial 

OTUs per sample based on much lower sequencing depth 
(3563 sequences per sample) than in the present study. To 
more fairly compare our results to those of Stanish et  al. 
(2013), we randomly down-sampled our sequences (100 
times per sample) to obtain the same sequencing depth 
used by Stanish et  al. (2013). This resulted in a mean of 
266 (SE, 7.5) OTUs for the mat studied here compared to 
a mean of 256 (SE = 16.2) for the mats studied by Stanish 
et  al. (2013). These results are also similar to the studies 
of hypersaline mats of the Atacama Desert region (Farías 
et al. 2013; Rasuk et al. 2016; Fernandez et al. 2016). For 
example, Fernandez et  al. (2016) reported between 121 
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Fig. 1   Collector’s curves or alpha-rarefaction plots for the 16S com-
munity (a), and the 18S community (b) in the microbial mat, defined 
at 97% SSU rDNA sequence identity. Curves represent the richness 
estimate at any given sampling intensity (sequences per sample). 
Richness estimates plateau for both 16 and 18S communities, indicat-
ing that sampling was sufficient to capture richness of the mat

http://www.arb-silva.de/download/arb-files/
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and 316 16S OTUs in mats from the hypersaline Laguna 
Tebenquiche, Salar de Atacama, Chile. These findings 
demonstrate that the high-elevation mat described here 
is as diverse as aquatic mats from the Antarctic Dry Val-
ley and the Atacama region, at least in regard to 16S phy-
lotypes. Stanish et al. (2013) and Hernandez et al. (2016) 
did not do 18S sequencing but Esposito et al. (2006) have 
noted that microbial mats in seasonally desiccated streams 
harbor very diverse assemblages of eukaryotes, particularly 
diatoms, but estimates of 18S alpha diversity for seasonally 
desiccated and hypersaline microbial mats (using sequenc-
ing approaches) are presently not available in the literature 
for comparison to the present study.

The dominant OTU among 16S sequences from the 
mat correspond to the cyanobacterial genus Nostoc, with a 
single Nostoc OTU making up over half of all sequences 
obtained (15,000 of the 30,000 16S sequences; Fig.  2). 
This corroborates microscopic images which show a pre-
dominance of Nostoc-like filaments forming the mat (Sup-
plemental Fig.  3). Members of the genus Nostoc are well 
known for being able to form macroscopic structures like 
mats; in fact, mats formed by Nostoc flagelliforme in arid, 
high-elevation regions of China and Mongolia have long 
been used as a food source for humans (Gao and Ye 2003) 
as have macroscopic spheres of N. commune in the Andes 
(Johnson et  al. 2008). Mats of N. flagelliforme are resist-
ant to UV radiation and actually require cycles of desicca-
tion and rewetting to form mat-like structures (Feng et al. 
2012). Cycles of desiccation and rewetting are common at 
the site, studied here, where there are distinct wet and dry 
seasons (Seimon et al. 2009).

Other photosynthetic 16S phylotypes with high relative 
abundances in the mat include three other cyanobacteria 
(green in Fig. 2a) and four members of the Rhodospirilla-
les order (Alphaproteobacteria) that are likely photohetero-
trophs (Fig. 2). Photosynthetic members of the Rhodospiril-
lales are informally classified as “purple photosynthetic 
bacteria” (PPB) which, in Fig.  2, include Rhodobacter, 
Rubellimicrobium, and members of the Acetobacteraceae, 
including Roseococcus. Previous studies have implicated 
PPB (e.g., the Rhodospirillales) as playing important 
roles in high-elevation soils and sediments in the Rockies, 
Andes, and Himalayas (Demergasso et al. 2010; King et al. 
2010a, b; Rasuk et al. 2016; Schmidt et al. 2011), including 
some of the highest elevation (>6000 m.a.s.l.) sites on Vol-
cán Llullaillaco in the Atacama Desert (King et al. 2010a, 
b). However, the current study is the first report of PPB in 
high-elevation mat communities. Many PPB can utilize 
light in the infrared range (e.g., 875 nm, Ragatz et al. 1995) 
and are frequently found underneath layers of cyanobacte-
ria (that can filter out visible light) in laminated microbial 
mats (Madigan 1988). It is likely that PPB inhabit a similar 
niche in the microbial mat described here, but further work 
would be needed to confirm this hypothesis.

It is also possible that the two members of the Sphin-
gomonadales order (Alphaproteobacteria) shown in Fig. 2a 
are also photosynthetic. Recent work has shown that some 
members of the genus Sphingomonas are capable of aero-
bic anoxygenic photosynthesis (AAP) and occur in high-
light biological soils crusts (BSCs) where they, like the 
PPB discussed above, can use near-IR radiation not used by 
the dominant cyanobacteria in BSCs (Csotonyi et al. 2010). 
However, it is impossible to determine if the sphingomon-
ads found in the mat are photosynthetic based just on 16S 
data, because even very closely related Sphingomonas 
species can be non-photosynthetic (Csotonyi et  al. 2010; 
Reddy and Garcia-Pichel 2007). Nonetheless, our results 
show that organisms with the evolutionary potential to car-
ryout alternative modes of photosynthesis are among the 
dominant organisms in this high-elevation mat community.

In contrast to the 16S bacterial community, the 18S 
(eukaryotic) community was underrepresented by photo-
synthetic members (Fig.  3). This low relative abundance 
of phototrophic phylotypes is unusual for a proglacial, 
high-elevation ecosystem (cf. Schmidt and Darcy 2015) 
and may reflect the competitive advantage of mat-form-
ing, N-fixing, cyanobacteria, and PPBs in this system. The 
most abundant 18S phylotype in a putative photosynthetic 
group (Cryptophyta, Fig. 3) is related to an environmental 
sequence (TAGIRI-28, AB191436) isolated from deep-
sea sediments near a fumarole (Takishita et al. 2005). The 
Cryptophyta are transitional forms that have secondarily 
acquired eukaryotic endosymbionts (Curtis et  al. 2012), 
and may not always be photosynthetic. Curiously, the next 

Fig. 2   Rank-abundance plot of the twelve most abundant 16S OTUs 
(97% SSU rDNA sequence identity). Colors indicate which broad 
functional group of organisms each OTU belonged to: Green = cyano-
bacteria, purple = purple photosynthetic bacteria, and brown = hetero-
trophic bacteria
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most abundant 18S photosynthetic phylotypes in the mat 
are related to a liverwort (Lejeunea) and a plant (Fig.  3). 
Given that there are no liverworts or plants associated 
with the mat, it is possible that these sequences are from 
aeolian deposited debris or from lower-elevation plants. 
Similar detection of alien DNA has been reported in other 
high-elevation environments, that is, Vimercati et al. (2016) 
found similar levels of plant DNA in volcanic deposits at 
6030  m.a.s.l. on Volcán Llullaillaco, despite the fact that 
plants cannot grow above 5100 m.a.s.l. on that mountain.

Our 18S data point towards Eukaryotes being impor-
tant consumers and predators in the mat. The dominant 
18S OTU corresponds to the Philodinidae family of the 
Bdelloid Rotifers, with a single Philodinidae OTU (clos-
est BLAST match, GQ922300, Robeson et al. 2009) mak-
ing up over 57% of all sequences obtained (11,883 of the 
20,737 18S sequences; Fig.  3). Members of the Philo-
dinidae are common in microbial communities in extreme 
environments (Porazinska et  al. 2004; Robeson et  al. 
2011), especially environments that go through periods of 
desiccation (Alpert 2006), such as the mat in the present 
study. Bdelloid rotifers are predators of other microbes and 
likely subsist on free living bacteria and small eukaryotes 
during periods when the mat is fully hydrated. All of the 
other dominant eukaryotic phylotypes shown in Fig. 3 are 
members of groups that are either predators/parasites of 
other microbes, or decomposers. For example, the second 
most abundant 18S OTU is related to Allovahlkampfia 
spelaea, an amoeba that has been isolated from carbonate 
precipitating microhabitats of karst caves (Walochnik and 
Mulec 2009; Brown et al. 2012). Other potential parasitic 

eukaryotes include the Blastocladiales group of zoosporic 
fungi, although some members of that group can be decom-
posers (James et al. 2006; Naff et al. 2013). Other decom-
posers include three OTUs from the Dothideomycetes 
(Fig. 3) related to similar melanized “black yeasts” found in 
extreme high-elevation and high-latitude sites (Friedmann 
1982; Lynch et  al. 2009; Onofri et  al. 2008) and deserts 
(Staley et  al. 1982). Several of the eukaryotic OTUs may 
be from aeolian deposition or from insects visiting the mat 
from lower elevations, that is, Smittium and Saccinobaculus 
(Fig. 3) are groups normally found in insect guts. It is also 
possible that small insect could persist at these mats during 
the wet season, but none were present during the dry sea-
son when the mat was sampled.

In the microcosm experiment, rotifers were observed 
moving under both freeze–thaw and control conditions 
after only 2  days of incubation (Fig.  4). Because rotifers, 
ciliates, and motile algae were sparse and not meaningfully 
different across the various media, the numbers presented 
are summed over all treatments in each temperature regime. 
Likewise, mobile algae were observed in both freeze–thaw 
and controls, whereas ciliated protozoa only revived in the 
control plates (Fig.  5). These results highlight that even 
complex organisms such as rotifers can rapidly become 
active during severe freeze–thaw cycles, and that they can 
easily revive despite being in a frozen, desiccated state for 
6  years, as Antarctic rotifers have been reported to do as 
well (Newsham et  al. 2006). It is interesting that smaller 

Fig. 3   Rank-abundance plot of the twelve most abundant 18S OTUs 
(97% SSU rDNA sequence identity). Colors indicate which broad 
group of organisms each OTU belonged to: Green = photosynthetic, 
and brown = heterotrophic

Fig. 4   Active Bdelloid Rotifers observed in pieces of the mat incu-
bated at room temperature (filled squares) or under extreme freeze–
thaw (open circles) conditions (Supplemental Fig.  4). There are no 
error bars due to the fact that rotifers were not present on every repli-
cate piece of mat used in the study. Nonetheless, these data do show 
that rotifers were able to become active during extreme freeze–thaw 
cycles
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organisms such as the ciliated protozoa were apparently not 
able to become active during freeze–thaw cycles, but were 
quite common in the control incubations. This is similar to 
the observations of Smith et al. (1990) who showed that the 
Antarctic ciliate Colpoda required at least 48 h of continu-
ous temperatures above 4°C for excystment to occur and 
may indicate that the mat studied here probably experiences 
extended periods (>48 h) of temperatures above freezing in 
the field in order to explain the abundance of active ciliates 
in the mats at room temperature and their complete absence 
under freeze–thaw conditions (Fig. 6). Such extended peri-
ods of warmth may occur during the wet season at this site, 
but currently no data exist to test this hypothesis.

Conclusion

Overall, this preliminary study of the highest elevation 
microbial mat yet studied gives insights into the inhab-
itants and possible trophic structure of this unique eco-
system. Both from visual observations and sequencing 
data, the dominant primary producers in this mat are 
cyanobacteria and PPBs (Fig. 2 and supplemental Fig. 3). 
It is likely that the eukaryotic inhabitants of the mat are 
mostly playing the role of consumers and decomposers as 
indicated by the predominance of Bdelloid rotifers and 
amoeba related to Allovahlkampfia (Fig. 3). These organ-
isms are likely feeding directly on the primary producers 
and the abundant heterotrophic bacteria associated with 
the mat. In addition to this ecosystem being supported by 
indigenous photosynthesis, there is also evidence of some 

aeolian support in the form of biomass input from lower 
elevations; that is, the mat contained DNA from plants, 
liverworts, and insect gut symbionts. Aeolian support 
of micro-ecosystems has been well documented in other 
high-elevation ecosystems (Mladenov et  al. 2012; Swan 
1992; Vimercati et al. 2016). Finally, this study provides 
the first evidence for the ability of complex predators 
such as bdelloid rotifers to come out of dormancy dur-
ing freeze–thaw cycles. This finding broadens our under-
standing of how life can persist in an environment where 
daily freeze–thaw cycles can occur on a year-round basis. 
Future work is needed to understand the seasonal dynam-
ics of this unique system and to compare it from a bioge-
ographical perspective to similar mats in Antarctica and 
elsewhere.
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