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nitrate reduction pathways, whereas the majority of genes 
involved in sulfur metabolism were related to the reduc-
tion of sulfate to adenylylsulfate, sulfite, and H2S. Given 
that pH 4 thermal springs are relatively less common in 
YNP and thermal areas worldwide, they may harbor novel 
microbiota and the communities that inhabit them deserve 
further investigation.
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Introduction

Yellowstone National Park (YNP) is one of the largest and 
most diverse hydrothermal areas on Earth, and it harbors 
more than 12,000 thermal springs that are characterized by 
a broad range of temperature (40–92  °C), pH (1–10), and 
geochemical properties (Fournier 1989; Rye and Trues-
dell 2007). YNP thermal springs often have abundant and 
diverse electron donors (e.g., H2, sulfide, S0, thiosulfate, 
and Fe2+) and electron acceptors (e.g., dissolved O2, S

0 and 
Fe3+), which provide an abundance of potential niches. As a 
consequence, thermal springs support microbial communi-
ties that comprise a diverse array of metabolisms, including 
photoautotrophs, photoheterotrophs, chemolithoautotrophs, 
and chemoorganotrophs (Amend and Shock 2001).

pH is a primary environmental factor that directly influ-
ences microbial community composition in thermal springs 
at the regional and global scales (Boyd et  al. 2010; Boyd 
et  al. 2013; Dequiedt et  al. 2009; Inskeep et  al. 2013b; 
Song et al. 2013; Xie et al. 2015). While the range of pH in 
YNP thermal springs is broad (1–10), the majority of ther-
mal springs in YNP can be classified into two categories by 
pH—acidic, vapor-dominated systems, and circumneutral 

Abstract  The pH of the majority of thermal springs in 
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of the site with the lowest temperature (55 °C), a thermal 
spring from the Seven Mile Hole (SMH) area, were fur-
ther investigated using shotgun metagenome sequencing. 
The taxonomic classification, based on 372 Mbp of unas-
sembled metagenomic reads, indicated that this community 
included a high proportion of Chloroflexi, Bacteroidetes, 
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that the SMH metagenome was enriched in genes related 
to energy production and conversion, transcription, and 
carbohydrate transport. Analysis of genes involved in nitro-
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to alkaline, water-dominated systems (Fournier 1989). The 
vapor-dominated springs, which often discharge relatively 
little liquid water, contain H2S that oxidizes to H2SO4 
when it contacts air in perched pools of ground water. In 
contrast, the water-dominated systems discharge signifi-
cant amounts of circumneutral or alkaline water enriched 
in chloride (Fournier 1989). Notably, there are few ther-
mal features in YNP with intermediate pH in the range of 
4–5. For example, of the more than 7000 thermal features 
inventoried by the US National Park Service (data avail-
able online at http://www.rcn.montana.edu/Default.aspx), 
only ~5% of the entries have a pH between 4 and 5. Micro-
bial communities in the two pH systems common in YNP 
(acidic and circumneutral to alkaline) have extensively 
been studied and are known to each harbor distinct com-
munities. Circumneutral to alkaline springs often include 
microbial communities that are dominated by members of 
the Aquificales, Chloroflexi, and Cyanobacteria (Inskeep 
et al. 2010, 2013b; Madigan 2003; Meyer-Dombard et al. 
2005; Meyer-Dombard et al. 2011; Reysenbach et al. 1994, 
2000; Spear et al. 2005; Ward et al. 1998b). Although the 
Archaea are present in circumneutral springs, they are esti-
mated to be a lesser fraction of the total biomass (Inskeep 
et  al. 2013b; Miller et  al. 2009; Ward et  al. 1998a). Con-
versely, Archaea predominate the microbial communities in 
acidic, vapor-dominated springs, particularly with elevated 
temperatures (Inskeep et  al. 2013a), and often include 
members of the Crenarchaeota, Euryarchaeota, and Korar-
chaeota (Brock et  al. 1972; Inskeep et  al. 2013a; Jackson 
et  al. 2001; Meyer-Dombard et  al. 2005). A bimodal pH 
distribution among terrestrial thermal springs has been 
noted for thermal areas worldwide as well (Brock 1971). 
As a result, the previous surveys of microbial communities 
from other geothermal hotspots around the world, includ-
ing El Tatio, Chile (Engel et  al. 2013), Kamojang, Indo-
nesia (Aditiawati et al. 2009), Nakabusa, Japan (Everroad 
et al. 2012), Odisha, India (Sen and Maiti 2014), and Tibet, 
China (Song et al. 2013; Wang et al. 2013), mainly focused 
on acidic springs with pH below 3 or circumneutral to alka-
line springs with pH above 6. A recent metagenomic inves-
tigation of two intermediate-pH (e.g., ~4), high-tempera-
ture (e.g., >55  °C) sites found taxonomic profiles similar 
to those from acidic springs (Inskeep et al. 2013b). To date, 
no effort has been made to survey the microbial inhabit-
ants and their functional roles in low-temperature (i.e., 
45–55 °C), intermediate-pH (e.g., ~4) thermal springs (Ins-
keep et al. 2013b). Thus, little is known about the microbial 
ecology of intermediate-pH springs in YNP.

The goals of this study were to: (1) investigate taxo-
nomic profiles of four YNP springs within an interme-
diate-pH range (4.05–4.35) using 16S rRNA gene ampli-
con pyrosequencing and (2) characterize the metabolic 
potential of one of these sites, a low-temperature (55  °C) 

thermal spring containing a distinct microbial community. 
To our knowledge, this study is the first survey of microbial 
taxonomic and functional diversity of pH 4 springs using 
a combined 16S rRNA gene amplicon and metagenomic 
sequencing approach.

Materials and methods

Site description and sample collection

Four geothermal springs were selected for field measure-
ments and sample collection in the following YNP ther-
mal areas (sample names are given in parentheses): Nor-
ris (NOR), Mary Bay Area (MRY), Mud Kettles (MKL), 
and Seven Mile Hole (SMH). Locations, descriptions, and 
photos are listed in Table 1 and Fig. 1. Water samples for 
geochemical analysis were collected at each site in con-
junction with the biomass samples for sequencing analysis. 
Water samples were collected from the overflow channels 
of spring sources as proximate to the center of flow as pos-
sible, where the water was well mixed. Water for geochem-
ical analysis was filtered through a 0.2  µm Sterivex filter 
using sterile 50 mL syringes and preserved as appropriate 
for the analysis to be performed (McCleskey et al. 2005). 
Briefly, syringes were rinsed three times with site water 
before collection and all samples were collected into acid 
pre-washed polyethylene bottles (soaked in 5% HCl for 3 h 
and rinsed three times with deionized water), except the 
anion samples, which were collected into deionized water 
pre-washed polyethylene bottles (soaked for 3 h and rinsed 
three times with deionized water). Water (30 mL) for cation 
analysis was preserved by acidification using 0.3 mL 3 N 
nitric acid, whereas water (125 mL) for anion analysis did 
not receive any protective reagents. Water (100  mL) for 
As and Fe species was collected into opaque polyethylene 
bottles and preserved with 1  mL of 6  N HCl, and water 
(30 mL) for the ammonium analysis was preserved with the 
addition of 0.3  mL of 4.5  N H2SO4. For the SiO2 analy-
sis, 1 mL of water was immediately diluted by 9 mL deion-
ized water to prevent precipitation. For the sulfate analysis, 
30 mL of water was preserved with 0.5 mL of ZnCl2, fol-
lowed by 0.5 mL of NaOH. Samples for the determination 
of dissolved organic carbon (DOC, 100 mL) were collected 
into heat-combusted (475  °C for 4  h) amber glass bottles 
and preserved with 1 ml 6 N HCl. All water samples were 
transported and stored at 4 °C until analysis which was no 
more than 2 weeks after sample collection.

Sediment, mat, or filament samples were collected asep-
tically into 2  mL microcentrifuge tubes and preserved in 
sucrose lysis buffer (SLB; 20 mM EDTA, 200 mM NaCl, 
0.75 M sucrose, 50 mM Tris–HCl, pH 9.0). Sediment sam-
ples were collected from the top 3  cm of the spring bed, 

http://www.rcn.montana.edu/Default.aspx
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Table 1   Geographic and geochemical parameters for the four sampling sites in YNP

Detection limits and units of chemical species measured are given in parentheses

BD below the detection limit

Sample area Norris Mary Bay Area Mud Kettles Seven Mile Hole

Sample name NOR MRY MKL SMH

Sample ID 03YNOR021 03YMRY047 03YMKL049 04YSMH020

GPS location (N/W) 44.732423/−110.709777 44.553361/−110.3045805 44.634664/−110.6045546 44.754916/−110.4158659

Physical context Sediment, pool edge Sediment, pool edge Sediment, gas turbulent pool 
bottom

Clumpy mat, thermal creek

Temperature (°C) 84 80 72 55

pH 4.34 4.32 4.35 4.05

Alkalinity as HCO3 (1.0 mg 
L−1)

BD BD BD BD

Conductivity (µS/cm) 2130 1260 1170 1538

DOC (0.1 mg L−1) 0.3 BD 1.7 BD

Ca (0.1 mg L−1) 4.3 6.0 46.0 88.8

K (0.04 mg L−1) 44.00 4.20 23.00 30.00

Na (0.1 mg L−1) 382.2 4.6 137.6 152.5

Mg (0.001 mg L−1) 0.020 4.000 19.000 29.100

SO4 (1.0 mg L−1) 73 542 571 306

Cl (0.05 mg L−1) 599.00 3.67 1.82 272.00

Al (0.07 mg L−1) 0.91 BD 0.43 0.26

As (total) (0.0001 mg L−1) 2.1600 0.0380 0.0020 0.2000

As (III) (0.0005 mg L−1) 2.1600 0.0250 0.0010 0.0050

Ba (0.001 mg L−1) 0.019 0.040 0.083 0.073

Be (0.001 mg L−1) 0.004 BD BD BD

Cd (0.0001 mg L−1) BD 0.0001 BD 0.0001

Co (0.0007 mg L−1) BD BD BD 0.003

Cr (0.0005 mg L−1) BD BD BD 0.0029

Cu (0.0005 mg L−1) 0.0014 0.0010 0.0006 0.0009

Fe (total) (0.002 mg L−1) 0.033 1.400 0.264 0.009

Fe(II) (0.002 mg L−1) 0.031 0.359 0.252 0.003

Li (0.003 mg L−1) 3.800 0.005 0.072 0.611

Mn (0.001 mg L−1) 0.003 0.130 0.290 1.070

Ni (0.002 mg L−1) BD BD BD 0.010

P (0.02 mg L−1) BD 0.02 0.13 BD

Pb (0.0008 mg L−1) BD BD BD BD

Sb (0.001 mg L−1) 0.060 0.002 BD 0.001

Se (0.001 mg L−1) 0.007 BD BD 0.004

SiO2 (0.05 mg L−1) 396.00 237.00 282.00 190.00

Sr (0.001 mg L−1) 0.014 0.019 1.100 1.010

V (0.002 mg L−1) BD BD BD BD

Zn (0.001 mg L−1) 0.016 0.067 0.078 0.031

Br (0.1 mg L−1) 2.0 BD BD 0.9

F (0.1 mg L−1) 8.7 0.3 0.5 0.5

H2S (0.002 mg L−1) 0.327 1.175 1.625 BD

NH4 (0.3 mg L−1) 7.2 BD 33.1 16.9

NO2 (0.0003 mg L−1) 0.0029 BD 0.0013 0.0530

NO3 (0.1 mg L−1) BD 0.2 BD 37.0
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and biofilm samples (mats or filaments) were collected 
right below the air–water interface (<1  cm). Samples 
were stored at ambient temperature (~10–26  °C) for up 
to 10 days before they were stored at −80 °C. The previ-
ous experiments indicated that storage of samples in SLB 
without freezing did not lead to a loss of DNA or micro-
bial diversity relative to samples immediately frozen in liq-
uid nitrogen (Mitchell and Takacs-Vesbach 2008). Once in 
the laboratory, samples were stored at −80 °C until DNA 
extraction.

Geochemical analyses

At each sampling location, temperature and pH were meas-
ured using a Thermo Orion 290A+  meter, and electrical 
conductivity was measured with a WTW meter with tem-
perature correction. Dissolved H2S was measured in the 
field using a portable colorimeter (Hach DR/850) by the 
methylene blue method (APHA 1985). Because dissolved 
H2S is volatile and oxidized quickly, spring water was 
directly drawn into a plastic syringe and filtered through a 

Fig. 1   Geographic map and photos showing sampling locations
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0.2 µm filter into a measuring cuvette. Methylene blue rea-
gents were added immediately and the absorbance and tem-
perature of the solution were measured after color develop-
ment. The temperature dependence of the H2S-methylene 
blue color complex was corrected using the method detailed 
in McCleskey et  al. (2005). DOC concentrations were 
measured using the wet oxidation method (Aiken 1992) 
with a TOC Analyzer (Oceanography International Model 
700). Major anions were measured using ion chromatogra-
phy (IC), and cations and trace metals were measured using 
inductively coupled plasma-optical emission spectrometry 
(ICP-OES). All geochemical analyses, including anions and 
cations, were conducted using standard USGS methods, and 
typical measurement uncertainties were <5% (McCleskey 
et al. 2005). Major ion composition of these four sites was 
compared with 97 other YNP inventory sites that were sam-
pled and analyzed using the same methods (data available 
online at http://www.vesbachlab.org/data.html) as part of a 
larger microbial inventory conducted in YNP.

DNA extraction

DNA was extracted from 0.2  g of each sample following 
bead-beating in a CTAB buffer (1% CTAB, 0.75 M NaCl, 
50 mM Tris pH 8, 10 mM EDTA) and subsequent phenol–
chloroform purification steps as described in (Mitchell and 
Takacs-Vesbach 2008). Briefly, 2 volumes of 1% CTAB 
buffer and proteinase K (final concentration 100 µg mL−1) 
were added to the samples, which were then incubated for 
1  h at 60  °C. SDS (final concentration 2%) and 0.1  mm 
diameter Zirconia/Silica beads were added. Samples were 
bead beaten for 45 s at 50 strokes per second. After incubat-
ing for 1 h at 60 °C, DNA was extracted once with an equal 
volume phenol:chloroform:isoamyl alcohol (25:24:1), fol-
lowed by two extractions with an equal volume of chloro-
form. Finally, the DNA was precipitated with two volumes 
of 95% ethanol, washed with 70% ethanol, dried by speed-
vac, and reconstituted with 50 µL of filter-sterilized, auto-
claved 10 mM Tris pH 8.0. DNA extracts were quantified 
using a Nanodrop ND-2000c spectrophotometer.

16S rRNA gene pyrosequencing

Barcoded amplicon pyrosequencing of 16S rRNA genes was 
performed as described previously (Van Horn et al. 2013). 
Briefly, DNA isolated from each sample was amplified using 
the universal bacterial primers 28F (5′-GAGTTTGATC 
NTGGCTCAG-3′) and 519R (5′-GTNTTACNGCGGCKG 
CTG-3′), and archaeal primers Arch349F (5′-GYGCASC 
AGKCGMGAAW-3′) and Arch806R (5′-GGACTACVSG 
GGTATCTAAT-3′) targeting the 16S rRNA genes as 
described previously (Colman et  al. 2015; Rhoads et  al. 

2012). PCR was performed as follows: an initial cycle of 
95 °C for 5 min, followed by 30 cycles of 95 °C for 30 s, 
54  °C for 40  s, and 72  °C for 1  min, and a final elonga-
tion step for 10 min at 72 °C. Successful amplification was 
confirmed by agarose gel electrophoresis. Triplicate PCR 
mixtures per sample were combined and subsequently puri-
fied with an UltraClean™ GelSpin™ DNA Extraction Kit 
(MoBio Laboratories, Carlsbad, CA, USA). The purified 
DNA was quantified using a Nanodrop ND-2000c spectro-
photometer (Thermo Fisher Scientific, Wilmington, DE, 
USA). Amplicons from all samples with different barcodes 
were pooled at equimolar concentrations for pyrosequenc-
ing on a 454 GS FLX (454 Life Sciences, Branford, CT, 
USA) using Titanium reagents according to the manufac-
turer’s protocol.

16S rRNA gene pyrosequencing data processing

Raw sequences obtained from pyrosequencing were 
denoised to correct for sequencing errors and remove 
low-quality sequences and potential sequencing chi-
meras using AmpliconNoise (Quince et  al. 2011) inte-
grated into QIIME (Ver. 1.8.0, Caporaso et  al. 2010b). 
Adapters, multiplex identifiers, and primers were 
trimmed from denoised data. Operational taxonomic 
units (OTUs) were identified at the 97% DNA similarity 
level using UCLUST (Edgar 2010) in QIIME. The most 
abundant sequence from each OTU was picked as a rep-
resentative sequence and aligned using the PyNAST 
aligner (Caporaso et  al. 2010a) and the Greengenes 
database (GG 13_5, DeSantis et  al. 2006). Taxonomic 
assignments were made using the Ribosomal Database 
Classifier program (Wang et  al. 2007). Good’s cov-
erage estimates for the data sets were performed with 
randomly drawn subsets of 800 sequences per sample 
to standardize for varying sequencing efforts across 
samples.

Shotgun metagenome sequencing

The Seven Mile Hole (04YSMH020, SMH, Table 1) sam-
ple was selected for further characterization by metagen-
omic sequencing, because it contained a relatively unique 
microbial community compared with the other samples 
described here, and the previous reports of pH 4 sites were 
focused on sites with much higher temperatures (>55  °C, 
Inskeep et al. 2013b). Approximately 500 ng of SMH DNA 
was used for library construction. Metagenome library 
preparation and sequencing were performed on one-half of 
a picotiter plate according to manufacturer’s protocol on a 
454 GS FLX Titanium platform (454 Life Sciences, Bran-
ford, CT, USA).

http://www.vesbachlab.org/data.html
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COG function enrichment analysis

Metagenomic sequencing reads were quality-filtered and 
assembled using Newbler 2.6 (Margulies et al. 2005) using 
default settings. Contigs and singleton reads were submit-
ted to the JGI IMG/M annotation pipeline (Markowitz et al. 
2008) and annotated using the Clusters of Orthologous 
Group (COG, Tatusov et al. 2000) database.

To provide an assessment of the microbial community 
type of this site, COG functions from the SMH metage-
nome assembly were compared with functions from 
other published YNP metagenomes (Table S1, Inskeep 
et al. 2013b). For each metagenome, data were normal-
ized by the total number of COG functions detected 
and weighted by contig depth if assembly informa-
tion was available. For unassembled singleton reads, a 
contig depth of one was assumed. COG functions were 
classified into COG categories on IMG/M and a Bray–
Curtis dissimilarity matrix based on the COG category 
abundance table was subsequently constructed. Princi-
pal Coordinates Analysis (PCoA) was performed with 
COG categories and a two-way hierarchical clustering 
was also done on COG category abundance to confirm 
the grouping pattern observed from the PCoA analysis. 
All multivariate comparisons and ordinations were per-
formed using the R (Team 2011) statistical software with 
the ‘vegan’ (Oksanen et al. 2012) and ‘cluster’ (Maechler 
et al. 2012) packages.

The “Function Comparison” tool on the IMG/M server 
was used to determine which COG functions were statisti-
cally overrepresented in the SMH data set compared with 
other publically available YNP metagenomic data sets that 
were most similar to SMH (7 phototrophic samples iden-
tified by the PCoA and cluster analyses described above). 
The relative abundances of COG functions were calcu-
lated based on normalized gene counts and expressed as 
d scores (Markowitz et  al. 2008). d score is equivalent to 
the standard variation from the null hypothesis (i.e., rela-
tive gene counts in metagenome A =  relative gene counts 
in metagenome B). For each comparison, the P value cutoff 
for statistical significant d scores was assessed using a false 
discovery rate of 0.05.

Community composition and metabolic mapping

Unassembled raw reads were also annotated on the 
metagenomic analysis server, MG-RAST (Meta Genome 
Rapid Annotation using Subsystem Technology, v3.3 
Glass et  al. 2010), using the default quality control pipe-
line. Microbial composition and functional analyses were 
conducted via the MG-RAST best-hit classification tool 
against the GenBank (NCBI-nr), M5NR (M5 non-redun-
dant protein), and RefSeq (NCBI Reference Sequences) 

databases using a minimum identity of 60%, e-value cutoff 
of 10−5 and a minimum alignment length of 50 bp.

BLASTX results from the NCBI-nr database were 
imported into the MEtaGenome ANalyzer software 
(MEGAN v4.70.4, Huson et al. 2007). Taxonomic classifi-
cations were made using the least common ancestor (LCA) 
algorithm based on the top 10 BLAST alignments for each 
read, and metabolic pathways were classified by KEGG 
database (Ogata et  al. 1999). The sequences in each path-
way (oxidative phosphorylation, methane metabolism, 
nitrogen metabolism, carbon fixation pathways in prokary-
otes, carbon fixation in photosynthetic organisms, sulfur 
metabolism, and photosynthesis) were given taxonomic 
assignments at the phylum level. The pathways involved in 
nitrogen metabolism and sulfur metabolism were mapped 
and were reconstructed using KEGG identifiers.

Sequence data submission

Raw 16S rRNA gene amplicon sequencing data reported 
here are available through the NCBI Sequence Read 
Archive. The individual sff files were assigned the acces-
sion numbers SRX1031281–SRX1031284 under Biopro-
ject PRJNA284196. The SMH metagenome is publicly 
available on IMG/M (SMH: IMG submission ID 13526) 
and MG-RAST (SMH: ID 4523620.3).

Results

Geochemistry

The physical and geochemical parameters measured for the 
four springs studied here are reported in Table 1. The pH 
values of the springs we sampled ranged from 4.05 to 4.35, 
whereas temperature ranged from 55 to 84  °C. Site SMH 
was the site with the lowest temperature (55  °C), com-
pared with the other three sampling sites, which had tem-
peratures that were 72 °C or higher (Table 1). Chloride and 
sulfate concentrations ranged among the sites from 1.82 to 
599 mg L−1 and 73.3 to 571 mg L−1, respectively (Table 1). 
Compared with other YNP springs (shown in Fig.  2), the 
concentration of carbonates and bicarbonates in all the pH 
4 sites was low. Waters in MKL and MRY had the high-
est SO4

2−/Cl− ratios, while NOR had the lowest SO4
2−/Cl− 

ratio site (Fig. 2). SMH, the site selected for metagenomic 
analysis, had a moderate SO4

2−/Cl− ratio (Fig. 2).

Taxonomic profiles of 16S rRNA gene amplicon 
sequencing

A total of 6432 bacterial 16S rRNA gene sequences were 
obtained from the four pH 4 sites after denoising and 
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removing low-quality or chimeric sequences. No archaeal 
16S rRNA gene sequences were amplified with the 
Arch349F and Arch806R primers despite varying PCR 
conditions. Negative PCR results were confirmed by add-
ing Archaeal genomic DNA to PCR reactions containing 
sample DNA, indicating that either there was no Archaea 
template in the sample DNA or our PCR primers did not 
target any Archaea that were present in these samples. The 
bacterial 16S rRNA gene sequences clustered into 226 
OTUs at 97% DNA similarity. Good’s coverage (Good 
1953), which provides an estimate of survey completeness, 
ranged from 91.1 to 98.5% (mean =  95.9%). Cyanobac-
teria, Proteobacteria, and Chloroflexi were the predomi-
nant bacterial phyla within NOR (38.5, 23.4 and 7.9% of 
16S rRNA gene sequences, respectively, Fig.  3), whereas 
Cyanobacteria, Chlorobi, and Chloroflexi were the three 
most abundant bacterial groups within MRY (82.5, 7.9, 
and 5% of 16S rRNA gene sequences, respectively, Fig. 3). 
MKL was comprised mostly of Aquificae (93.5% of the 
16S rRNA gene sequences), while SMH was dominated 

by Armatimonadetes, Chloroflexi, and Bacteroidetes (52.8, 
18.6 and 18% of total 16S rRNA gene sequences, respec-
tively, Fig. 3).

Metagenome sequencing, coverage, and overview 
of microbial community groups

Metagenome sequencing generated 848,583 reads (mean 
length =  438  bp) totaling 372  Mbp for SMH (Table  2). 
Assembly of the metagenomic sequence data set yielded 
19,346 contigs, with an N50 contig length of 4303 bp. The 
annotation results of SMH metagenome from MG-RAST 
and IMG are detailed in Table 3.

PCoA analysis based on COG functional categories 
indicated that the 20 public YNP metagenomes (Table 
S1), along with SMH, clustered into three distinct groups 
that could be characterized by their dominant members as: 
(1) archaeal communities; (2) Aquificales communities; 
and (3) phototrophic communities (Fig.  4). The grouping 
detected through the PCoA analysis was also confirmed by 

Fig. 2   Piper diagram indicating major ion compositions of four sites in this study together with the other YNP inventory sites
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the cluster analysis (Fig. S1). The site SMH clustered most 
closely with the phototrophic community group (Figs.  4, 
S1).

Taxonomic profiles of the metagenomics

Overall, community structure analysis performed with the 
M5NR database on MG-RAST indicated that SMH was 
dominated by bacteria (81.04%, Table  4). The remain-
ing sequences from SMH matched Archaea (6.36%), 
Eukaryota (0.21%), and unassigned sequences (12.38%), 
or unclassified sequences (0.06%). The taxonomic distri-
bution of numerically abundant phyla derived from the 
metagenome of SMH indicated that Chloroflexi (~17.8%), 
Bacteroidetes (~17.7%), Proteobacteria (~13.5%), and 

Fig. 3   Bacterial taxonomic 
classification and comparison of 
16S rRNA gene and metagen-
omic reads. Taxonomic clas-
sification based on 16S rRNA 
gene amplicon pyrosequencing 
using the Greengenes database. 
Taxonomic classification based 
on metagenome using the MG-
RAST M5NR database

Table 2   454 pyrosequencing and newbler assembly metrics of the 
metagenomic DNA sample from the site SMH (04YSMH020)

Parameter SMH (04YSMH020)

Total number of reads 8,48,583

Mean read length 438 bp

Metagenome size (unassembled reads) 372 Mbp

Metagenome size (assembled reads) 38 Mbp (10.2%)

Number of reads in contigs 6,41,401

Number of contigs 19,346

Reads/contig 31.15

Largest contig (bp) 1,87,560

Mean contig length (bp) 2554

N50 contig length (bp) 4303

Number of singletons 1,29,660

Table 3   Features of the 
thermal spring metagenome 
SMH (04YSMH020) based 
on MG-RAST and IMG/M 
annotations

– Not applicable or not determined
a  Features from unassembled reads that passed MG-RAST quality control
b  Features from Newbler assembled reads post IMG/M data processing

Annotation platform MG-RASTa IMG/Mb

Total number of reads post MG-RAST quality control 7,30,387 –

Total DNA scaffolds post IMG/M data processing – 19,293

Average GC content 52 ± 10% –

Protein coding sequences 4,26,466 53,332

Protein coding sequences with function prediction 185,985 (43.6%) 32,441 (60.16%)

rRNA genes 402 63



143Extremophiles (2017) 21:135–152	

1 3

Firmicutes (~12.0%) were the four most abundant phyla, 
according to the GenBank, M5NR, and RefSeq data-
bases (Fig.  5). Ktedonobacteria was the dominant class 
(~58.0%) in phylum Chloroflexi based on all three data-
bases (Fig. S2). Sphingobacteria was the dominant class 
in the phylum Bacteroidetes (~52.4%, Fig. S2). Class 
Deltaproteobacteria was most abundant in phylum Proteo-
bacteria (~36.5%, Fig. S2). At the class level, Clostridia 
accounted for ~66.8% of all Firmicutes reads, followed 

by Bacilli (~28.8%, Fig. S2), Negativicutes (~4.2%, Fig. 
S2), and Erysipelotrichi (~0.3%, Fig. S2). The majority 
of archaeal sequences were related to the Crenarchaeota 

Fig. 4   Principal coordinates 
analysis (PCoA) of 21 YNP 
metagenomes based on COG 
categories

Table 4   Domain distribution on the metagenomic sample based on 
M5NR database

Unassembled reads annotated on MG-RAST were analyzed using 
the classification tool based on M5NR (60% minimum identity) with 
maximum e-value cutoff of 1 × 10−5 and minimum alignment length 
of 50 bp)

– Not applicable or not determined

Domain %

Archaea 6.36

Bacteria 81.04

Eukaryota 0.21

Viruses –

Other sequences 0.01

Unassigned 12.32

Unclassified sequences 0.06

Fig. 5   Comparison of the taxonomic assignment of unassembled 
SMH metagenomic sequences based on GenBank (NCBI-nr), M5NR, 
and RefSeq databases
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and Euryarchaeota (with ~2.87 and ~3.28%, respectively), 
however, because Archaea comprised only ~6% of the 
SMH sequences, the remainder of our analysis focused on 
the Bacteria.

Gene functions enriched in the metagenome of SMH

The metagenome of SMH provided information on the 
functional capabilities of a microbial community in a rela-
tively low-temperature, pH 4 site. PCoA and cluster anal-
yses showed that the functional profile of the SMH com-
munity was most similar to seven previously published 
YNP metagenomes (Inskeep et al. 2013b) characterized as 
phototrophic communities (Fig.  4; Fig. S1). However, dif-
ferences were detected in SMH compared with these seven 
phototrophic communities. Twenty-seven COG functions 
were significantly overrepresented in the SMH data set in 
at least six of the seven comparisons (Table S2). “Energy 
production and conversion”, “Transcription” and “Carbohy-
drate metabolism and transport” were the three most abun-
dant COG categories among these functions (25.9, 18.5, and 
11.1%, respectively) and were dominant among those with 
highest enrichment d scores (Table S2; Fig. 6). The 30 most 
abundant COG functions are listed in Table 5.

Energy metabolism mapping

The functional assignment of the unassembled SMH 
metagenomic data set provided information about possible 
functions in this community. A total of 14,957 reads were 
assigned to energy metabolism using BLASTX against 
the NCBI-nr database, and the majority of reads were 
related to the domain Bacteria (~92%). Among the bacte-
rial reads, most were mapped to Bacteroidetes, Chloroflexi, 
Firmicutes, Proteobacteria, and Planctomycetes involved 
in diverse pathways, such as oxidative phosphorylation, 
methane metabolism, nitrogen metabolism, carbon fixa-
tion pathways in prokaryotes, carbon fixation in photosyn-
thetic organisms, sulfur metabolism, and photosynthesis 
(Fig. 7). Major KEGG function categories and unique hits 
assigned to each category are listed in Tables S3 and S4. 
Genes involved in nitrate reduction were among the abun-
dant categories associated with nitrogen metabolism (Table 
S3; Fig. S3). Genes encoding sulfate adenylyltransferase, 
cysteine synthase, and sulfite reductase were also highly 
enriched in the metagenome of SMH (Table S4; Fig. S4) 
compared with other similar published metagenomes.

Discussion

Despite the diverse types of springs observed among ther-
mal areas in YNP, their fluids ultimately originate from 

meteoric water. The parent water is modified through vari-
ous processes, including water–rock interactions, subsur-
face mixing, and boiling and cooling during transport to 
the surface (Fournier 1989, 2005; Truesdell and Fournier 
1976; Truesdell et al. 1977). Thermal waters in circumneu-
tral to alkaline springs represent deeply sourced meteoric 
water enriched in carbonate, chloride, and silica, which 
emerge from faults located at relatively low elevations. By 
contrast, sulfate waters in acidic, vapor-dominated springs 
are generally discovered at the higher elevation unfrac-
tured lava caps (Fournier 2005). H2S rich steam separates 
from the underlying chloride-rich neutral water and enters 
perched pools of ground water, where H2S is oxidized to 
H2SO4 either abiotically or biotically (Fournier 1989, 2005; 
Guo et al. 2014). The presence of impermeable rock caps 
derived from young lava flows covering old geothermal 
areas in YNP about 150,000–100,000 years ago effectively 
segregates circumneutral to alkaline and acidic waters, 
which may explain the paucity of springs with intermediate 
pH in YNP (Guo et al. 2014; Hurwitz et al. 2007; Morgan 
et al. 2005; White 1957).

Although the pH range of all our sites is narrow, pro-
found differences exist in SO4

2−/Cl− ratios across sampling 
sites, reflecting the different extent of mixing between acid-
sulfate waters and circumneutral to alkaline, chloride-rich 
waters (Fig. 2). Acidic geothermal waters (pH < 6) in YNP 
can be further classified into springs with high SO4

2−/Cl− 
ratios and low SO4

2−/Cl− ratios (Fournier 1989; Guo et al. 
2014). The MKL and MRY samples represent sites with 
high SO4

2−/Cl− ratios, whereas SMH and NOR have low 
SO4

2−/Cl− ratios due to elevated Cl− content. The SMH 
waters possibly result from the mixing of high SO4

2−/
Cl− ratio waters with circumneutral to alkaline, chloride 
meteoric waters (Guo et al. 2014). The low SO4

2−/Cl− ratio 
found in the NOR water sample (Fig. 2) is consistent with 
the previous observations, indicating that mixing between 
the two types of waters is common in Norris Geyser Basin 
(Fournier et  al. 2002; Nordstrom et  al. 2009). Owing to 
their unique geochemistry, springs with intermediate pH 
may harbor distinct microbial communities.

In this study, we employed several approaches to 
examine the microbial communities in a relatively under-
studied YNP thermal spring niche, focusing on four pH 4 
springs, with temperatures ranging from 55 to 84 °C. Site 
SMH had the lowest temperature (55 °C), while the three 
other sites were much warmer (≥72 °C, see Inskeep et al. 
2013b). Although we did not detect the Archaea by 16S 
rRNA gene sequencing in any of the pH 4 sites, archaeal 
DNA sequences were detected in the SMH metagenome 
(~6.36% of the total sequences). This discrepancy might 
be explained by the potential bias of archaeal primers (Col-
man et  al. 2015). Given the dominance of the Bacteria in 
both data sets, we focused on bacterial communities in this 
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study. Distinct community assemblages were recovered at 
sites with different temperatures (Fig.  3), despite similar 
pH values (Table 1). For example, the Aquificae dominated 
16S rRNA gene data from MKL (Fig. 5a), one of the high-
temperature sites (72 °C). The Aquificae normally predom-
inates in springs with temperatures above 70  °C (Inskeep 

et al. 2013b; Reysenbach et al. 2005), or high temperature 
reaches within a spring where photosynthesis is tempera-
ture limited (Cole et  al. 2013; Everroad et  al. 2012; Hall 
et al. 2008; Huber and Stetter 2001). In contrast, the lower 
temperature in  situ, together with the mixing of acid-sul-
fate waters with circumneutral to alkaline, chloride-rich 

Fig. 6   Overrepresented COG functions in the metagenome of SMH 
relative to seven other phototrophic metagenomes. These represent 
the 20 most enriched functions from a total of 27 COG functions that 
received significant enrichment scores in six of seven comparisons 

(Table S2). Average d score represents the mean enrichment score 
over all seven comparisons. Letters above graphs represent COG cat-
egory
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waters in SMH (Fig.  2), may contribute to the broader 
taxonomic composition observed in this spring (e.g., 
Armatimonadetes, Bacteroidetes, and Chloroflexi, Fig.  3). 
Although Armatimonadetes sequences dominated the 16S 
rRNA gene sequencing reads, they were not detected in the 
metagenomic annotation (Figs.  3, 5). We did not detect a 
similar discrepancy between the amplicon and metagen-
omic sequencing among any of the other bacterial phyla. 
The Armatimonadetes is a newly described phylum and is 
estimated to comprise 12 groups, occurring in a variety of 
environments (Dunfield et al. 2012), but only a few strains 
of Armatimonadetes have been isolated to date (Dunfield 
et al. 2012). The lack of isolates and classification may be 

attributed to inaccurate annotations, which results in incon-
gruent results. We detected 16S rRNA gene amplicons 
from Cyanobacteria in NOR and MRY (Fig. 3), where tem-
peratures were 84 and 80 °C, respectively (Table 1), which 
is above the temperature limit for photosynthesis (~70–
75 °C) (Hamilton et al. 2012; Klatt et al. 2011; Rothschild 
and Mancinelli 2001). Samples from sites NOR and MRY 
were collected from the upper 3  cm of sediment, where 
dead cells from allochthonous phototrophic microorgan-
isms inhabiting cooler margins of the stream channel may 
deposit and accumulate.

Although the four springs had similar pH values, it 
is likely that the distinct geochemistry of each spring 

Table 5   Top 30 (by sequence count) COG functions represented in SMH (04YSMH020) metagenomic assembled sequences based on IMG/M 
annotations

COG category COG ID COG name Sequence count Ranking

M COG0438 Glycosyltransferase 247 1

G COG2814 Arabinose efflux permease 173 2

K COG1595 DNA-directed RNA polymerase specialized sigma subunit, sigma24 homolog 169 3

TK COG0745 Response regulators consisting of a CheY-like receiver domain and a winged-helix 
DNA-binding domain

161 4

R COG0673 Predicted dehydrogenases and related proteins 146 5

IQR COG1028 Dehydrogenases with different specificities (related to short-chain alcohol dehydroge-
nases)

145 6

RTKL COG0515 Serine/threonine protein kinase 142 7

H COG2226 Methylase involved in ubiquinone/menaquinone biosynthesis 141 8

V COG1131 ABC-type multidrug transport system, ATPase component 138 9

NU COG2165 Type II secretory pathway, pseudopilin PulG 124 10

R COG4783 Putative Zn-dependent protease, contains TPR repeats 122 11

NU COG3063 Tfp pilus assembly protein PilF 119 12

M COG0463 Glycosyltransferases involved in cell wall biogenesis 117 13

T COG2204 Response regulator containing CheY-like receiver, AAA-type ATPase, and DNA-bind-
ing domains

109 14

C COG1529 Aerobic-type carbon monoxide dehydrogenase, large subunit CoxL/CutL homologs 108 15

MG COG0451 Nucleoside-diphosphate-sugar epimerases 107 16

E COG0747 ABC-type dipeptide transport system, periplasmic component 107 17

I COG1960 Acyl-CoA dehydrogenases 105 18

P COG1629 Outer membrane receptor proteins, mostly Fe transport 93 19

E COG0531 Amino acid transporters 92 20

T COG0642 Signal transduction histidine kinase 91 21

I COG1024 Enoyl-CoA hydratase/carnithine racemase 90 22

O COG1225 Peroxiredoxin 89 23

R COG0596 Predicted hydrolases or acyltransferases (alpha/beta hydrolase superfamily) 88 24

TK COG2197 Response regulator containing a CheY-like receiver domain and an HTH DNA-binding 
domain

88 25

C COG1012 NAD-dependent aldehyde dehydrogenases 86 26

IQ COG0318 Acyl-CoA synthetases (AMP-forming)/AMP-acid ligases II 84 27

V COG0841 Cation/multidrug efflux pump 82 28

T COG2205 Osmosensitive K+ channel histidine kinase 78 29

C COG2141 Coenzyme F420-dependent N5,N10-methylenetetrahydromethanopterin reductase and 
related flavin-dependent oxidoreductases

75 30
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additionally contributed to the community differences 
observed. In particular, biologically important species, 
such as SO4

2−, NH4
+, and NO3

−, varied among the springs 
and concentrations were high compared with other springs 
sampled parkwide. The concentration of SO4

2− in MKL, 
for example, was about seven orders of magnitude higher 
than that in NOR (Table 1; Fig. 2). Of note, in contrast to 
the paucity of NO3

− in NOR and MKL, the NO3
− con-

centration (37.0 mg L−1) in SMH was the highest among 
104 inventoried sites representative of the diversity of sites 
parkwide (http://vlab.lternet.edu/ynp_inv_data_products.
html).

We compared the metagenome of the low-temperature 
(55 °C) site SMH, to 20 YNP metagenomes from a previ-
ous report (Inskeep et al. 2013b), to better understand how 
the microbial community of this uninvestigated habitat 
compared with other relatively well-characterized com-
munities from YNP. We expected site SMH to group with 
the archaeal sites, because they were all from low-pH sites 
(pH 2–4). Instead, site SMH, which was collected at a tem-
perature 17  °C cooler than the coldest archaeal site (One 
Hundred Spring Plain, 72  °C, Table S1), clustered with 

phototrophic sites (Fig. 4; Fig. S1), likely due to the pre-
dominance of phototrophic organisms and the low abun-
dance of Archaea (~6%) in SMH.

The metagenome of SMH provided a first glimpse of the 
metabolic functional profile of a low-temperature, pH 4 site 
of YNP. Functions overrepresented in the SMH metage-
nome compared with other YNP samples were respon-
sible for energy production and represented important 
redox reactions and key steps in electron transport. Some 
enriched COG functions (Table S2; Fig. 6), such as coen-
zyme F420 (COG 2141), heme Cu oxidase (COG1622), 
and carbon monoxide dehydrogenase (COG1529, 
COG2080, and COG1319) and proteins (COG3794 and 
COG0723), involved in electron transport can be related 
directly to the microbial community and their metabolic 
potentials. For example, COG 2141 associated with coen-
zyme F420-dependent 5,10-methylenetetrahydromethano-
pterin reductase belongs to the family of oxidoreductases 
responsible for redox reactions in many Actinobacteria 
and methanogenic Archaea (Deppenmeier 2002). Heme-
copper-type oxidases (COG 1622) representing the termi-
nal energy-transfer enzymes of respiratory chains play a 

Fig. 7   Taxonomic assignment 
of metagenomic reads from 
the site SMH related to energy 
metabolism (KEGG identifiers)

http://vlab.lternet.edu/ynp_inv_data_products.html
http://vlab.lternet.edu/ynp_inv_data_products.html
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significant role in aerobic metabolism (Garcia-Horsman 
et  al. 1994). COGs related to carbon monoxide dehydro-
genase can be involved in diverse biochemical pathways, 
including aerobic carboxydotrophic, sulfate-reducing, and 
hydrogenogenic bacteria.

Among the overrepresented functions, we observed 
many relevant to carbohydrate metabolism and transport. 
For instance, COG2814 belongs to the family of “arabinose 
efflux permease”. Proteins of this COG function belong to 
the major facilitator superfamily (MFS) that can transport 
a diverse array of substrates, including amino acids, drugs, 
ions, and sugars across the membrane (Law et  al. 2008). 
Another overrepresented function COG2271, a sugar phos-
phate permease, which is responsible for carbohydrate 
transport derived from the environment, is also affiliated 
with the MFS. Functions (e.g., COG 1131 and COG 0841, 
Table  5) associated with multidrug resistance are known 
to export antibiotics and toxic molecules (Piddock 2006). 
Bacteria bearing these functions can defend against toxic 
compounds produced by competitors (Piddock 2006). 
Functions (COG1629 and COG1914) related to inorganic 
ion transport and metabolism are significantly abundant in 
SMH. Microorganisms in thermal springs are expected to 
encounter heavy metals (Inskeep et  al. 2010) and possess 
genes involved in heavy metal transport.

Pathways involved in nitrogen and sulfur metabolism 
frequently contribute significantly to energy generation by 
thermal spring microbial communities, because alterna-
tive electronic acceptors, such as arsenate, CO2, elemental 
sulfur, ferric iron, nitrate, sulfate, and thiosulfate, are often 
abundant at spring sources (Hall et al. 2008; Inskeep et al. 
2010; Jimenez et  al. 2012). Approximately 81.1% of the 
genes detected in SMH associated with nitrogen metabo-
lism were related to the Bacteroidetes, Chloroflexi, Firmi-
cutes, Proteobacteria, and Planctomycetes (Fig. 7). Nitrate 
as an electron acceptor is energetically favorable over broad 
pH ranges, which may explain the widespread distribution 
of nitrate reduction genes in different types of YNP springs 
(Shock et al. 2010; Swingley et al. 2012). In addition, the 
nitrate concentration in SMH was the highest among all our 
YNP inventory sites (37.0  mg  L−1, http://vlab.lternet.edu/
ynp_inv_data_products.html), thus representing an abun-
dant nutrient and energy resource for nitrate reducers.

Genes necessary for dissimilatory nitrate reduction to N2 
via denitrification, including dissimilatory nitrate reductase 
gene clusters (e.g., narG, narH, narI, and narJ) and nitric 
oxide reductase gene clusters (e.g., norB, norC, norD, 
and norQ) were prevalent in SMH (Table S3; Fig. S3). In 
addition, the gene coding for nitrite reductase (nirK) was 
detected (Table S3; Fig. S3). Nitrite reductase (nirK or 
nirS) is a pivotal enzyme of dissimilatory nitrate reduc-
tion pathway. According to models of dissimilatory nitrate 
reduction in bacteria (Gonzalez et al. 2006; Moreno-Vivián 

et  al. 1999; Richardson et  al. 2001), a nitrite reductase 
(nirK or nirS) is requisite for producing NO, which is a 
substrate for nitric oxide reductase (e.g., norB, norC) to 
produce N2O. The sequences related to gene nosZ coding 
for nitrous oxide reductase (associated with class Aquifi-
cae, Bacteroidetes, Flavobacteriia, Ignavibacteriae, Sphin-
gobacteriia, and Thermomicrobia) are important for the last 
step of denitrification, which converts N2O to N2 (Table S3; 
Fig. S3).

Given the abundance of ammonium (16.9  mg  L−1) in 
SMH and the high-energy costs of biological nitrogen 
fixation, the absence of nifK (Table S3; Fig. S3), a gene 
involved in the synthesis of molybdenum-dependent nitro-
genase (Dos Santos et  al. 2012), is not surprising. The 
source of ammonium in SMH is most likely abiotic (Hol-
loway et al. 2011), because genes associated with the dis-
similatory nitrate reduction to ammonium (DNRA) path-
way (e.g., napA, nrfA) were completely absent from SMH 
and have not been reported for YNP. The absence of DNRA 
in SMH may be due to factors, such as the lack of dissolved 
organic carbon (below detection) and high nitrate availabil-
ity (37.0 mg L−1; Table 1) in situ. The previous studies sug-
gest that DNRA activities can outcompete denitrification 
activities under high C/NO3

− ratios (Tiedje et al. 1983) and 
low nitrate availability (van den Berg et al. 2015). Ammo-
nium assimilation is possible in SMH by genes coding 
for assimilatory nitrate reduction to ammonia (e.g., nasA, 
nirA, and nirB). In this bacteria dominated spring, we did 
not detect genes (e.g., amoA) coding for the ammonium 
monooxygenase, which is able to use ammonia as a sub-
strate. Our result is consistent with the previous reports of 
the absence of nitrification genes from other YNP thermal 
springs (Inskeep et al. 2010; Swingley et al. 2012). Nitrifi-
cation may not predominate among YNP thermal springs, 
because the oxidation of ammonium is rarely thermody-
namically favorable under in  situ conditions (Shock et  al. 
2010), despite the occurrence of the archaeal amoA-like 
genes in the YNP axenic culture and environmental sam-
ples (de la Torre et al. 2008; Zhang et al. 2008).

Most of the genes involved in sulfur metabolism are 
related to the conversion of sulfate into adenylylsulfate and 
to the subsequent production of sulfite and H2S (Table S4; 
Fig. S4), similar to what has been previously reported in 
other thermal springs (Jimenez et al. 2012; Swingley et al. 
2012). Given that sulfide was below detection in SMH, 
whereas sulfate was 306 mg L−1 (Table 1), sulfide must be 
oxidized or incorporated rapidly. The abundance of availa-
ble sulfate provides a large energy source for sulfate-reduc-
ing microbes, which is further supported by the pathway 
reconstruction of sulfate reduction based on the metagen-
omic gene content (Fig. S4).

Genes responsible for cysteine synthase A (cysK) and B 
(cysM) are implicated in the formation of adenylylsulfate 

http://vlab.lternet.edu/ynp_inv_data_products.html
http://vlab.lternet.edu/ynp_inv_data_products.html
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(Table S4; Fig. S4). The environmental aprA and aprB 
sequences coding for adenosine-5′-phosphosulfate (APS) 
reductase (Apr) exhibit closest matches to members of 
Betaproteobacteria and Thermoprotei (Table S4; Fig. S4). 
Based on the current models of dissimilatory sulfate reduc-
tion and sulfur oxidation in prokaryotes, adenosine-5′-
phosphosulfate (APS) reductase (Apr) is a pivotal enzyme. 
During the process of sulfate reduction, the function of Apr 
is to convert APS to sulfite. Once sulfate is activated to APS 
by ATP-sulfurylase at the expense of ATP, sulfite is subse-
quently reduced to sulfide by dissimilatory sulfite reduc-
tases (DSRs, Meyer and Kuever 2008). The alpha subunit 
of Apr enzymes is considered to be ubiquitous in all known 
sulfate-reducing and most of the sulfur-oxidizing prokary-
otes (Meyer and Kuever 2008). For example, environmen-
tal aprA reads found in site SMH have high identity to 
those annotated in the Thiobacillus plumbophilus and Cal-
divirga maquilingensis genomes (e value < 10−35 Table S4; 
Fig. S4). T. plumbophilus requires H2S as an electron donor 
(Drobner et al. 1992), whereas C. maquilingensis respires 
sulfur, thiosulfate, or sulfate (Itoh et al. 1999). Genes cod-
ing for the assimilatory and dissimilatory reduction of ade-
nylylsulfate to sulfite (e.g., aprA, aprB, and cysH) and the 
subsequent assimilatory reduction of sulfite to H2S (e.g., 
cysI and sir) observed in site SMH suggest that sulfate and 
sulfite reduction pathways are dominant processes in the 
environment studied here. Unlike previously reported for 
a YNP alkaline spring (Swingley et al. 2012) where there 
is a genomic potential for sulfur oxidation, enzymes, such 
as sulfite oxidase (sox), were not detected in our data set, 
either due to insufficient sequencing depth, low abundance, 
or absence.

Conclusions

In this study, the microbial community of pH 4 springs was 
studied using 16S rRNA gene pyrosequencing. We found 
that the microbial assemblages varied among the four dif-
ferent sites studied, despite the narrow range of pH val-
ues sampled. Temperature and geochemistry of the waters 
likely contributed to the differences we observed. In addi-
tion, we assessed the functional profiles of the microbial 
community in a low-temperature, pH 4 spring that was pre-
viously unexplored, using shotgun metagenome sequenc-
ing. Functional cluster analyses revealed that this unex-
plored geobiological community was most similar to other 
phototrophic communities sampled from YNP, although the 
pH was more consistent with sites dominated by Archaea. 
Taxonomically, this spring community included a microbial 
assemblage and functional profile that were distinct from 
other phototrophic YNP communities, which are typically 
circumneutral. Apart from Chloroflexi that are commonly 

found in phototrophic communities, Bacteroidetes, Pro-
teobacteria, and Firmicutes were abundant in this spring. 
The taxonomic diversity resulted in metabolic diversity 
(e.g., chemotrophs and heterotrophs), as described in the 
metagenomic data presented here. Compared with other 
YNP phototrophic communities, the annotation based on 
COG database indicated a relative enrichment of functions 
involved in energy production and conversion, transcrip-
tion, and carbohydrate transport. The identification of genes 
coding for nitrogen and sulfur cycling revealed a microbial 
population involved in the dissimilatory and assimilatory 
reduction of nitrate, and conversion of sulfate into adeny-
lylsulfate, sulfite, and H2S. Low-temperature, intermediate-
pH terrestrial hydrothermal springs in YNP harbor unique 
communities with diverse metabolisms that deserve further 
attention. This research not only provides an initial survey 
that serves as a foundation for understanding microbial 
communities in these less common springs, but also offers 
a framework for future microbial studies in pH 4 YNP ther-
mal springs. It is notable that the waters from the four pH 
4 sites in this study underwent different water mixing pro-
cesses. Efforts to better integrate the role of water source 
and history may prove useful in understanding the micro-
bial ecology of thermal springs.
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