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Abstract Prokaryotic diversity was investigated in a
Tunisian salt lake, Chott El Jerid, by quantitative real-time
PCR, denaturing gradient gel electrophoresis (DGGE)
fingerprinting methods targeting the 16S rRNA gene and
culture-dependent methods. Two different samples S1-10
and S2-10 were taken from under the salt crust of Chott El
Jerid in the dry season. DGGE analysis revealed that bacte-
rial sequences were related to Firmicutes, Proteobacteria,
unclassified bacteria, and Deinococcus-Thermus phyla.
Anaerobic fermentative and sulfate-reducing bacteria were
also detected in this ecosystem. Within the domain archaea,
all sequences were affiliated to Euryarchaeota phylum.
Quantitative real-time PCR showed that 16S rRNA gene
copy numbers of bacteria was 5 x 10° DNA copies g~!
whereas archaea varied between 5 x 10° and 10°® DNA
copies g~! in these samples. Eight anaerobic halophilic
fermentative bacterial strains were isolated and affiliated
with the species Halanaerobium alcaliphilum, Halanaero-
bium saccharolyticum, and Sporohalobacter salinus. These
data showed an abundant and diverse microbial community
detected in the hypersaline thalassohaline environment of
Chott El Jerid.

Communicated by A. Oren.

< Fatma Karray
fatma.karray @cbs.rnrt.tn

Laboratory of Environmental Bioprocesses, Centre
of Biotechnology of Sfax, University of Sfax, Route Sidi
Mansour, km 6, BP 1177, 3018 Sfax, Tunisia

IRD, University of Aix-Marseille, University of Toulon,
CNRS, MIO, UM 110, 13288 Marseille Cedex 09, France

Laboratoire Mixte International « Contaminants et
Ecosystemes Marins Sud Méditerranéens » (LMI COSYS-
Med), Sfax, Tunisia

Keywords Archaea - Bacteria - Microbial diversity -
Hypersaline lake - 16S rRNA - PCR-DGGE - Quantitative
PCR - Anaerobic fermentative bacteria

Introduction

Hypersaline environments are abundant worldwide and are
characterized by salt concentrations higher than that of sea-
water (Ventosa et al. 2008). The microbial community of
hypersaline environments close to saturation has been stud-
ied by both culture (Emmerich et al. 2012) and molecular
methods (Maturrano et al. 2006; Foti et al. 2008) regard-
ing the potential applications of halophiles in biotechnol-
ogy (Oren 2010). These environments are generally lim-
ited to arid and semi-arid areas. In North Africa, salt lakes
are called sebkhat or chott. In Tunisia, shallow salt lakes
extend from the south coast of Tunisia to the Atlas Moun-
tains (Algeria). Chott el Jerid is the largest saline depres-
sion, located in the south-west of Tunisia. It covers an area
of approximately 5000 km?>. During the dry season, salt-
covered depression where salt crusts are precipitated covers
most of this area. Sometimes in winter when a lot of rain
falls, the area may be largely flooded and it acquires the
aspect of lake during some months (Ori et al. 2009). Recent
investigations have shown that solid salts in this lake come
from the geological formations of the surrounding moun-
tains. Differently to other continental sebkhats and accord-
ing to its physicochemical properties, this shallow lake
contains similar ions to seawater with a salt concentration
varying between 250 and 330 g L™, although it does not
communicate with the Mediterranean Sea (Kbir-Ariguib
et al. 2001). The major elements are sodium and chloride
followed in abundance by SO42_ obtained in previous stud-
ies in this ecosystem (Kbir-Ariguib et al. 2001). Chott El
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Jerid is a terrestrial evaporitic environment that has been
the subject of sedimentological and hydrochemical stud-
ies but its microbial diversity has never been studied using
molecular approaches. This is the first report describing the
microbial populations present in the water and sediment of
Chott El Jerid using molecular methods [denaturing gradi-
ent gel electrophoresis (DGGE) and quantitative real-time
PCR]. Few ecological studies of this environment based
on the cultivation approach have been investigated (Ben
Abdallah et al. 2015; Mezghani et al. 2012). The main
purpose of this research is to obtain an overview of the
abundance, the structure, and microbial diversity of both
archaeal and bacterial communities in water and sediment
samples of Chott El Jerid using culture-dependent and
culture-independent techniques. It is also aimed at com-
paring the results obtained with other studied hypersaline
ecosystems.

Materials and methods
Site description, samples collection

Sampling was done from a continental salt lake: Chott
El Jerid located in the south of Tunisia. Two samples
S1-10 (33°54’42.21"N and 8°31'7.98”"E) and S2-10
(33°54’44.15"N and 8°31’9.01”E) were taken from Chott
El Jerid in the dry season (October 2010). S1-10 and S2-10
samples, a mixture of saturated salt waters and sediments,
were collected 10 cm below the salt crust surface in sterile
bottles and kept aseptically at —80 and 4 °C until further
analysis. The sediments of S1-10 and S2-10 samples have
a black and sandy color, respectively. Temperature, salin-
ity, and pH of water samples were determined. The water at
the samples site was at 23 °C. The pH of the water samples
S1-10 and S2-10 were 6.61 and 6.9, respectively. The total
salt concentration in the water was 346 g L.

Isolation of anaerobic halophilic fermentative bacteria

In an attempt to isolate anaerobic halophilic fermentative
bacteria; the following medium was used: (per liter distilled
water): NH,Cl, 1.0 g; K,HPO,, 0.5 g; MgS0O,-7H,0, 20 g;
CaCl,-2H,0, 0.1 g; NaCl, 200 g; tryptone, 0.5 g; KCI, 1 g;
yeast extract, 0.5 g; cysteine hydrochloride, 0.5 g; 10 ml
trace mineral element solution (Balch et al. 1979). The
pH was adjusted to 6.8 with 10 M KOH. The medium was
boiled under a stream of O,— free N, gas and cooled to
room temperature. 5 mL aliquots or 25 mL were then dis-
pensed into Hungate tubes or serum bottles, respectively,
under a stream of N,/CO, (80:20, v/v) gas and autoclaved
for 20 min at 120 °C. Prior to inoculation of the medium in
each bottle, 0.5 mL 2 % (w/v) Na,S-9H,0; 0.5 mL 10 %
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(w/v) NaHCOj3; 0.5 mL (1 M) glucose or 0.625 mL (20 %)
tryptone or 0.625 mL (20 %) yeast extract were injected
from sterile stock solutions. The medium in each Hungate
tube was similarly supplemented, using 0.1 mL of each
stock solution. For enrichment cultures in serum bottles,
10 % of sample was inoculated into growth medium fol-
lowed by incubation at 37 °C for 1 week. The culture was
purified by repeated use of the Hungate roll tube method in
medium with 2 % (w/v) agar added (Hungate 1969). Cel-
lular morphology and purity of the cultures were assessed
under an Optiphot (Nikon) phase-contrast microscope.

DNA extraction

DNA was extracted from 250 mg of sediment of S1-10 and
S2-10 samples using Ultra Clean Soil DNA kit (MO BIO)
according to the protocol of the manufacturer. Fermentative
bacterial genomic DNA was extracted by Wizard Genomic
DNA Purification kit (Promega) according to the manufac-
turer’s recommendations.

PCR amplification of bacterial and archaeal 16S rRNA
genes

For DGGE analysis, PCR amplifications of the variable
region V3-V5 of bacterial and archaeal 16S rRNA genes
were performed by Nested PCR. Bacterial 16S rRNA
genes were amplified from all the samples using the fol-
lowing primer sets (Table 1): FD1/RDI tested in the first
round to amplify the entire DNA. In the second round of
amplification, PCR products obtained were amplified
with a second pair of primers: 341F-GC/907R. Within the
domain archaea, DNA was amplified with the primer pairs
21F/1492R in a first amplification. Amplified archaeal
16S rRNA gene fragments were used as the template for a
nested PCR with archaeal specific primers 344F-GC/915R
(Table 1). PCR reactions were performed using a thermo-
cycler (Applied Biosystems).

PCR amplification was performed in a total volume of
50 pyL mixtures containing 1x Taq buffer, 0.2 mM each
dNTP, 0.2 uM of each primer, 0.1 mg mL~! BSA (Sigma),
50 ng DNA template and 1.25 U of Taq DNA polymer-
ase (Fermentas). The first round of amplification pro-
gram for bacteria was 94 °C for 2 min, and 30 cycles of
94 °C for 30 s, 55 °C for 45 s, 72 °C for 1 min 45 s. For
the archaea, the following protocol was used for the first
round of amplification: 94 °C for 4 min, and 30 cycles of
94 °C for 1 min, 58 °C for 1 min, and 72 °C for 1 min 45 s.
The final extension step was at 72 °C for 10 min for both
bacteria and archaea. The nested PCR program was 94 °C
for 4 min; followed by 30 cycles of 94 °C for 1 min, 63 °C
for 1 min (for archaea) or 58 °C for 45 s (for bacteria),
and 72 °C for 45 s; ending with 10 min at 72 °C. Negative
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Table 1 Primers used in this study

Primer® Target site®  Sequence® (5'-3/) Targeted group ~ PCR References
Primer for DGGE
FD1 8-28 AGAGTTTGATCCTGGCTCAG Bacteria First step PCR Weisburg et al. (1991)
RD1 1547-1531  AAGGAGGTGATCCAGCC Weisburg et al. (1991)
341F-GCY  341-357 CCTACGGGAGGCAGCAG Bacteria Second step PCR Muyzer et al. (1993)
907R 907-926 CCGTCAATTCMTTTGAGTTT Lane (1991)
21F 21-40 TTCCGGTTGATCCYGCCGGA Archaea First step PCR DeLong (1992)
1492R 1492-1510 GGTTACCTTGTTACGACTT Lane (1991)
344F-GCY  344-363 ACGGGGYGCAGCAGGCGCGA Archaea Second step PCR Casamayor et al. (2002)
915R 915-934 GTGCTCCCCCGCCAATTCCT Casamayor et al. (2002)
Primer for gPCR
331F 331-349 TCCTACGGGAGGCAGCAGT Bacteria gPCR Nadkarni et al. (2002)
797R 797-822 GGACTACCAGGGTATCTAATCCTGTT Nadkarni et al. (2002)
344F 344-363 ACGGGGYGCAGCAGGCGCGA Archaea gPCR Casamayor et al. (2002)
519R 519-536 GWATTACCGCGGCKGCTG Ruff-Roberts et al. (1994)
27F 9-27 AGAGTTTGATCMTGGCTCAG Bacteria Conventional PCR Lane (1991)
907R 907-926 CCGTCAATTCMTTTGAGTTT Lane (1991)
109F 109-125 ACK GCT CAG TAA CACGT Archaea Conventional PCR GroBkopf et al. (1998)
958R 958-976 YCCGGC GTT GAMTCCAATT DeLong (1992)
Primer for sequencing®
T7 2999-3 TAATACGACTCACTATAGGG
SP6 139-158 TATTTAGGTGACACTATAG

% F (forward) and R (reverse) indicate the orientation of the primers in relation to the rRNA sequence

b Based on Escherichia coli numbering (Brosius et al. 1981)
CM=AorC;Y=CorT; W=AorT; K=GorT

4 GC-clamp is a 40-nucleotide GC-rich sequence attached to the 5’end, 5-CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGC-

CCG-3' as described (Muyzer et al. 1993)

¢ T7/SP6 specific primers localized in pGEM-T Easy vector (Promega)

controls were included with no addition of template DNA.
Molecular identification of fermentative bacterial isolates
was performed. The 16S rRNA genes were amplified with
specific bacterial primers FD1/RD1 (Table 1). The PCR
condition was as follows: after initial denaturation (95 °C
for 1 min), 30 cycles of 95 °C for 30 s, 58 °C for 30 s and
72 °C for 1 min 30 s were performed, followed by a final
extension (10 min, 72 °C).

DGGE analysis of bacterial and archaeal diversity

For each sample, 300 ng of archaeal and bacterial ampli-
cons were subjected to DGGE analysis. DGGE was per-
formed as previously described by using the D-Code mul-
tiple system (BioRad, USA). PCR products obtained were
electrophoresed on a 6 % (w/v) polyacrylamide gel (acryla-
mide: bis-acrylamide, 37.5:1) with 40-80 % (archaeal)
and 30-50 % (bacterial) denaturing gradient (100 % of

denaturing agents were 7 M urea and 40 % (v/v) deionized
formamide) in 1x TAE buffer (40 mM tris, pH 8.5; 20 mM
acetic acid; 1 mM EDTA) at 60 °C. Electrophoresis condi-
tions were 150 V for 5 h for both domains. After 30 min of
ethidium bromide staining, DGGE gels were photographed
under UV light and photographed with a Gel doc XR
Imaging system (BioRad). Selected bands of each sample
(in terms of intensity and frequency of appearance) were
cut from the gel, resuspended overnight in 35 pL of Mil-
1iQ water, reamplified (using the appropriate correspond-
ing bacteria or archaea primers devoid of the GC clamps),
cloned, and sequenced. PCR products were ligated into
the vector pGEM-T easy vector (Promega Corporation,
Madison, WI) following the manufacturer’s recommenda-
tions. Recombinant plasmids were isolated from overnight
cultures using EZ-10 Spin Column Plasmid DNA kit and
screened by restriction analysis with EcoRI. Positive trans-
formants were selected for sequencing.
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Sequencing and phylogeny analysis

DGGE bands were sequenced using the Big Dye® Ter-
minator cycle Sequencing kit and an ABI PRISM 3100
Genetic Analyzer (Applied Biosystems). The primers used
for sequencing were T7 and SP6 presented in pGEM-T
easy vector (Table 1). PCR products from each isolate
were sequenced using FD1 and RD1 primers (Table 1).
Sequence similarity searches were performed using the
online sequence analysis resources “BLAST” (Basic Local
Alignment Search Tool) (Altschul et al. 1997) and “Seq-
match” (Ribosomal Database project II; Release 10) (Cole
et al. 2009). Multiple alignments were generated by the
MUSCLE program (Edgar 2004) and phylogenetic tree was
constructed with MEGA program version 6 (Tamura et al.
2013) based on evolutionary distances that were calculated
using the Neighbour-Joining method with Juke-Cantor dis-
tance model. We performed bootstrap resampling analy-
sis for 1000 replicates to estimate degrees of confidence in
tree topologies. Then, chimerical sequences were checked
using chimera check on DECIPHER database (http://deci-
pher.cee.wisc.edu/FindChimeras.html) (Wright et al. 2012).

Quantitative real-time PCR (qPCR)

To evaluate the abundance of archaea and bacteria in all
samples, qPCR was used by targeting 16S rRNA genes.
The archaeal and bacterial amplification reactions were
performed in triplicate on a Bio-Rad CFX-96 real-time
system (Bio-Rad). Archaeal and bacterial 16S rRNA
genes were quantified using the primer sets 344F/519R
and 331F/797R, respectively (Table 1). The same reaction
components and protocol were used for the bacterial and
archaeal real-time PCR. Each qPCR mixture contained the
following components: 1x SsoAdvanced SYBR Green
Supermix (Bio-Rad), 250 nM of each primer, 50 ng of
DNA template (tenfold dilution series of standard PCR
product or environmental DNA sample) or distilled water
(negative control), and RNase/DNase-free water to a final
volume of 20 uL. The qPCR reactions were carried out as
follows: Initial denaturation at 98 °C for 2 min, followed
by 39 cycles of a 2-step PCR protocol with a 5 s denatura-
tion phase at 98 °C and a 30 s annealing/elongation phase
at 56 °C for the archaeal real-time PCR.

The bacterial qPCR reactions had an initial denaturing
step of 10 min at 95 °C, followed by 35 cycles of 30 s of
denaturing at 95 °C, 30 s of annealing phase at 60 °C, and
30 s of primer extension at 72 °C. Fluorescence was meas-
ured at the end of each cycle. To assess the specificity of
the primers, a post-PCR melting curve analysis was carried
out, in which the temperature varied between 65 and 95 °C
in 0.5 °C increments. qPCR standard curves were con-
structed from serial tenfold dilutions of DNA standards of
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known concentration. For bacterial 16S rRNA gene qPCR,
standard DNA fragments were amplified from Halomonas
alimentaria YKJ-16" using the primer sets 27F-907R
(Table 1). For archaeal 16S rRNA gene qPCR, standard
DNA fragments were amplified from Halorubrum chaovia-
tor DSM 19316 using the primer sets 109F-958R (Table 1).
Triplicate PCR products were pooled and purified with
Wizard® SV and PCR Clean-up System (Promega), accord-
ing to the manufacturer’s instructions. Purified PCR prod-
ucts were subsequently quantified using the BioSpec-nano
Spectrophotometer (Shimadzu) and used as DNA stand-
ards. Measured concentrations of purified PCR products
were then converted to copies per microliter as described
and the concentration was adjusted to 1 x 10° copies pL ™!
prior to performing serial dilutions from 10® to 10" copies
per wL of DNA. For all standard curves, the coefficients of
determination (R?) were higher than 99.0 %. Cell numbers
per g sediment were calculated from the gPCR 16S rRNA
gene copy numbers according to the average 16S rRNA
copy number in bacterial (3.82) and archaeal genomes
(1.62).

Nucleotide sequence accession numbers

The 16S rRNA gene sequences from bands DGGE deter-
mined in this study were deposited in the GenBank data-
base under accession numbers KT363000 to KT363010
(bacteria) and KT363011 to KT363036 (archaea). The 16S
rRNA gene sequences of the fermentative isolates have the
accession numbers KU180220 to KU180227.

Results
DGGE profiles

The microbial community structure was investigated in
Chott El Jerid through PCR-DGGE analysis. Bacterial
and archaeal community profiles elucidated by DGGE
are shown in Fig. 1. Similar DGGE profiles are obtained
for the S1-10 and S2-10 samples from Chott El Jerid for
bacteria or archaea. Numerous predominant bands are
presented in all profiles (archaeal or bacterial) indicating
diverse microbial community present in S1-10 and S2-10
samples. For bacteria, 19 bands were excised. Only seven
of them (B1, B4, B6, B7, B9, B10, B18) were success-
fully reamplified, cloned and sequenced. For archaea, 19
excised DGGE bands (A1-A19) were reamplified, cloned,
and sequenced. Nucleotide sequences were compared to
the GenBank and RDP databases using BLASTN and Seq-
Match, respectively. Sequencing results on bacterial and
archaeal 16S rRNA gene sequences from DGGE bands are
reported in Tables 2 and 3. Phylogenetic analyses based on
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Fig.1 Denaturing gradient gel electrophoresis profiles of PCR-
amplified archaeal (a) and bacterial (b) 16S rRNA gene fragments
obtained from samples S1-10 and S2-10

the bacterial and archaeal 16S rRNA gene sequences were
performed (Figs. 2, 3).

Phylogenetic affiliations of bacterial community
members

Phylogenetic groups within the bacterial domain were
regrouped in the Firmicutes, Proteobacteria (Alphaproteo-
bacteria, Gammaproteobacteria and Deltaproteobacteria),
Deinococcus-Thermus phyla and unclassified bacteria.
Within the Proteobacteria Phylum, the sequences were
clustered with the Rhodobacteraceae, Aeromonadaceae,
and Desulfobacteraceae family’s bacteria belonging to
Alphaproteobacteria, Gammaproteobacteria and Deltapro-
teobacteria classes, respectively. Band B1.C23 sequence
was related to uncultured bacterium clone HSS104 (97 %
similarity), detected in coastal saline soils in India and pre-
sented 86 % similarity with anaerobic halophilic sulfate-
reducing Deltaproteobacteria belonging to Desulfatibacil-
lum and Desulfosalsimonas genus. The sequences B4.C15
and B7.C13 were related to a facultative anaerobic bacte-
ria strain Aeromonas sharmana DSM 17445, isolated from
water collected from a warm spring in India. Band B10.
C72 and B18.C17 sequences showed 97 % similarity with

Roseovarius pacificus, isolated from deep-sea sediment and
98 % similarity with Oceanicola marinus, isolated from
seawater collected from the coast of Taiwan, respectively.
Band B18.C26 sequence was affiliated to uncultured bac-
terium clone, which was isolated from urban stormwater
sediments. This band showed 85 % similarity with sulfate-
reducing bacterium Desulfofrigus oceanense, isolated in
marine Arctic sediments.

The second major phylum was the Firmicutes and the
sequences were grouped with members of Clostridia and
Bacilli classes. Band B1.C1, detected only in the S2-10
sample, presented 99 % similarity with uncultured bac-
terium clone kasin-B2-FO8 recovered from iron-rich salt
lake sediments lake Kasin, southern Russia. Band B1.Cl1
sequence was also related to anaerobic halophilic fermenta-
tive genera Halanaerobium and Halocella species belong-
ing to Halanaerobiaceae family. The sequence of B6.C6
showed 97 % similarity with denitrifying bacterium Bacil-
lus azotoformans LMG 9581.

Within the Deinococcus-Thermus phylum, Band DGGE
B10.C14 sequence, detected only on S1-10 DGGE pro-
file, was closely related to Truepera radiovictrix DSM
17093 isolated from hot spring runoffs on the Island of Sdo
Miguel in the Azores. This species was extremely ionizing
radiation resistant (60 % of the cells survive 5.0 kGy). Two
sequences from band B9.C16 and B4.C18 were affiliated
with uncultured clones of bacteria retrieved from a hyper-
saline lake in Iran.

Phylogenetic affiliations of archaeal community
members

Within the domain archaea, all sequences were grouped
with members of Euryarchaeota phylum including Halo-
bacteriaceae, Natrialbaceae, Haloferacaceae, Methano-
sarcinaceae and Methanocaldococcaceae families. Bands
A2, A4, A13, A15, A17, A18 and A19 sequences were
related to the genus Halorubrum spp. (Haloferacaceae
family) which were widely found in diverse hypersaline
environments such as solar salterns, salt lakes, coastal
sabkhas, soda lakes. Band A3.C18 is related to Haloru-
brum ejinorense isolated from lake Ejinor, Inner Mongo-
lia, China. It also appears that band A5.C51 and A6.C63
showed 91 % of similarity with Halococcus hamelinensis
and Halococcus dombrowskii isolated from stromatolites
in Shark Bay, Australia and from a Permian alpine salt
deposit, respectively. Band A7.C73 is affiliated to Natrin-
ema versiforme (Natrialbaceae family) found in Aibi salt
lake in China, whereas, band A12.C24 was closely related
to uncultured bacterium clone described in hypersalin sed-
iments of lake Kasin in Russia. Band A12.C12 sequence
was related to species of Natronomonas (97 % of similar-
ity), isolated from salt-saturated lakes, from a marine solar
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Fig. 2 Phylogenetic tree based on 16S rRNA gene of excised DGGE
bands compared to representatives of the domain bacteria and envi-
ronmental clones. The tree is based on Neighbour-Joining method.

saltern crystallizer, and from a solar saltern in Korea. Band
A14.C36 and A14.C44 sequences were affiliated to Halo-
arcula marismortui isolated from Dead Sea. Band A10.
C14 exhibited 93 % of sequence similarity with Halo-
simplex pelagicum isolated from salted brown alga Lami-
naria China. The sequence of Band A8.C86 was related
to an extremely halophilic archaeon Halapricum sali-
num (96 % similarity) identified from non-purified solar
salt. Furthermore, sequences from bands A11.C101 and
A9.C13 showed high similarity to the uncultured archaeal
clones previously described in hypersaline environments.
Within the Methanococci class, bands A1.C10 and All.
C6 sequences were clearly affiliated to the family Metha-
nocaldococcaceae and Methanosarcinaceae, respectively.
Sequences of band A11.C6 and A1.C10 were related to
Methanohalobium evestigatum isolated from a salt lagoon
in Crimea, Russia and Methanotorris igneus isolated
from a coastal hydrothermal environment in Iceland with
sequence similarity of 99 and 83 %, respectively.

The scale bar represents 5 % estimated sequence divergence. The
sequence of Methanothermobacter thermophilus was used as the out-

group

Quantification of 16S rRNA genes

The abundance of bacterial and archaeal groups in all
samples, determined by quantitative real-time PCR, was
reported as DNA copy numbers of 16S rRNA genes per
gram of wet sediment. The abundance of archaea was
5 x 10° to 10°%, whereas bacteria abundance was 5 x 10°
DNA copies g~ .

Identification of fermentative bacteria

Eight fermentative anaerobic halophilic bacterial strains
obtained in pure culture were selected based on their mor-
phological characteristics of colonies and were character-
ized by 16S rRNA gene analysis. Cells of strictly anaerobic
isolates were rods occurring singly or in pairs. All strains
were motile. The isolates are designated by letters indicat-
ing first the origin of strains from Chott El Jerid (CEJ), Fer-
mentative (F) followed by type of substrate Tryptone (T),
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Fig. 3 Phylogenetic tree based
on a comparison of 16S rRNA
sequences from excised DGGE
bands to those of representative
archaeal species and envi-
ronmental clones. The tree is
based on the Neighbour-Joining
method. The scale bar repre-
sents 5 % estimated sequence
divergence. The sequence of
Desulfococcus multivorans was
used as the outgroup

Yeast extract (YE) or Glucose (G), then a number indicat-
ing the sampling site 1 (S1-10) or 2 (S2-10).

PCR amplification of 16S rRNA gene from strains
CEJFGI1, CEJFG2, CEJFT1A, CEJFTIC, CEJFYEIA,
CEJFYE1B, CEJFYE2C and CEJFYE2D resulted in

@ Springer
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1008 bp, respectively.

Uncultured Halobacterium sp. clone SFG1F051 (AM947501)

sequences of 1058, 1545, 1543,

Halobacteria

Methanococci

Methanomicrobia

1546, 1048, 1544, 1524,

Phylogenetic analysis revealed that those isolates were
belonged to the order of Halanaerobiales placed in the
phylum Firmicutes (Fig. 4). Six strains were affiliated to
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Fig. 4 Phylogenetic tree based on similarities of 16S rRNA
sequences of isolates and its relatives. The tree is based on the Juke-
Cantor model and the Neighbour-Joining method. The sequence of

Halanaerobiaceae family and two strains to Halobac-
teroidaceae family. CEJFT1A, CEJFTIC, CEJFYEIB,
CEJFGI, CEJFYEIA were related (98-99 % of similarity)
to species H. saccharolyticum. The strain CEJFG2 exhib-
ited 99 % of sequence similarity with Halanaerobium alca-
liphilum. Strains CEJFYE2C, CEJFYE2D were affiliated
(98 % of similarity) to species Sporohalobacter salinus.

Discussion

In the present study, the microbial diversity present in the
largest Tunisian salt lake, Chott El Jerid, was investigated
for the first time by culture-independent methods. Denatur-
ing gradient gel electrophoresis (DGGE) and quantitative
real-time PCR (qPCR) were performed to assess the bac-
terial and archaeal communities’ structure and to evaluate
their abundance. A remarkable microbial diversity was

Bacteroides nordii was used as the outgroup. Bootstrap values based
on 1000 replicates are shown

obtained in the extremely halophilic ecosystem, Chott El
Jerid, among both the bacteria and archaeca domains. Pre-
dominant phylogenetic groups were represented by Pro-
teobacteria and Firmicutes of the bacteria domain. These
taxonomic groups were also detected previously in hyper-
saline lakes (Demergasso et al. 2008; Makhdoumi-Kakhki
et al. 2012; Emmerich et al. 2012), salterns, and hypersa-
line sediments (Mouné et al. 2003; Baati et al. 2010).

What is notable in our study is the absence of sequences
representing the Bacteroidetes group. This group is
reported to dominate with Proteobacteria in many different
saline environments including hypersaline lakes such as the
Tebenquiche in the Salar de Atacama (Demergasso et al.
2008), the largest hypersaline playa Aran-Bidgol in Iran
(Makhdoumi-Kakhki et al. 2012), and Tunisian multipond
solar saltern (Baati et al. 2008).

In this work, eight obligately halophilic anaerobic fer-
mentative bacteria were isolated from the same samples
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(S1-10) and (S2-10) used for DGGE analysis. Those strains
were affiliated with three species H. alcaliphilum, H. sac-
charolyticum and S. salinus. The species H. alcaliphilum
was a strictly anaerobic, moderately halophilic, Gram-
negative bacterium and was isolated from the sediments of
Great Salt Lake (Tsai et al. 1995). H. saccharolyticum was
retrieved from sediments of hypersaline lakes (Cayol et al.
1994). The species S. salinus was recently isolated from
Chott El Jerid (Ben Abdallah et al. 2015). These results
are consistent with those obtained from DGGE. In fact, in
our study, a number of DGGE band sequences were related
to groups of anaerobic bacteria, principally fermentative
bacteria. Previous studies were established by the isola-
tion of anaerobic halophilic fermentative bacterial strains
from surface sediments of Chott El Jerid (Hedi et al. 2009;
Mezghani et al. 2012).

Moreover, a number of DGGE band sequences related to
sulfate-reducing bacteria were detected in our study, but no
sulfate-reducing strains have been isolated in pure cultures
from this lake up to now.

Within the bacterial clone libraries, the most abundant
Deltaproteobacterial representatives related to halophilic
sulfate-reducing bacteria and members of the phylum Fir-
micutes related to the strictly anaerobic fermentative bac-
teria were found inhabiting the hypersaline ponds in Medi-
terranean salterns and in salt lakes (Mouné et al. 2003;
Makhdoumi-Kakhki et al. 2012).

Interesting was the detection of Deinococcus-Thermus
in Chott El Jerid. It is a small group of bacteria that are
highly resistant to radiation. The presence of representa-
tives of this group was scarce in hypersaline ecosystems
studied using rRNA gene clones libraries. Members of
Deinococcus-Thermus were also detected from the RNA-
derived DGGE profiles in Cock Lake, a soda lake in Russia
at low salinity 60 g L™! and this group was absent at high
salinities in other investigated soda lakes (Foti et al. 2008).

With regard to the archaea population on the earth, halo-
philic archaea are the dominant microbial flora in hypersa-
line environments such as solar salterns, hypersaline lakes,
hypersaline microbial mats, and the Dead Sea (Oren 2002).
In this work, it could be noticed that all the 16S rRNA gene
sequences obtained were affiliated with the orders Halo-
bacteriales and Haloferacales positioned in the phylum
Euryarchaeota, with most representatives belonging to the
Halobacteria class, extreme aerobic halophiles growing at
high salinity close to saturation.

In this study, no sequences affiliated with the Crenar-
chaeota group were detected. However, clones related to
this phylum were recovered in anoxic sediments of hyper-
saline ponds in Salin-de-Giraud salterns from the station of
lower salinity (150-200 g L~") (Mouné et al. 2003).

The same results were obtained in other studies assess-
ing the diversity of Haloarchaea in salt lakes which they

@ Springer

have shown that most sequences were affiliated to Halo-
bacteria (Makhdoumi-Kakhki et al. 2012). Here, inter-
estingly, we detected via DGGE method two sequences,
retrieved from each sample, related to members of the
orders Methanosarcinales and Methanococcales. Metha-
nogenic orders seem to be in low rates of all archaeal 16S
rRNA gene sequences from clone’s libraries from hypersa-
line lakes, and hypersaline ponds in Mediterranean salterns
(Mouné et al. 2003). It is well known that in hypersaline
environments, characterized by high concentrations of sul-
fate, sulfate-reducing bacteria outcompete methanogens for
the substrate such as H,, acetate and formate.

According to qPCR results, Chott El Jerid shelters an
important number of bacterial and archaeal populations
(10° cells per g wet sediment) in comparison with previ-
ous studies performed in other hypersaline systems using
quantitative PCR. In contrast, higher numbers of cells 10’
to 10° per g wet sediment were detected in saline Qinghai
Lake, China (Dong et al. 2006). Most studies demonstrated
that the microbial communities in many hypersaline envi-
ronments were dominated by halophilic archaea numbers.
Spatial and temporal effects on the structure of microbial
communities should be further investigated. Other samples
will be taken in the rainy season in order to analyze the
spatial and seasonal effects on the prokaryotic community
in the Chott El Jerid.

Our results showed that Chott El Jerid presents an
important diversity of bacterial and archaeal types found
in thalassohaline hypersaline environments from different
geographic regions (Baati et al. 2010; Makhdoumi-Kakhki
et al. 2012).

In conclusion, culture-independent study reports on the
microbial diversity, using 16S rRNA gene sequences analy-
sis within two samples from Chott El Jerid. The diversity of
bacteria and archaea found in Chott El Jerid was specified.
Bacteria domain was represented exclusively by Proteobac-
teria and Firmicutes. Archaea domain was closely related to
the Euryarchaeota phylum. More importantly, Firmicutes
were affiliated with the anaerobic genera Halanaerobium,
Halocella and the group Proteobacteria with anaerobic hal-
ophilic sulfur reducing Deltaproteobacteria. Additionally,
the DGGE analysis confirmed the presence of microorgan-
isms previously described through clone libraries in these
ecosystems, such as methanogen archaea and Deinococcus-
Thermus phylum. Our results suggest that microorganisms
as well as uncultured clones detected in Chott El Jerid were
found in hypersaline thalassohaline environments, despite
the continental origin of our ecosystem. The cultivation
approach led us to isolate anaerobic fermentative bacteria
related to three species H. alcaliphilum, H. saccharolyticum
and S. salinus grouped within the phylum Firmicutes. The
culture-dependent and culture-independent are complemen-
tary methods and give a good description of the prokaryotic
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diversity in hypersaline environments. However, using novel
molecular strategies such as metagenomic approaches is an
essential step to gaining a better understanding of microbial
ecology in hypersaline environments.
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