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of these enzymes have been successful and their properties 
make them unique biocatalysts for various industrial and 
biotechnological applications. Although, strong associa-
tion of lipopolysaccharides from Antarctic microorganisms 
with lipid hydrolases pose a challenge in their purification, 
heterologous expression of the cold-adapted lipases with 
affinity tags simplifies purification with higher yield. The 
review discusses these cold-evolved lipases from bacteria 
and their peculiar properties, in addition to their potential 
biotechnological and industrial applications.
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Introduction

Psychrophilic microorganisms are cold-adapted with dis-
tinct properties from other thermal classes (e.g., thermo-
philes) (Cavicchioli et al. 2002). Their ubiquity in nature 
relates to their possession of dynamic cellular processes 
that ensure their survival, growth and adaptation even to 
extreme forms of life. Polar environments indeed still rep-
resents a dynamic reservoir for habitable psychrophiles 
normally found in nature colonizing such substantial por-
tion of such extreme terrestrial and aquatic environments 
as—deep sea/ocean, Antarctic regions, glacial habitats, 
refrigerated appliances, and on/in plants and animals inhab-
iting cold regions (Russell 1998; Margesin et al. 2007; 
Buzzini et al. 2012). More than 90 % of the ocean environ-
ments sustain a broad diversity of microbial life and drive 
the functional capacity of the psychrophilic life. Bio-pros-
pecting of most polar ecosystems was selected for equally 
diverse indigenous psychrophilic microbial assemblages 
comprising not only prokaryotes, but also eukaryotes, 
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chrophiles. Among the cold-evolved enzymes are the cold-
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regarding these cold-evolved enzymes in psychrophilic 
bacteria proves a display of high catalytic efficiency with 
low thermal stability, which is a differentiating feature with 
that of their mesophilic and thermophilic counterparts. 
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have significantly benefited the enzyme industry. Based on 
their homogeneity and purity, molecular characterizations 
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plants, animals, archaea, eucarya, protists, bacteria, yeasts, 
unicellular algae and fungi, viruses, flatworms and flagel-
lates (Cavicchioli 2006; Morgan-kiss et al. 2006; Margesin 
et al. 2007; Parra et al. 2008; Buzzini et al. 2012; Feller 
2013) contributing towards carbon and nutrient cycling, 
bioremediation, production of secondary metabolites, nutri-
ent turnover, biomass production, and litter decomposition 
in cold ecosystems (Cummings and Black 1999; Trotsenko 
and Khmelenina 2005; Methé et al. 2005).

With all their cellular processes mediated in the cold 
environment, it is imperative that components of the cell 
including metabolism and protein synthesis are suitably 
adapted against the impact of the cold-shock environment. 
The most critical metabolic requirement for withstanding 
the low temperature’s harmful effect is the maintenance of 
functional membranes, evolving cold-adapted enzymes and 
synthesizing a range of structural features which endow a 
high level of flexibility in protein structure enabling bioca-
talysis, high catalytic efficiency at low temperatures, high 
degrees of thermolability, lower energy of activation and 
increased structural flexibility for better substrate access 
(Thomas and Dieckmann 2002; Siddiqui and Cavicchioli 
2006; Siddiqui et al. 2013).

The commercialization of the inherent cellular compo-
nents of cold-adapted psychrophilic microbes in particular 
enzymes obtained from them has received great attention. 
Psychrophilic bacteria have adapted and colonized a variety 
of cold environments producing cold-adaptive enzymes tar-
geted for their biotechnological potential in detergent and 
food industries, biotransformation, environmental bioreme-
diation, etc. (Russell 1998) compared to the mesophilic and 
thermophilic enzymes wherein high activity and interaction 
between substrates and enzyme are impaired by their high 
thermostable rigidity (Gerday et al. 2000).

The strategy of adaptation to cold environment is pecu-
liar to microorganisms and their constitutive proteins as 
well as enzymes. Increased flexibility of molecular struc-
ture and high specific activity of cold-adapted enzymes 
apparently represent their thermosensitivity and a comple-
mentary interaction at a reduced energy cost. These and 
other factors add up to make psychrophilic microorgan-
isms to be considered novel bio-resource for cold-active 
enzymes and other biological products with a spin-off for 
biotechnological and catalytic gains (Cavicchioli et al. 
2011; Ewert and Deming 2013; Bowman 2013; Siddiqui 
et al. 2013). Many cold-active enzymes obtained from 
cold-adapted microorganisms include: protease, lipases, 
amylases and cellulases which have found wide applica-
tions (Aghajari et al. 1996; Alquati et al. 2002; Cieśliński 
et al. 2005).

Lipases hold huge potential in certain areas of applica-
tion given their diversity and properties. This review exam-
ines cold-adapted lipases from psychrophilic bacteria, their 

adaptative features, purification strategies and exploitation 
of their industrial and biotechnological enterprise (Tables 1, 
2).

Psychrophilic bacteria

The cold environment is being dominated by an array of 
aerobic and anaerobic bacteria in great diversity amongst 
other extremophiles overcoming the adverse effect of 
the reduced temperature, by developing some molecu-
lar shields making them catalytically effective, enabling 
their survival and maintaining their structural and func-
tional adaptation to such extreme environmental conditions 
with desired properties (Karner et al. 2001; Deming 2002; 
Ramteke et al. 2005). Psychrophilic bacteria perform basic 
functions at frozen environments far below 0 °C and others 
tolerating such latitude with growth rates at 2–12 °C, with 
some bacteria becoming more piezophilic at 10 °C (Xu 
et al. 2003).

Diverse groups of bacteria belonging to the Gram-neg-
ative α-, β- and γ-proteobacteria from the forest soil, arc-
tic alpine-tundra soil, stream water, mire sediments, lichen, 
snow algae and Antarctic lakes have been reported to sur-
vive cold-active environments (Gilbert et al. 2004; Män-
nistö and Häggblom 2006). Others include those belonging 
to the Burkholderia sp., Collimonas sp., Pedobacter sp., 
Janthinobacter sp., Duganella sp., Dyella sp. and Sphin-
gomonas sp. as well as those of the Gram-positive bacteria 
Pseudomonas spp., Vibrio spp. The Cytophaga–Flavobac-
terium–Bacteriodes phylum, Coryneforms, Arthrobacter 
sp. and Micrococcus sp. (Gilbert et al. 2004; Amico et al. 
2006). Psychrophilic and psychrotolerant aerobic metha-
notrophic bacteria belonging to the genera and species of 
Methylobacter sp., Methylosphaera sp., Methylocella sp. 
and Methylocapsa acidiphila, Methylomonas scandinavica 
also inhabits cold ecosystems (Trotsenko and Khmelenina 
2005).

In spite of the dominance of the cold environment by 
bacteria, both in number and density, they are still found in 
equivalent proportions in the hydrothermal vents together 
with Methanogenium and Methanococcus being the most 
cited genera. In other Antarctic ecosystems, Oscillatoria, 
Phormidium and Nostoc commune cyanobacteria are said 
to exercise dominance (Pandey et al. 2004). Heterotrophic 
bacteria belonging to five major phyla Actinobacteria, Bac-
teroidetes, Proteobacteria, Firmicutes and Deinococcus–
Thermus have been recovered from different continental 
Antarctica and the Antarctic Peninsula (Peeters et al. 2011).

Many cold-active bacterial communities live and thrive 
in the low-temperature environments of deep sea hydro-
thermal vent (Yayanos 1995), Antarctic and Arctic sea ice 
(Tranter et al. 2004), Antarctic subglacial environment, 
alpine or glacial transitory ponds and ice-covered lakes 
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Table 1  Some cold-adapted psychrophilic lipase bacteria from a variety of cold environments

Bacteria Environment References

Aeromonas sp. LPB 4 Deep-sea sediment (Lee et al. 2003)

Aeromonas hydrophila Food products (Imbert and Gancel 2004)

Arthrobacter globiformis SI55 Recombinant (Berger et al. 1996)

Acinetobacter baumannii BD5 Mountain water (Park et al. 2009)

Acinetobacter sp. strain no. 6 Siberian tundra soil (Suzuki et al. 2001)

Bacillus psychrosaccharolyticus Soil and lowland marshes (Seo et al. 2004)

Colwellia psychrerythraea 34H Arctic marine sea (Methé et al. 2005; Do et al. 2013)

Desulfotalea psychrophila Arctic sediments (Rabus et al. 2004)

Halomonas sp. BRI 8 Antarctic sea (Jadhav et al. 2013)

Kordia algicida gen. nov., sp. OT-1T Red tide (Sohn et al. 2004)

Micrococcus roseus Glacial soil (Joseph et al. 2011)

Moraxella TA144 Antarctic sea water (Feller et al. 1991)

Moritella profunda sp. 2674T

Moritella abyssi sp. 2693T
Atlantic sediments (Xu et al. 2003)

Moritella sp 2-5-10-1 Antarctic bacteria (Wang et al. 2013)

Pelagibacterium halotolerans B2T East China Sea (Wei et al. 2013)

Photobacterium strain (MA1-3) Blood clam (Kim et al. 2012)

Photobacterium aplysiae sp. (GMD509) Eggs of sea hare (Seo et al. 2005b)

Photobacterium frigidiphilum sp. SL13(T) Deep-sea sediment (Seo et al. 2005a)

Photobacterium lipolyticum sp. M37 Intertidal Yellow Sea (Yoon et al. 2005; Ryu et al. 2006)

Photobacterium profundum sp. DSJ4 Sediment (Nogi et al. 1998)

Photobacterium ganghwense sp. FR1311T Deep-sea (Park et al. 2006)

Photobacterium marinum AK15(T) and AK18 Sea sediment (Srinivas et al. 2013)

Photobacterium histaminum sp. JCM 8968 Marine fish/sea water (Okuzumi et al. 1994)

Pseudoalteromonas haloplanktis TAC125 Marine Antarctica (Médigue et al. 2005;
de Pascale et al. 2008; Russo et al. 2010)

Pseudomonas putida GR12-2 Arctic plant (Muryoi et al. 2004)

Pseudomonas sp. strain KB700A Water sample (Rashid et al. 2001)

Pseudomonas sp. 4 Marine soil/water (Kavitha and Shanthi 2013)

Pseudomonas antarctica sp Antarctica (Reddy et al. 2004)

Pseudomonas. sp strain BII-1 Alaskan soil (Choo et al. 1998)

Pseudomonas fluorescens Refrigerated raw milk (Bucky et al. 1987)

Pseudomonas fluorescens Soil of cold region (Leonov 2010)

Pseudomonas sp. strain AMS8 Antarctic soil (Mohamad Ali et al. 2013)

Pseudomonas sp. strain KB700A Subterranean sea (Rashid et al. 2001)

Psychrobacter okhotskensis MD17T Okhotsk sea coast (Yumoto et al. 2003)

Psychrobacter cryohalolentis K5T Siberian cryopeg (Novototskaya-Vlasova et al. 2013)

Psychrobacter sp 7195. Deep-sea sediment (Zhang et al. 2007)

Psychrobacter sp. C18 Deep-sea sediments (Chen et al. 2010)

Psychrobacter sp. G Antarctica sea (Xuezheng et al. 2010)

Psychrobacter sp Chilean antarctic seawater (Parra et al. 2008)

Psychrobacter sp. Ant300 Antarctic soil (Kulakova et al. 2004)

Psychrobacter salsus sp. nov. Psychrobacter adeliensis sp. nov Fast ice Antarctic (Shivaji et al. 2004)

Pseudoalteromonas sp Psychrobacter sp. Vibrio. Sp Antarctic samples (Lo Giudice et al. 2006)

Shewanella sp. strain SIB1 Water deposits in oil reservoir (Suzuki et al. 2004)

Staphylococcus epidermidis Frozen fish (Joseph et al. 2006)

Stenotrophomonas maltophilia CGMCC 4254 Oil soil (Li et al. 2013)

Vibrio iliopiscarius sp. Nov
Vibrio salmonicida

Marine sea Fish (Onarheim et al. 1994)

Vibrio ruber sp. Nov VR1T Sea water (Shieh et al. 2003)
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(Morgan-kiss et al. 2006), where they represent the most 
abundant cold-adapted life-forms on earth at the level of 
species diversity and biomass (Feller and Gerday 2003). 
Most interesting is the evidence of metabolically active 
psychrotrophic bacteria in super-cooled, high-altitude 
cloud droplets (Sattler et al. 2001), surviving subjection 
to low-temperature, high-pressure, and low-nutrient lev-
els. Considering the potential impact of the biomolecules 
derived from cold-adapted microorganisms, a great number 
of microbial biodiversity remains largely unstudied (Ken-
nedy et al. 2008).

Cold-active lipases

Following the discovery of a pancreatic lipase by Claude 
Bernardin (1856), about 90 % of produced lipases have 
been obtained from microbial sources (Ellaiah et al. 2004; 
Kumar and Gupta 2008; Treichel et al. 2010) with many 
others identified in the environment including, animals and 
plants (Moussavou Mounguengui et al. 2013). The hunt for 
new lipases has been on the increase leading to a separate 
database for true lipases termed lipabase which integrates 
information about their structural and functional properties 
including taxonomic and biochemical information (Nagara-
jan 2012).

Lipases (water-soluble triacylglycerol acylhydrolases, 
EC 3.1.1.3) are enzymes physiologically catalyzing hydrol-
ysis of insoluble long-chain triacylglycerides to free fatty 
acids (Treichel et al. 2010; Tran et al. 2013). Besides their 
natural function, they offer considerable potential in cata-
lyzing bioconversion reactions in non-aqueous media and 
also catalyze hydrolysis of organic carbonates without 
need for any cofactors (Pandey et al. 1999; Sharma et al. 
2001; Dutra et al. 2008; Rajendran et al. 2009). Lipases by 
convergent evolution are serine hydrolases (Stergiou et al. 
2013) and they demonstrate good chemioselectivity, regi-
oselectivity and enatioselectivity. They also possess unique 
features of being stable even in organic solvents, low ther-
mostability at elevated temperatures with low costs and 
enantioselective properties (Thakur 2012; Hosseinpour 
2012). Available data regarding several lipases from diverse 
sources indicate alkaline, acidic and organic solvent toler-
ant and cold-active lipases as most obviously investigated 
sources for numerous biotechnological applications given 
the important role they play in the turnover of various 
organic materials and biomass into useful products under 
conditions considered unsuitable to other biomolecules 
(Ramani et al. 2010; Joseph et al. 2011; Yoo et al. 2011; 
Mander et al. 2012; Nagarajan 2012; de Abreu et al. 2014).

Conventionally, cold-adapted microorganisms synthe-
size lipases which have evolved to tolerate the extremely 
inhospitable conditions of cold habitats with high biocat-
alytic activity. The need to avoid any causes of structural 

damage makes them irreversibly adapted to these envi-
ronments by way of evolving unique mechanism to over-
come the adverse influence of low temperatures compared 
to the lipases from mesophiles or thermophiles. Conserv-
ing stability–activity–flexibility relationship is fundamen-
tal to their functional and structural adaptive properties 
(Margesin et al. 2007; Buzzini et al. 2012; Feller 2013). 
Lowered thermal stability of cold-active lipases allows an 
equilibrium shift during reactions, because effectively func-
tioning at low temperatures guarantees a promising poten-
tial for utilizing lipases in ‘White Biotechnology’ and other 
industrial applications (Gerday et al. 2000; Hasan et al. 
2006; Joseph et al. 2008; Adan Gökbulut and Arslanoğlu 
2013).

Cold-adapted lipase are said to offer economic incen-
tives through low energy cost achieved through reduction 
in heating steps required to function in cold environments. 
Providing increased reaction yields and minimizing undesir-
able reactions that can occur at high temperatures by heat-
inactivation of the enzymes rather than by use of chemical 
extraction offers significant advantages to the food industry 
preventing any modification to the substrates and finished 
product. Several psychrophlic and psychotrophic bacteria 
have been exploited for the production of a variety of cold-
active lipases across different cold habitats, although current 
research trends on these classes of enzymes have shown that 
attention is given to using recombinant and protein engineer-
ing strategies to generate strains with promising properties. 
Few cold-adapted lipase/esterase have been studied. These 
include the enzymes from Aeromonas sp. LPB4 (Lee et al. 
2003), Pseudomonas sp. strain B11-1 (Choo et al. 1998b), 
Acinetobacter sp. No. 6 (Suzuki et al. 2001), Psychrobacter 
sp. Ant300 (Kulakova et al. 2004), Photobacterium sp. (Ryu 
et al. 2006). Gene encoding a cold-active lipase from Antarc-
tic psychrotrophs Penicillium expansum SM3 (Mohammed 
et al. 2013) Moraxella TA144 (Feller et al. 1991) revealed a 
novel cold-active lipase. Cold-active lipase from Micrococ-
cus roseus exhibited high activity and stability over a range 
of temperature regimes in an optimized semisolid state fer-
mentation utilizing agro-industrial substrates (Joseph et al. 
2011). Cloned gene (lipA1) of a cold-active lipase has been 
reported for a Psychrobacter sp. 7195 isolated from a deep-
sea sediment (Zhang et al. 2007). Novel cold-active and 
organic solvent-tolerant lipase displaying remarkable stabil-
ity have been reported for Stenotrophomonas maltophilia 
CGMCC 4254 isolated from oil-contaminated soil samples 
(Li et al. 2013). Soils from Alaskan cold habitat and other 
cold regions have been exploited as potential sources of novel 
cold-active lipase (Choo et al. 1998a; Leonov 2010). Char-
acterization of cold-active lipase from cold-adapted bacteria 
from snow-covered soil, salmon intestine and crab intestine 
have been predicated upon the thermodynamic shifts in tem-
peratures and reductions in enthalpy energy values (Morita 
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et al. 1997). Culture-independent approach have been applied 
in constructing a metagenomic library from the unculturable 
component of microbial communities from various deep-sea 
sediments, terrestrial environmental niches and other cold 
habitats towards producing novel cold-active lipase genes 
from recombinant clones (Kennedy et al. 2008; Jeon et al. 
2009).

Structure and cold adaptation in lipases

Knowledge of the relationship between extreme environ-
ments and their psychrophilic host requires several integra-
tive attempts. Just as studies on cold-active lipases revolves 
around their isolation, purification characterization so does 
elucidation of their molecular and functional character-
istics provide a better understanding of these enzymes. 
Strategy towards structural adaptation is a property unique 
to each enzyme. The thermodynamic stability of psychro-
philic lipases is a strategy characterized by the relationship 
between stability, conformational flexibility or plasticity and 
their catalytic efficiency conferred upon them by a range of 
structural systems, useful especially when compared to mes-
ophilic and thermophilic enzymes operating at set conditions 
of low temperatures. Rapid engineering paradigms involving 
gene synthesis, cloning and overexpression systems (Emond 
et al. 2010; Chen et al. 2010; Novototskaya-Vlasova et al. 
2013), modular regulation (Palomo et al. 2003; Reetz et al. 
2010), X-crystallography (Uppenberg et al. 1995), modifica-
tion (Juhl et al. 2010; Durmaz et al. 2013), rational modeling 
(Alquati et al. 2002; Mohamad Ali et al. 2013; Maraite et al. 
2013) have proven useful for understanding the structural 
adaptation of several cloned cold-active lipase.

Array of new methods enabling investigations into the 
structural and molecular parameters of cold-active lipases 
has been developed (Parra et al. 2008; Jeon et al. 2009; Do 
et al. 2013). Cold-active lipolytic genes encoding for two 
different lipases (Lip-1452 and Lip-948) from an Antarctic 
Psychrobacter sp. were successfully cloned and expressed 
with a description of their primary structure given (Xuez-
heng et al. 2010). A recombinant fusion protein (MBP-
lipase) from an Antarctic marine Psychrobacter sp. has 
been cloned and characterized with significant cold-adapted 
features and activity (Parra et al. 2008). Comparative stud-
ies of the three-dimensional model of a recombinant lipase 
from Pseudomonas fragi IFO 3458 (PFL) with the struc-
tures of mesophilic homologous lipases were shown to 
account for PFL activity at low temperature (Alquati et al. 
2002). This property is conferred by synergistic changes in 
overall genome content and protein sequence as revealed 
in the works of Methé et al. (2005) wherein modeling of 
three-dimensional Colwellia psychrerythraea and genome 
protein homology suggests changes to proteome com-
position that may enhance enzyme adaptation at low 

temperatures. The tendency for obtaining psychrophilic 
enzymes from a mesophilic and thermophilic counterparts 
could also be deduced in a homologous substitution of 
charged residues of Arg and Gluwith Lys and Ala, respec-
tively (Gianese et al. 2001). Reduction in arginine/lysine 
residues is often less uniformly distributed in psychrophilic 
than in mesophilic enzymes. A few charged surface resi-
dues are involved in stabilizing intramolecular salt bridges 
and a large proportion of them exposed at the protein sur-
face enable increased solvent interaction and enhance con-
formational flexibility accompanied by increased thermola-
bility (Alquati et al. 2002; Siddiqui and Cavicchioli 2006; 
Feller 2013). Another important adaptive response to cold 
temperature below 0 °C comes from the production of tre-
halose and exopolysaccharides (EPSs) playing multiple 
roles in the entrapment, adhesion, retention and survival of 
microorganisms. It also favors the sequestration and con-
centration of nutrients, protection against cold shocks dam-
age by modification of the physicochemical environment 
around the bacterial cell, acting as buffers and cryoprotect-
ant in the prevention of denaturation and precipitation of 
proteins (Krembs et al. 2002; Ewert and Deming 2013).

Cold-active lipase expression and regulation

Overexpression and secretion of soluble proteins allows for 
their projected application in finding functional and struc-
tural information of large numbers of proteins. The induc-
tion of gene expression at sub-optimal growth temperatures 
also improves the solubility of proteins which is sometimes 
a major bottleneck hampering heterologous protein produc-
tion in the periplasm of most microbial host. The synthesis 
and secretion of lipases by bacteria is influenced by a vari-
ety of factors. While rapid protein expression often results 
in unfolded/misfolded proteins, the reduced environment of 
the bacterial cytosol and the inability of host cell such as E. 
coli to perform several eukaryotic post‐translational modi-
fications could result in the insoluble expression of proteins 
(Francis and Rebecca 2010).

Strategies for recombinant production and expression 
of cold-adapted lipases and other lipase enzymes, devel-
opment of alternative promoter and induction strategies, 
modification of the host cells by engineering strategies and 
shifting the growth and manipulating the expression condi-
tions with reduction in post-induction temperature (Weick-
ert et al. 1996) has offered the options crucial to abundant 
yield towards efficient production of a diverse range of sol-
uble heterologous proteins as well as regulating the cyto-
toxic effect of their host cells. Variety of expression vectors 
with different affinity tag sequences has been designed for 
fusion to almost any target protein that can be cloned and 
expressed in a microbial host. Each of these hosts are also 
equipped with an N-terminal signal sequence so that they 
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can traverse the cytoplasmic membrane (Schlegel et al. 
2013), making them suitable for certain recombinant pro-
tein purification procedures. More so, cleavage sites engi-
neered between the affinity tag and the protein of choice 
enables removal of these tags (Einhauer and Jungbauer 
2001). Higher yields of protein obtained with affinity tag 
makes this alternative economically favorable (Arnau 
et al. 2006). Thorough consideration is needed especially 
where the possibility of an adverse effect of the fusion on 
the applicability to the host system of choice could affect 
proper protein expression and secretion. A possible strat-
egy is the co-expression of the recombinant protein with 
molecular chaperone. By employing a combination of 
functional metagenomic and protein expression technology 
approach, Jeon et al. (2011) successfully obtained higher 
yield of purified positive lipase producing clones with cold-
activity property. Conversely, they demonstrated that the 
combination of co-expression of chaperones, removal of 
signal sequence and induction at low temperature (16 °C) 
may be effective in regulating soluble expression of lipol-
ytic enzyme-encoding genes. Sometimes expression at low 
temperature alleviates toxicity, but may often lead to only 
partial stabilization of the fusion protein (Mujacic et al. 
1999). Similar observations were highlighted by Shuo-shuo 
et al. (2011) wherein a cold-active lipase gene Lip-948, 
cloned from Antarctic psychrotrophic bacterium (Psychro-
bacter sp. G) showed enhanced intracellular soluble protein 
expression when co-expressed with “chaperone consor-
tium” plasmids at a cultivation temperature of 15 °C. Novo-
totskaya-Vlasova et al. (2013) described the influence of 
multiple parameters as folding enhancers when they devel-
oped an efficient protocol for solubilization and subsequent 
refolding of recombinant Lip2Pc lipase from Psychrobac-
ter cryohalolentis K5T in the presence of a truncated chap-
erone. Rashid et al. (2001) described the production of low-
temperature lipase both intracellularly and extracellularly 
from a previously reported psychrotrophic bacterium Pseu-
domonas sp. strain KB700A, which displays sigmoidal 
growth even at −5 °C. Although the genes were expressed 
under various conditions, the protein product was consist-
ently produced in an insoluble form as inclusion bodies. 
However, treatment of insoluble recombinant lipase with 
urea and refolding by fractional dialysis enhanced purity 
and homogeneity. Similarly, expression of some lipase have 
only been achieved in insoluble form necessitating further 
refolding strategies as reported for a BDLipA cold-adapted 
lipase produced by Acinetobacter baumannii BD5 cloned 
and co-expressed in Escherichia coli BL21 (trxB) with a 
lipase chaperone as an inclusion body (Park et al. 2009). 
Overproduction, expression and optimization of LipXHis 
lipase from a psychrophilic deep-sea sediment Psychro-
bacter sp. strain C18 was achieved by amplifying the lipX 
lipase encoding gene without a signal peptide (Chen et al. 

2010). In Escherichia coli, some proteins and location of 
secretion signal have been shown to enhance and promote 
efficient secretion of lipase to the extracellular medium. 
Thus, some lipases from Pseudomonas fluorescens have 
been described to secrete lipase through the signal peptide-
independent pathway (Duong et al. 1994). Co-expression 
of rPFL with the foldase of P. aeruginosa as observed by 
Alquati et al. (2002) did not produce significant improve-
ments in the fraction of soluble lipase, apparently suggest-
ing the hypothesis that rPFL might also be secreted by a 
signal peptide-independent pathway. A sequence align-
ment of a novel M37 lipase investigated by Ryu et al. 
(2006) reveals no signal sequence and the resulting protein 
when cultivated and induced at 37 and 18 °C was exclu-
sively insoluble and soluble, respectively. However, it was 
hypothesized that M37 lipase might be another example 
of extracellular proteins secreted without signal sequence. 
LipA protein was expressed as a His-tagged fusion pro-
tein in E. coli and successfully secreted extracellularly by 
OmpA secretion signals at the N-terminal regions (Zhang 
and Zeng 2008).

Mutant host of E. coli (C41(DE3) and C43(DE3) have 
also been reported to give high saturation cell density, and 
produced the protein as inclusion bodies at an elevated 
level without toxic effect. Mutants are frequently used 
to overcome the toxicity associated with overexpressing 
recombinant proteins using the bacteriophage T7 RNA 
polymerase expression system, even when the toxicity of 
the plasmids is so high that it prevents transformation in the 
strain (Dumon-Seignovert et al. 2004).

Although several reports have documented efficient 
secretion and folding of active lipase (Jaeger et al. 1999), 
over the years efforts have been made towards optimiz-
ing protein secretion and expression with several focus on 
strategies designed to maximize the yields of recombinant 
proteins and major challenges facing the use of prokaryotic 
expression system (Hannig and Makrides 1998; Francis 
and Rebecca 2010).

Purification approaches for cold-active lipases

The Antarctic marine habitats are unique natural labora-
tories for major research on the evolution of cold-active 
lipases in extreme environments (Russo et al. 2010). It has 
become evidently clear that obtaining cold-active lipase 
from microbial host of these extreme environments does 
not just stop at isolation, identification and screening/pro-
duction. However, homogeneity and purity are the cur-
rency for achieving their unique purpose as biocatalysts 
for various industrial and biotechnological applications. 
Conversely, purity enables the molecular characteristics of 
cold-active lipases originating from Antarctic bacteria in 
relation to the adaptation to cold, to acquire high catalytic 
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efficiency at low temperature, enhanced stability and 
higher flexibility (Nagarajan 2012). A major challenge with 
cold-active lipases has been obtaining their purified forms, 
where lipopolysaccharides bonding with lipid hydrolases 
in the Antarctic microorganisms are difficult to break (Ger-
day et al. 1997). Several traditional and novel purifica-
tion and optimization strategies have been developed and 
employed successfully (Yujun et al. 2008; Basheer and 
Thenmozhi 2010). Precipitation steps are usually followed 
by chromatographic steps like gel filtration and affinity 
chromatography. Following these two is the hydrophobic 
interaction chromatography (HIC) (Nagarajan 2012). With 
respect to the desired purity of lipases, different steps from 
pre- to post-purification periods have involved the use of 
both physical and molecular technologies, respectively. 
Ammonium sulfate purification and organic solvent extrac-
tion have been used for certain applications just as Iftikhar 
et al. (2011) have also described a successful purification of 
lipases of up to 100 % with 710.02-fold. Economically, cer-
tain applications of lipases might not be achieved with just 
the usual procedures of precipitation steps, therefore fur-
ther purification options are necessary (Gupta et al. 2004).

Industrial potential of cold-adapted lipase

Lipases are adaptable and increasing attention has been 
drawn to potential applications of psychrophilic lipases 
from microorganisms populating permanently cold envi-
ronments (Pfeffer et al. 2007; Długołecka et al. 2008). 
Some biotechnological and industrial potential of cold-
active lipases include the following.

Detergent additives

Lower washing temperature, improved energy conservation 
and minimization in wear and tear are obvious essential 
benefits of cold-active lipases in the detergent industries 
(Gerday et al. 2000). These enzymes have proven useful 
for cleaning applications that have potential to extend their 
effectiveness in enzyme-based, low-temperature cleaning 
formulations for laundry and dishwashers, reducing envi-
ronmental burden and enabling the biodegradation of unde-
sirable chemicals in detergents, leaving no harmful resi-
dues while ensuring environmental sustainability (Joseph 
et al. 2008). The ability of enzymes to clean effectively in 
detergents at low temperature has seen a reduction in tem-
perature used for washing procedures in a range of indus-
tries. Cold-active lipase have been used as detergent formu-
lations on porous building materials that ordinarily cannot 
be immersed or moved into cleaning solutions and other 
mold-infested surfaces reducing the damage normally asso-
ciated with the use of standard cleaning agents (Valentini 
et al. 2010). Lipase preparations active at low and ambient 

temperatures in detergent removes oil stains by decom-
posing them into more hydrophilic substances while also 
maintaining the texture and quality of fabrics (Fujii et al. 
1986; Weerasoriya and Kumarasinghe 2012).

Textile industry

Successive bio-washing and stone washing of fabric mate-
rials in the textile industries often reduce the smoothness 
of the tissues constituting the main fibers. Pretreatment 
with cold-adapted lipase reduces the pill-formation and 
increases the durability and softness of the tissue. They 
lower the temperature of the process conditions in textile 
industries. Mechanical resistance of final fabric quality is 
greatly enhanced as a result of the spontaneous rapid inac-
tivation of cold-adapted enzymes at higher temperature. 
Enzymatic desizing of materials in fabric has advantages 
over the traditional process, which uses acid or oxidiz-
ing agents. For this purpose, bacterial lipases from Pseu-
domonas cepacia, Pseudomonas fragi, Pseudomonas fluo-
rescens, Pseudomonas stutzeri has been used (Hasan et al. 
2006).

Environmental bioremediation

Microorganisms have been efficiently used in the biore-
mediation and low molecular wastewater treatment in cold 
climates and in lowering the amount of toxic compounds 
previously considered non-degradable (Margesin and Feller 
2010). Cold-adapted lipases are potentially applicable as 
bioremediation agents in wastewater treatment, in situ 
bioremediation of fat-contaminated cold environment, syn-
thesis of organic compounds and lowering of toxic com-
pounds in the environment such as nitrates, hydrocarbons, 
aromatic compounds, heavy metals and biopolymers such 
as cellulase, chitin, lignin, proteins and triacylglycerols 
(Wakelin and Forster 1997; Margesin and Schinner 1997, 
1998; Timmis and Pieper 1999; van Langen et al. 1999; 
Suzuki et al. 2001; Margesin 2007). Strains preparations 
with applicable potential in the bioremediation of oil-pol-
luted sites under the conditions of a cold climate have been 
investigated (Belousova and Shkidchenko 2004; Amara and 
Salem 2009).

Food industry

Maintaining the ambient temperature of food is a major way 
of preventing spoilage and deterioration and of minimizing 
undesirable changes in chemical and physical qualities of 
food which ordinarily could occur under high-temperature 
storage conditions. The relevance of cold-active lipase to the 
food and feed industry most importantly prevents spoilage 
and undesirable changes in nutritional compositions of most 
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heat-sensitive substrates utilized in food processing (Russell 
1998; Gerday et al. 2000; Cavicchioli et al. 2002). Despite 
their gains to the modern food industry, cold-adapted micro-
organism have also been implicated in the spoilage of refrig-
erated meat and raw milk, affecting the quality and shelf-life, 
thus making these foods unacceptable to consumers (Dieck-
elmann et al. 1998; Abdou 2003; Samaržija et al. 2012). Psy-
chrotroph-derived lipases have also been applied in the non-
aqueous synthesis of a model ester (butyl caprylate). Studies 
have revealed distinguishing characteristics of cold-active 
lipases with a strong potential for the organic synthesis of 
valuable short-chain esters such as flavors used in food and 
pharmaceuticals (Brault et al. 2012; Li et al. 2013).

Medical and pharmaceutical applications

Chiral intermediates and fine chemicals are in high demand 
both by pharmaceutical and agrochemical industries, for 
the preparation of bulk drug substances and agricultural 
products (Patel 2002). Synthesis and modification of opti-
cally pure chiral drugs have been well documented for 
lipases years ago (Margolin 1993) and recent advances in 
the synthesis of optically pure compounds have embraced 
biocatalytic procedures using lipases for the preparation of 
chiral pharmaceuticals, which offer a clean and ecologi-
cal way of performing chemical processes in mild reaction 
conditions and with high degree of selectivity and these are 
playing an increasingly prominent role (Margolin 1993; 
Gotor-Fernández et al. 2006a). Simplicity of use, low cost, 
commercial availability and recycling possibility makes 
cold-active lipase ideal for the synthesis and resolution of 
a wide range of nitrogenated compounds in drug synthesis 
(Gotor-Fernández et al. 2006b).

Low water biocatalysis

Cold temperatures affect the dynamic activity of bulk water 
as well as the spheres of hydration surrounding the protein 
surface. The hydration energies of cold-active enzymes are 
generally less affected by lower temperatures, and their 
inherent lower surface hydrophobicity is less sensitive than 
mesophilic proteins, keeping their structures more intact 
(Fields 2001; Zhong et al. 2011).

Conclusion

Generally, lipase enzymes offer economic benefits in their 
industrial and biotechnological applications globally. Cold-
adapted microorganisms have become potential targets 
for lipases exploited for numerous biotechnological gains 
based on their ability to withstand prevailing challenges of 
permanently cold habitats. Cold-active lipases represent 

a versatile group of bacterial extracellular enzymes. With 
adaptive-response strategies, the extreme environments 
have now become accessible to these cold-adapted psy-
chrophilic enzymes. Researches on the extreme adaptations 
of cold-adapted microorganisms have stirred up keen inter-
est among several research groups and R&D investment; 
and several hundreds of researches are ongoing to shed new 
light on other characteristics of these fascinating organisms 
that will be of applicable potential benefits.
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