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Abstract A range of small- to moderate-scale studies of

patterns in bacterial biodiversity have been conducted in

Antarctica over the last two decades, most suggesting

strong correlations between the described bacterial com-

munities and elements of local environmental heterogene-

ity. However, very few of these studies have advanced

interpretations in terms of spatially associated patterns,

despite increasing evidence of patterns in bacterial bioge-

ography globally. This is likely to be a consequence of

restricted sampling coverage, with most studies to date

focusing only on a few localities within a specific Antarctic

region. Clearly, there is now a need for synthesis over a

much larger spatial to consolidate the available data. In this

study, we collated Antarctic bacterial culture identities

based on the 16S rRNA gene information available in the

literature and the GenBank database (n [ 2,000

sequences). In contrast to some recent evidence for a dis-

tinct Antarctic microbiome, our phylogenetic comparisons

show that a majority (*75 %) of Antarctic bacterial iso-

lates were highly similar (C99 % sequence similarity) to

those retrieved from tropical and temperate regions, sug-

gesting widespread distribution of eurythermal mesophiles

in Antarctic environments. However, across different

Antarctic regions, the dominant bacterial genera exhibit

some spatially distinct diversity patterns analogous to those

recently proposed for Antarctic terrestrial macroorganisms.

Taken together, our results highlight the threat of cross-

regional homogenisation in Antarctic biodiversity, and the

imperative to include microbiota within the framework of

biosecurity measures for Antarctica.

Keywords Antarctic microbiology � Biodiversity �
Psychrophile ecology

Introduction

Based on thermal, climatic and floristic characteristics,

Antarctica can be broadly simplified and divided into three

biogeographic zones, namely the sub-Antarctic, maritime

Antarctic and continental Antarctic (Convey 2013). The

sub-Antarctic conventionally includes a ring of oceanic

islands located between 45�S and Antarctic Polar Frontal

Zone (Convey 2007; Selkirk 2007). The islands of the sub-

Antarctic experience relatively higher precipitation and

milder and less variable temperatures in comparison with

the maritime and continental zones. At higher southern

latitudes, the maritime Antarctic includes the various

Scotia arc archipelagos and the bulk of the coastal Ant-

arctic Peninsula. Crytogramic fellfield is perhaps the most

typical vegetated habitat of the maritime Antarctic, with
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vegetation being particularly well-developed on the nitro-

gen-rich ornithogenic gelisols formed near areas of verte-

brate influence (Smith 1984; Michel et al. 2006). Finally,

continental Antarctica comprises the eastern and southern

parts of the Antarctic Peninsula, along with the bulk of the

Antarctic continent. Terrestrial ecosystems within this

region are restricted to small isolated ‘‘islands’’ of ice-free

ground located mainly either in the low-lying coastal

zones, or in the form of isolated nunataks and the higher

altitudes of inland mountain ranges (Convey et al. 2012a),

with the striking exception of the McMurdo Dry Valleys in

Victoria Land which cover an area of c. 40,000 km2, or just

over 90 % of the total area of ice-free ground in Antarctica.

Understanding how regional and local variability influ-

ence diversity is an important step towards clarifying the

functioning of Antarctic ecosystems (Chown and Convey

2007, 2012). Further, improving knowledge on the spatial

scales at which these ecosystems operate provides the basis

of the framework for conservation planning required in

Antarctica (Hughes and Convey 2010; Terauds et al. 2012).

Such questions have attracted considerable research inter-

est over the last two decades. For instance, in comparisons

of the distribution patterns of the major groups of terrestrial

invertebrates and vegetation (moss and lichen), the

majority showed patterns specific to the Antarctic ‘‘sector’’

of origin (Peat et al. 2007; Pugh and Convey 2008). In

addition, the existence of an ancient biogeographical

boundary separating the Antarctic Peninsula and the

remainder of Antarctic continent was proposed by Chown

and Convey (2007), and is also consistent with the presence

of region-specific cyanobacterial and green algal diversity

in Antarctica (De Wever et al. 2009; Vyverman et al.

2010). The biogeographical complexity of Antarctica is

increasingly being appreciated, and has most recently been

re-enforced by Terauds et al. (2012), who identified 15

biologically distinct ice-free zones, termed ‘Antarctic

Conservation Biogeographic Regions (ACBRs)’, across

Antarctica.

Reports of regionalisation are also becoming evident in

studies of Antarctic bacterial communities (Yergeau et al.

2007b; Vyverman et al. 2010; Chong et al. 2012b), sug-

gesting that the evolutionary timescales underlying the

development of biogeographical patterns in Antarctica may

be similar for both prokaryotic and eukaryotic biota. Fur-

thermore, it is increasingly being recognised that, even

with the scales of isolation of Antarctic terrestrial ecosys-

tems, the dangers of irreversible human-mediated con-

tamination of Antarctic microbial ecosystems, and

consequential compromising of future microbial studies

given the rapidly developing technologies in this field, are

very real and serious (Cowan et al. 2011a; Hughes et al.

2011, 2013). Nevertheless, detailed regional scale synthe-

ses similar to those conducted for the terrestrial eukaryotes

(micro- and macro-invertebrate fauna) of Antarctica have

not been attempted for the continent’s bacterial assem-

blages (see Chong et al. 2012b). This discrepancy is per-

haps primarily underlain by the scarcity of bacterial studies

in Antarctica. For instance, of the 14,078 species recorded

in Scientific Committee for Antarctic Research (SCAR)

Antarctic Biodiversity Database (ABD) (http://data.aad.

gov.au/aadc/biodiversity/taxon_drilldown.cfm, accessed 28

May 2013), bacterial species account for only approxi-

mately 5 % of the total records. In addition, compilation

and comparison of the available bacterial spatial data are

difficult due to inconsistencies in the methodologies used

to describe this diversity (e.g. culture-dependent vs. cul-

ture-independent approaches; diversity profiling vs gene

sequencing).

Despite the well-accepted limitations of the culture-

dependent strategy and the recent development of high-

throughput sequencing techniques, cultures remain as an

important resource in assessing the biodiversity, functional

role and interactions of the bacterial community in Antarctic

natural ecosystems. Owing to the arid and cold setting typ-

ical of the Antarctic terrestrial environment, DNA degrades

at a much slower rate than is typical of tropical or temperate

regions. This longevity increases the chance of the ‘‘legacy’’

DNA (from dead or non-viable cells) from being co-

extracted and amplified, masking the signal of the living or

active populations (Cary et al. 2010; Stomeo et al. 2012).

Although it is possible to address this problem by targeting

less stable RNA (Kowalchuk et al. 2006), there is currently

no information available on how much faster RNA degrades

in comparison to DNA under Antarctic field conditions,

while the utility of these approaches is constrained in com-

parison with soil DNA analyses by the rapidity and practi-

cality of protocols required at the point of collection.

Although not as comprehensive as the data available for

Antarctic macroogranisms, the number of culture-depen-

dent Antarctic bacterial studies has increased considerably

over the last two decades (Fig. 1). Encouraged by the

success of previous workers in deriving spatial patterns

based on Antarctic eukaryotic data, we hypothesize that the

available Antarctic bacterial 16S rRNA gene sequences are

also capable of revealing significant patterns in the bio-

geographic distribution of bacteria in Antarctica, as well as

identifying similarities in distribution patterns between

bacteria, plants and animals, as has been proposed else-

where (Green and Bohannan 2006).

In this study, we collated Antarctic bacterial culture

identities based on the 16S rRNA gene information avail-

able in the literature and the GenBank database. Using this,

we compare the sequence variation based on the ‘‘Antarctic

provinces’’ used in previous studies of Antarctic macro-

organism biogeography (Peat et al. 2007; Pugh and Convey

2008). In addition, we also compare the sequence novelty
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of the 16S rRNA gene sequences of Antarctic bacterial

isolates with isolates obtained from elsewhere. Finally,

based on the available data, we identify Antarctic prov-

inces that remain understudied, and that now require

focused study in order to address major ecological

questions.

Materials and methods

Antarctic culturable bacteria 16S rRNA gene database

An initial search for Antarctic culturable bacterial 16S

rRNA gene sequences was carried out using a GenBank

nucleotide search. A total of 1,766 entries were detected

using the boolean search string ‘‘(((((Antarctic) AND

Bacteria) NOT sea) NOT marine) AND 16S) NOT uncul-

tured’’ (accessed on 15 Feb 2013). In order to account for

Antarctic bacterial 16S rRNA gene sequences that were not

selected using the search string, we also carried out an

exhaustive search of the Antarctic literature. The two lists

were combined, and the geographic origin of the isolates

was recorded based on the latitude and longitude data

reported either in the GenBank record or the original lit-

erature. For records that did not provide precise GPS data,

we approximated the sample origin based on the formal

GPS location of the reported sampling site, accepting that

this gave an approximately 0.5� latitude/longitude margin

of error. If both GPS data and sampling location name were

absent, the sequences were not included in our database.

Our final database consisted of 2,089 distinct entries (Table

S1) obtained from various Antarctic terrestrial habitats

including soil, rock surface, snow, lake, glacier surface and

cryoconite. The sequences were classified into the closest

genus at 80 % cutoff confidence using classifier tools from

the ribosomal database project website (http://rdp.cme.

msu.edu/) (Cole et al. 2009), and were grouped according

to the genus and sampling sites into an EXCEL spreadsheet

(Tables S1 and S2).

16S rRNA gene sequence homology

To assess the novelty of the Antarctic isolates’ 16S rRNA

gene signatures, all 2,089 entries in our database were

subjected to separate nucleotide-BLAST search against the

GenBank nucleotide collection (nr/nt) excluding uncul-

tured or environmental sample sequences. We segregated

the sequences into two groups: sequences which did not

show any significant similarity, along with those that

achieved C99.0 % match with deposited sequences

obtained from the Antarctic alone, were regarded as

‘novel’, while those that showed at least one C99.0 %

match with sequences from other regions were regarded as

‘cosmopolitan’. The 99 % homology threshold was chosen

based on its utility in species delineation (Peeters et al.

2011a). The sequences were assigned into different genera

using an 80 % bootstrap confidence level according to the

RDP Naı̈ve Bayesian classifier (Wang et al. 2007).

Fig. 1 Publications on Antarctic bacteria since 1992. The data were

obtained (Feb 2013) using the keyword search ‘‘Antarctic AND

bacteria AND diversity’’ in PubMed and Google Scholar. The

assessment approaches were categorized according to the method

described in the original publication
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Spatial pattern determination

We selected 6 core genera, known to be common in Ant-

arctic terrestrial habitats (Arthrobacter, Brevundimonas,

Flavobacterium, Pseudomonas, Psychrobacter and

Sphingomonas) (Yergeau et al. 2007b; Cary et al. 2010;

Pearce et al. 2012) and which showed the highest geo-

graphic spread in our database, for spatial analyses.

Sequences from each genus were aligned separately

using the ‘align.seqs’ command available in the Mothur

program (Schloss et al. 2009). The alignment was carried

out by comparing the sequences to the SILVA reference

alignment provided by the Mothur website (http://www.

mothur.org/wiki/Silva_reference_files). In brief, the latter

included 50,000 columns and consisted of 14,956

sequences.

To compensate for differences in sequence length and

lack of overlap between the sequenced 16S rRNA gene

region across the studies, the phylogenetic tree was con-

structed with parsimony insertion tools using the ARB

software (Ludwig et al. 2004). This option ‘‘fits’’ the var-

ious sequences into a guide tree by comparing the over-

lapping region between the target sequences and the

sequences in the guide tree. For this study, the guide tree

was built using the SILVA non-redundant (NR) SSU ref-

erence dataset (Pruesse et al. 2007) that contained 286,858

sequences (SSU Ref NR111). The phylogenetic tree was

visually inspected and exported into newick format for

subsequent analyses.

The newick format tree was uploaded into FastUniFrac

(Hamady et al. 2010) (http://bmf2.colorado.edu/fast

unifrac/) to calculate the pairwise UniFrac distances

between taxa from each original sampling site. This

approach compares the fraction of branch length between

sites that lead to a set of taxa that occur uniquely in one site

but not another (Lozupone and Knight 2005). In short, if

two sites contain mutually similar taxa, the UniFrac dis-

tance between them will be minimum while if the two sites

encompass exclusively different taxa, the UniFrac distance

will be maximum.

The UniFrac method also overcomes the problem that

varying definitions of operational taxonomic units (OTUs)

were adopted in each individual study. For instance, RFLP

was used by Saul et al. (2005), 97 % nucleotide cutoff by

Aislabie et al. (2006a), and a 99 % cutoff by Peeters et al.

(2011a). In theory, the inclusion of identical or closely

Fig. 2 Conventional

geographical sectors of

Antarctica (after Pugh and

Convey 2008) and sample

coverage of the compiled

culturable bacterial 16S rRNA

gene sequence database (black

dots)
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similar sequences will contribute very little to the branch

length in the phylogenetic tree (Lozupone and Knight

2005). For subsequent analyses, the UniFrac distance

matrix was exported into the PERMANOVA ? add-on of

the PRIMER6 multivariate data analysis package (Plym-

outh Marine Laboratory, UK) and the R program (http://

www.r-project.org).

The presence of spatial patterns was analysed using two

complementary methods. First, PERMANOVA was car-

ried out to infer the occurrence of pattern at large spatial

scale. In brief, each location was grouped into one of the

13 conventional Antarctic geographic sectors as used by

Pugh and Convey (2008) (Fig. 2). Significance was cal-

culated by a 999 permutation test, and corrected using the

Monte Carlo correction. We also visualized the relation-

ship between the biogeographical provinces using princi-

ple component analysis (PCO) of the distance matrix

obtained from the pairwise PERMANOVA analysis. Sec-

ond, the presence of spatial pattern at moderate scale was

tested using a mantel correlogram. This was carried out

using the ‘mantel.correlog()’ option available in VEGAN

package, R program. We specifically chose to evaluate

distance classes at a 50–100 km interval as this approxi-

mates to a 1� latitude or longitude difference at 50–70�S.

A smaller distance interval could not be selected due to

inadequate sample sizes being available to enable statis-

tically significant inference. The two analyses (PERMA-

NOVA and mantel correlogram) were repeated for all six

selected genera.

Results

Overall spatial coverage and sequence homology

At least one record of culturable bacterial 16S rRNA gene

sequence was retrieved from each of the 13 predefined

geographical sectors (Table 1). However, the sampling

intensity across the different sectors was very inconsistent.

This was especially the case for the Palmer and South

Sandwich Islands sectors, each of which contained only a

single lat/long cluster, including a total of only 8 sequen-

ces. Relatively higher sampling intensity was available for

the Scott, Graham, Enderby and South Shetland Islands

sectors (Fig. 2), which together accounted for more than

60 % of the total sequences in our database. However, even

for the best-studied area (Scott Sector), the lat/long boxes

with at least one record covered\30 % of the ice-free area

(estimated based on Peat et al. 2007, Table 1).

Approximately 26 % of the sequences included in the

database were ‘‘novel’’ to Antarctica based on our defini-

tion of novelty (see ‘‘Materials and methods’’). The highest

percentage of sequence novelty was observed in the sub-

Antarctic (33 %), followed by the maritime Antarctic

(28 %) and continental Antarctica (27 %) (Table 1).

Genera-specific spatial pattern and sequence novelty

A total of 157 different genera were resolved from our

database, and 12 % of the genera contributed more than

Table 1 Number of 16S rRNA gene sequences present in the database constructed from each of the 13 conventional geographical sectors of

Antarctica (see Fig. 2), and two islands in the sub-Antarctic

Region Sector No. lat/long cluster(s) Total sequences Novel sequences % Novel sequences Mean % novelty

Sub-Antarctic PEI 1 40 12 0.30

Macquarie 1 11 4 0.36

0.33

Maritime-Antarctica SOI 1 237 7 0.03

SSI 6 396 75 0.19

Sandwich 1 5 1 0.20

Graham 6 137 60 0.44

0.28

Continental Antarctica Palmer 1 3 1 0.33

Ronne 1 56 19 0.32

Maud 3 300 108 0.38

Enderby 8 571 144 0.25

Wilkes 4 114 5 0.04

Scott 13 206 53 0.26

Byrd 2 13 4 0.31

0.27

Total 48 2089 493 0.26
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1 % of the sequences in the database (Table S2). Among

them, the most widespread genera were identified as

Arthrobacter, Brevundimonas, Flavobacterium, Psychrob-

acter, Pseudomonas and Sphingomonas, together contrib-

uting c. 37 % of the total records in database.

Flavobacterium

In Antarctica, Flavobacterium is generally isolated from

aquatic sources such as benthic microbial mats and fresh-

water lakes (Pearce et al. 2003; Van Trappen et al. 2004),

and habitats influenced by marine vertebrates such as

penguin rookeries (Yi et al. 2005). They are capable of

degrading high molecular mass organic matter in cold

environments and are prevalent in penguin guano miner-

alisation processes (Zdanowski et al. 2005; Van Trappen

2009). Further, several strains of Antarctic Flavobacterium

are able to express antibacterial activities and may play a

role in maintaining community stability (Rojas et al. 2009).

There were 92 16S rRNA gene sequences from Antarctic

terrestrial Flavobacterium isolates in our database. A large

fraction of these sequences (53.3 %) was novel and distantly

related (\99 % similar) to other non-Antarctic Flavobac-

terium sequences. Significant effect was detected (PER-

MANOVA pseudo-F5,26 = 1.740, PMC = 0.0280) when

comparing the 16S rRNA gene heterogeneity between the

Flavobacterium isolated from different Antarctic regions. A

closer inspection of the data under the PCO of the PER-

MANOVA distance (Fig. 3a) suggests that the separation

was mainly due to the uniqueness of Flavobacterium rep-

resentatives obtained from Graham Sector. In addition, we

were also able to detect a significant spatial autocorrelation

under the spatial class of 50 km (P = 0.040).

Arthrobacter

Arthrobacter is a common soil bacterial genus globally

which accounts for approximately 0.3–0.5 % of the clones

retrieved in soil-based clone library studies and 5–40 % of

the total clones isolated on culture media (Janssen 2006).

This abundance is perhaps attributable to the genus’ typi-

cally high resistance to desiccation stress (Potts 1994). In

Antarctica, other than soil, representatives of Arthrobacter

have also been isolated from habitats such as pond, lake,

cryoconite and rocks (Reddy et al. 2002; de la Torre et al.

2003; Peeters et al. 2011b). In general, the psychrophilic

Arthrobacter differ from their mesophilic counterparts by

containing glucose as the cell wall sugar and in their

inability to hydrolyse starch (Reddy et al. 2002). Psych-

ropilic Arthrobacter are producers of cold-active enzymes

such as b-galactocidase and dehydrogenase (de Pascale

et al. 2012).

Among the 192 retrieved Arthrobacter 16S rRNA gene

sequences, around 22 % were not affiliated to Arthrobacter

from other geographical regions, suggesting a pool of

novel Arthrobacter in Antarctica. Further, a marginally

significant regional effect (PERMANOVA pseudo-F7,53 =

1.335, PMC = 0.065) was detected between Arthrobacter

isolated from SOI, SSI, Graham and Palmer Sectors, and

those retrieved from Ronne, Maud, Enderby, Wilkes, Scott

and Byrd Sectors (Fig. 3b). Further, marginally significant

(P = 0.072) and significant (P = 0.036) spatial autocor-

relations were detected using spatial distance classes of

50 and 100 km.

Pseudomonas

Pseudomonas showed the highest abundance (268

sequences) and widest geographical spread across Antarc-

tica (26 lat/long boxes), and was obtained from various

habitats including soil, lake, glacier, ice and sandstone

rock. The high prevalence of Pseudomonas in Antarctica is

generally associated with its ability to counter cold-shock

by accumulation of intracellular polymers such as poly-

hydroxyalkanoates (PHA) and polyhydroxbutyrate (PHB)

(Ayub et al. 2009; Goh and Tan 2012). In addition, Pseu-

domonas has been reported to be particularly abundant in

hydrocarbon-contaminated soil (Saul et al. 2005), and

some representatives are known to degrade polycyclic

aromatic hydrocarbons at low temperature (Aislabie et al.

2000; Ma et al. 2006).

Overall, Antarctic Pseudomonas 16S rRNA genes

showed very high sequence similarity to those of isolates

obtained elsewhere. Almost all sequences (*96 %) iso-

lated from Antarctica had at least one close representative

(C99 % homology) from other geographical regions.

Homogeneous distribution was also apparent when

comparing Pseudomonas sequences from the different

Antarctic regions (PERMANOVA pseudo-F7,53 = 1.172,

PMC = 0.2583). Further, no spatial autocorrelation was

detected at distance classes of 50 and 100 km.

Brevundimonas

Brevundimonas are aerobic gram-negative bacilli which

share close phylogenetic relationship with the genus

Pseudomonas. As an oligotroph, the genus is commonly

found in freshwater and marine habitats with low levels

of nutrients (Tayeb et al. 2008). The Brevundimonas

sequences in our database were dominated (*60 %) by

isolates sourced from freshwater, snow and lake sediments.

These sequences covered 18 lat/long boxes spread over

eight sectors (SSI, SOI, Graham, Ronne, Bryd, Maud, Scott

and Enderby).
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Among the 62 reported isolates, a large majority are

cosmopolitan species with only 2 showing potential ende-

mism. We did not detect significant regionalisation using

the UniFrac Distance-based PERMANOVA (PERMANO-

VA pseudo-F7,25 = 0.6813, PMC = 0.8942), but a signifi-

cant autocorrelation (P = 0.036) was observed at the

distance class of 100 km.

Sphingomonas

Members of Sphingomonas have been isolated from vari-

ous Antarctic habitats including snow, soils, rock surfaces,

glaciers and lakes (Brambilla et al. 2001; Busse et al. 2003;

Hughes and Lawley 2003; Aislabie et al. 2008). Repre-

sentatives are able to degrade a wide range of aromatic

hydrocarbons at low temperature (Baraniecki et al. 2002),

and are capable of maintaining membrane fluidity through

the production of carotenoids (Jagannadham et al. 2000).

We found 53 records of Antarctic Sphingomonas isolates

which originated from 20 separate lat/long boxes. Among

them, seven showed a high level of novelty and were not

closely related to Sphingomonas sequences from other

geographical regions. However, no spatially explicit pattern

was detected using the region-based PERMANOVA

Fig. 3 Principle coordinates

analysis of the UniFrac

distances for a Flavobacterium,

b Arthrobacter. Spatial patterns

consistent with the Gressitt Line

biogeographic boundary

(Chown and Convey 2007) are

circled in red
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(PERMANOVA pseudo-F8,21 = 0.7850, PMC = 0.7721)

and mantel correlograms.

Psychrobacter

Psychrobacter are gram-negative, oxidase-positive, non-

motile, coccoid bacteria that are generally psychrotolerant.

They have been reported to be prevalent in diverse cold

environments, including deep sea trenches (Maruyama

et al. 2000), Siberian permafrost (Bakermans et al. 2006),

Himalayan mountain ranges (Shivaji et al. 2011), and

Antarctic coastal and ornithogenic habitats (Bowman et al.

1996, 1997; Bozal et al. 2003). Although Psychrobacter

are also observed in temperate and tropical soils, they

occur at significantly lower abundance and species diver-

sity in comparison with the Arctic and Antarctica (Rodri-

gues et al. 2009).

Records of Antarctic terrestrial Psychrobacter strains

currently available in GenBank were restricted to only five

sectors (SSI, Scott, Graham, Enderby and Ronne), despite

the fact that the genus has frequently been detected in clone

libraries obtained from Antarctic soil and aquatic samples

(Mikucki and Priscu 2007; Shravage et al. 2007; Aislabie

et al. 2008). Among the 98 sequences in our database 9

(9.2 %) showed low relationship to lineages detected in non-

Antarctic regions. Further, neither regionalisation nor spatial

correlation was detected using PERMANOVA (pseudo-

F4,22 = 1.1163, PMC = 0.3254) and mantel correlogram.

Discussion

Despite the presence of clear regionalisation in the Ant-

arctic terrestrial micro- and macro-invertebrate fauna

(Chown and Convey 2007; Convey et al. 2008; Pugh and

Convey 2008), and the frequent reports of localized bac-

terial diversity in Antarctica (e.g. Pointing et al. 2009;

Chong et al. 2012a; Lee et al. 2012; Stomeo et al. 2012),

we were only able to detect a significant regional effect in

Flavobacterium amongst the top six most studied genera in

Antarctica. This may be partly due to the flat distribution of

the relative diversity of the Antarctic genera, with even the

most ‘common’ group accounting for only a small per-

centage of the overall diversity. In addition, the general

lack of pattern is also influenced by the low sampling

intensity within each Antarctic province, even accepting

that some are particularly poorly sampled (Fig. 2).

Potential for bacterial regionalisation in Antarctica

Notwithstanding the overall lack of sampling coverage, our

data analyses indicate that the distributions of Flavobac-

terium and, potentially, Arthrobacter are analogous with

those of various multicellular organisms across the recog-

nised Antarctic geographical provinces identified by Pugh

and Convey (2008). The regional effect was more pro-

nounced when comparing the isolates retrieved from Scotia

arc and Antarctic Peninsula (Graham and Palmer) against

representatives from the remaining sectors of continental

Antarctica (Fig. 3a, b). Such separation is also consistent

with the Gressitt Line biogeographical boundary, which is

proposed to be a reflection of Antarctic historical contin-

gency (Convey and Stevens 2007).

We speculate that the similarities in distribution patterns

may also reflect trophic interactions between different

elements of the Antarctic biota (Hogg et al. 2006). For

instance, soil bacteria are involved in the mineralisation of

marine vertebrate excreta, and play an important role in

releasing vital nutrients in the rhizosphere supporting

microbial and plant growth (Zdanowski et al. 2005; Berg

and Smalla 2009). Previous studies have suggested a strong

correlation between the presence of vegetation and animals

and the underlying soil bacterial community composition

(Yergeau et al. 2007a; Chong et al. 2010). As the current

study was not designed to test for the presence of trophic

interactions, this is an area requiring further work.

Our finding of evidence for at least some regionalisation

and spatial autocorrelation suggests that biogeographic

patterns of bacterial distribution exist in the Antarctic

microbial community (Vyverman et al. 2010; Bahl et al.

2011; Chong et al. 2012b). Although it remains unclear

whether the pattern detected is driven primarily by spatial

separation or environmental heterogeneity, we suggest that

a pure environmental effect (‘‘the environment selects’’, as

advocated by the global ubiquity hypothesis; Finlay 2002)

is unlikely to cause the patterns seen. This is supported by

the absence of clustering in relation to the isolation sources

in the PCO ordination based on UniFrac distance (Fig. S1).

Further, if the distribution of Antarctic bacteria was driven

solely by environmental parameters, then no spatial pattern

would be discernible from the bacterial culture approach.

This is because most of the culture media used in the ori-

ginal studies contained very similar nutrient composition

(i.e. yeast extract and peptone), and would therefore be

likely to select for similar species, hence yielding very low

UniFrac distances.

Endemism and the existence of a distinct Antarctic

microbiome

Natural dissemination rates of bacterial and other micro-

scopic propagules from neighbouring ecosystems (i.e.

South America, Africa, Australia, sub-Antarctic islands)

into Antarctica are expected to be very low compared to

those typical of other regions of the globe (Marshall 1996;

Marshall and Convey 1997; Cowan et al. 2011a). In order
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to transfer and establish successfully, bacterial propagules,

as with colonising propagules generally, are dependent on

the availability of suitable means of translocation (wind,

ocean current or biological vector), their ability to with-

stand harsh conditions during long-distance travel, their

capacity to survive Antarctic conditions on arrival at a

suitable location, and the availability of suitable resources

for reproduction and population maintenance (Pearce et al.

2009; Hughes and Convey 2010). Due to the lack of

effective transfer mechanisms and long history of geo-

graphical isolation (Convey et al. 2008), both of which

facilitate evolutionary divergence processes and speciation,

and in contrast with the global ubiquity hypothesis, it is

therefore reasonable to hypothesise that Antarctica might

harbour a novel microbiome distinct from other major

continental regions (Staley and Gosink 1999; Vincent

2000; Tindall 2004; Cowan et al. 2011a).

Indeed, the presence of distinct cyanobacterial and algal

diversity in Antarctica has been reported previously (Bahl

et al. 2011; De Wever et al. 2009; Namsaraev et al. 2010).

For instance, Taton et al. (2006) suggested that approxi-

mately 70 % of the Antarctic Cyanobacteria are endemic to

the continent while De Wever et al. (2009) estimated that

the majority (*60 %) of Antarctic green algae lineages

have ages of 17–84 Ma, consistent with the timing of

ancient tectonic processes such as the opening of the Drake

Passage (30–45 Ma).

Both direct characterisation of 16S rRNA gene sequen-

ces from environmental DNA samples (e.g. Aislabie et al.

2008; Niederberger et al. 2008; Pearce et al. 2010) and

bacterial isolates (this study) have generally shown that a

majority ([50–75 %) of the retrieved sequences were

highly similar (*98–99 %) to those from tropical and

temperate regions, suggesting a widespread distribution of

eurythermal mesophiles (sensu Barton 2005) in Antarctica

(Cowan et al. 2011a). Also, the optimum growth tempera-

ture of many Antarctic bacterial isolates has been found to

be higher ([15 �C) than that of true psychrophiles (4–8 �C)

(Aislabie et al. 2008; Peeters et al. 2011a), despite the fact

that most isolation was carried out under low temperature

conditions (B10 �C) in the original studies (Table S3).

Taken together, these observations suggest that the cross-

continental transfer of bacterial propagules is also an

important contributor to bacterial diversity in Antarctica.

It is also important to note that the techniques currently

applied in the estimation of biodiversity in Antarctica

might themselves inherently bias towards the selection of

cosmopolitan species. For instance, the universal PCR

primers generally used in molecular profiling and

sequencing may have lower affinity towards novel bacterial

species, as they are usually designed based on the described

sequences available in the public domain (e.g. Winsley

et al. 2012). In addition, novel Antarctic bacteria may have

different specific nutrient requirements to those available in

commonly used culture media (e.g. R2a, TSA and NA),

and require a specific isolation strategy instead of the

common methodology (Stingl et al. 2008; Niederberger

et al. 2010). It remains a challenge to capture the complete

diversity of an ecosystem, and it is estimated that Antarctic

isolation studies generally reveal only 5 % of the total

diversity (number of unique isolated phylotypes as a pro-

portion of estimated phylotype diversity) (Aislabie et al.

2006b) while the majority of molecular assessments of

Antarctic soil bacteria only achieve a coverage of 40–70 %

(Chong et al. 2012b).

Future directions

It has been suggested that spatially distinct and strongly

regionalised biodiversity in Antarctica may be vulnerable to

contamination through intra- and inter-regional anthropo-

genic transfer of propagules (Tin et al. 2009; Cowan et al.

2011a; Hughes et al. 2011, 2013). The increasing indication

of regionalisation and evolutionary divergence in bacterial

diversity in Antarctica, through studies such as described

here and those of de Wever et al. (2009) and Vyverman

et al. (2010) supports the imperative for inclusion of mic-

robiota in the framework for biosecurity measures applying

to Antarctica (see Convey et al. (2012b) and Hughes et al.

(2013) for discussion of Antarctic conservation, environ-

mental protection and governance). Currently, with the

exception of risks associated with microbial pathogens of

vertebrates, codes of conduct relating to invasive species

control cover only the macroscopic flora and fauna (Hughes

and Convey 2010; 2012). It is likely that many more non-

indigenous bacterial species may be capable of adapting to

Antarctic conditions than previously thought, as it is now

appreciated that at least some Antarctic communities are

dominated by cosmopolitan mesophilic species.

Even now, our ability to answer the key ecological

questions raised for the Antarctic bacterial community is

hindered by several important limitations (Table 2). A

major constraint remains the lack of spatially explicit data

at sufficient sampling intensity across the continent. For

instance, a large fraction of bacterial community studies

carried out in Antarctica remain at the opportunistic

exploratory stage, and are highly dependent on the logistic

support of the nearest scientific station. As a result, most

sampling has been carried out in the vicinity of the most

active Antarctic stations (Hughes et al. 2011), inevitably

leading to low sampling in sectors such as Ronne and Byrd

where no research stations are established. There is also a

lack of sampling in the high altitude areas around the

Transantarctic Mountains, and in the continental interior

beyond 80�S. These limitations apply not only for micro-

bial studies, and the biodiversity of these areas is poorly
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researched in general (Peat et al. 2007; Pugh and Convey

2008; Vyverman et al. 2010; Hughes and Convey 2012).

There is clearly a need for systematic and targeted large-

scale bacterial sampling across Antarctica, similar to that

carried out on British soil (Griffiths et al. 2011), the hyp-

olithic microbial community of the McMurdo Dry Valleys

(Cowan et al. 2011b) and Darwin Mountains, Transant-

arctic Mountain (Magalhães et al. 2012), notwithstanding

the logistic and financial challenges this presents. One

practicable approach may be to acquire and compare the

biodiversity of several signature ecotypes within the con-

tinent, with selection guided by the ‘Antarctic Conserva-

tion Regions’ recently defined by Terauds et al. (2012).

The future availability of such data is crucial to facilitate

understanding of the bacterial biodiversity and biogeogra-

phy in Antarctica, and in refining current biosecurity and

conversation management strategies.
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