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Abstract Shewanella livingstonensis Ac10 is a psychro-
trophic Gram-negative bacterium that grows at tempera-
tures close to 0°C. Previous proteomic studies of this
bacterium identified cold-inducible soluble proteins and
outer membrane proteins that could possibly be involved in
its cold adaptation (Kawamoto et al. in Extremophiles
11:819-826, 2007). In this study, we established a method
for separating the inner and outer membranes by sucrose
density gradient ultracentrifugation and performed proteo-
mic studies of the inner membrane fraction. The cells
were grown at temperatures of 4 and 18°C, and phospho-
lipid-enriched inner membrane fractions were obtained.
Two-dimensional polyacrylamide gel electrophoresis
and peptide mass fingerprinting analysis of the proteins
identified 14 cold-inducible proteins (more than a 2-fold
increase at 4°C). Six of these proteins were predicted to be
inner membrane proteins. Two predicted periplasmic pro-
teins, 5 predicted cytoplasmic proteins, and 1 predicted
outer membrane protein were also found in the inner
membrane fraction, suggesting their association with the
inner membrane proteins and/or lipids. These cold-induc-
ible proteins included proteins that are presumed to
be involved in chemotaxis (AtoS and PspA), membrane
protein biogenesis (DegP, SurA, and FtsY), and morpho-
genesis (MreB). These findings provide a basis for fur-
ther studies on the cold-adaptation mechanism of this
bacterium.
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Abbreviations

LB Luria—Bertani

SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel
electrophoresis

2DE Two-dimensional gel electrophoresis

PMF Peptide mass fingerprinting

SRP Signal recognition particle

Introduction

Psychrophilic and psychrotrophic microorganisms have
colonized permanently cold environments, such as the deep
sea and Polar Regions. Recent studies revealed that these
organisms have developed several strategies to cope with
cold environments, including the production of cold-active
enzymes (Feller and Gerday 2003; Siddiqui and Cavicch-
ioli 2006), modulation of lipid composition to maintain the
fluidity of the cell membrane (Russell 1997; Chintalapati
et al. 2004), and the production of RNA chaperones to
suppress the formation of undesired secondary structures
of RNA (Yamanaka et al. 1998; Hebraud and Potier
1999). However, the molecular mechanisms responsible
for cold adaptation in these microorganisms remain
largely unknown, especially those localized in the cellular
membranes.

We have been studying the bacterium Shewanella liv-
ingstonensis Acl0 as a model for the investigation of
microbial cold-adaptation mechanisms. S. livingstonensis
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Acl0 is a cold-adapted bacterium, isolated from Antarctic
seawater, that grows well at temperatures close to 0°C but
does not grow at temperatures above 30°C (Kulakova et al.
1999). It is a Gram-negative bacterium with a cell surface
structure composed of three morphologically distinct lay-
ers: an inner membrane bordering the cytoplasm, a peri-
plasm containing the peptidoglycan layer external to the
inner membrane, and an outer membrane at the external
surface of the cell (Murray et al. 1965). The inner and outer
membranes differ both in composition and function. The
outer membrane generally functions as a selective barrier
that protects the bacteria from harmful compounds in the
environment. The inner membrane proteins are involved in
many key cellular processes such as energy generation and
conversion in the respiratory chain, cell division, signal
transduction, and transport processes. Previous proteomic
analysis of S. livingstonensis Acl0 identified 26 soluble
proteins and 2 outer membrane proteins that are inducibly
expressed at a temperature of 4°C, whereas no cold-
inducible inner membrane protein was identified
(Kawamoto et al. 2007). Proteomic studies of other cold-
adapted bacteria have also been carried out, but cold-
inducible inner membrane proteins have not been analyzed
comprehensively so far (Ting et al. 2010; Piette et al. 2011;
Wilmes et al. 2011). Proteomic analysis of the inner
membrane is often difficult due to the presence of a large
amount of outer membrane proteins in the crude membrane
fraction. Thus, it is desirable to separate inner and outer
membranes to facilitate identification of inner membrane
proteins. Moreover, actual subcellular localization cannot
be determined without separation of the two membranes,
because prediction of subcellular localization based on the
primary protein structure does not consider protein—protein
interactions and protein—lipid interactions that affect the
localization of proteins.

In this study, we performed proteome analysis of the
inner membrane proteins of S. livingstonensis Ac10. We
established a method for separating the inner and outer
membranes and successfully identified the inner membrane
proteins that are inducibly expressed at low temperatures,
thus providing a better understanding of the cold-adapta-
tion mechanism of this bacterium.

Materials and methods

Bacterial strain and culture conditions

S. livingstonensis Acl0 that had been isolated from Ant-
arctic seawater was grown in 5 ml of Luria—Bertani (LB)
medium (pH 7.0) for 48 h at 18°C, and then transferred to

300 ml of LB medium for further cultivation at 4 and 18°C.
We confirmed that the densities of viable cells at the end of
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the exponential phase are comparable at 4 and 18°C by
cultivating the cells recovered at this point on LB medium,
suggesting that cultivation at 18°C is not significantly
deleterious to this bacterium compared with that at 4°C.

Preparation of the inner membrane fraction

The procedure for preparation of the inner membrane
fraction was based on equilibrium density gradient centri-
fugation of the total membrane fraction, obtained by lysis
of spheroplasts. Spheroplasts were prepared using a
modified version of the method of Osborn and Munson
(1974) and Yamato et al. (1975): The cells were grown as
described above until the early stationary phase
(ODggp = 1.0) and harvested by centrifugation. Cell pellets
(approximate wet weight 1 g) were resuspended in 30 ml
of ice-cold 0.75 M sucrose/10 mM Tris—HCI (pH 7.8), and
100 pg/ml lysozyme was added. Conversion to the sphe-
roplast form was accomplished by dilution with ice-cold
1.5 mM EDTA (pH 8.0) to a total of 2 volumes of the
original suspension. The spheroplasts were lysed by soni-
cation, and intact cells and cellular debris were removed by
15 min of centrifugation at 1,600xg. Membranes were
separated from the cytoplasmic fraction by 100 min of
centrifugation at 226,240x g (L8-55; Beckman, Palo Alto,
CA, USA). The membrane pellet was diluted with 9 ml of
ice-cold solution containing 0.25 mM sucrose, 3.3 mM
Tris—HCI (pH 7.8), and 1 mM EDTA and centrifuged for
100 min at 226,240xg. The washed membrane fraction
was suspended in 2 ml of 25% sucrose (w/w)/5 mM EDTA
(pH 7.5). Then, 1 ml of the crude membrane fraction was
layered on 4 ml of 35-50% sucrose linear gradient (w/w)
containing 5 mM EDTA (pH 7.5) in the centrifuge tubes of
an SW 50.1 rotor (Beckman). The gradients were centri-
fuged for 16 h at 226,240x g, and 0.5 ml fractions were
collected from the top of the tubes.

Lipid quantification

Phospholipids were extracted from an aliquot of each
fraction by the method of Bligh and Dyer (Bligh and Dyer
1959). Total phospholipids were determined by quantifying
the inorganic phosphate released from phospholipids, as
described by Rouser et al. (1966) with slight modifications.
In brief, 200 pl of 70% perchloric acid was added to each
dried sample. After incubation at 200°C for 1.5 h, 1.4 ml
of MilliQ water/2.5% ammonium molybdate/10% ascorbic
acid (5:1:1; v/v/v) was added to the sample mixture, and
the mixture was vortexed. Subsequently, 400 pl of MilliQ
water was added, followed by another period of incubation
at 100°C for 10 min. The absorbance at 820 nm was then
measured. Potassium phosphate was used as a standard for
quantification.
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Proteome analysis

Proteins (300 pg) were loaded onto ReadyStrip™ IPG
Strips, pH 3-10 (17 cm, Bio-Rad Laboratories Inc., Her-
cules, CA, USA), and isoelectric focusing was performed
with PROTEAN IEF Cell (Bio-Rad Laboratories Inc.) as
recommended by the manufacturer. In situ alkylation
treatment of the gel strips for the second-dimensional
sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) was carried out as described previously
(Mineki et al. 2002), and SDS-PAGE was performed using
the gel with 12.5% acrylamide. After fixation and staining
with SYPRO Ruby (Invitrogen Corp., Carlsbad, CA, USA),
the gels were scanned with an image analyzer (Typhoon
9400: GE Healthcare UK Ltd., Buckinghamshire, UK). The
protein expression patterns were analyzed using the image
analysis software PDQuest ver. 7.0 (Bio-Rad Laboratories
Inc.). All values of spot intensities were normalized with
the intensities of three proteins, TPR repeat-containing
protein, FoF; ATP synthase beta subunit, and FKBP-type
peptidyl-prolyl cis—trans isomerase, which were found in
equal amounts in the two-dimensional gel electrophoresis
(2DE) images of the crude membrane of the cells grown at
4°C (Fig. 1) and 18°C (data not shown). After scanning,
the gels were restained with the Negative Gel Stain MS Kit
(Wako Pure Chemical Industries Ltd., Osaka, Japan). Spots
were excised from the 2DE gels, and the proteins were
digested with sequencing-grade modified trypsin (Promega,
Madison, WI, USA) for tryptic in-gel digestion. The tryptic
digests were purified using ZipTip C18 (Millipore, Bed-
ford, MA, USA) and a solution containing 80% acetonitrile
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Fig. 1 Two-dimensional gel electrophoresis of crude membrane
proteins from S. livingstonensis Acl0 grown at 4°C. The gel was
stained with SYPRO Ruby, and peptide mass fingerprinting analysis
was performed using the standard method with the Autoflex II
MALDI-TOF MS system

(ACN) and 0.1% trifluoroacetic acid (TFA) for elution to
ensure the collection of hydrophobic peptides. Peptide
mass fingerprinting (PMF) analysis was performed using
the standard method with Autoflex II MALDI-TOF MS
systems (Bruker Daltonics, Billerica, MA, USA). Alpha-
cyano-4-hydroxycinnamic acid (Bruker Daltonics) matrix
(1 mg/ml in 90% ACN and 0.1% TFA) was used. Cali-
bration was performed using the Peptide Calibration
Standard (Bruker Daltonics). A local version of Mascot
(Matrix Science Ltd., London, UK) and the whole genome
sequence of S. livingstonensis Acl0 were used to identify
the proteins. Mascot search was performed with tolerances
of 150 ppm for the fragment ions assuming up to one
missed cleavage. The data were searched with a fixed
modification of a -propionamide modification of cysteine
and variable modifications of oxidation of methionine and
phosphorylation of serine, threonine, and tyrosine. The
threshold of the Mascot score was set at 50 for protein
identification (Koenig et al. 2008). Automated predictions
of the subcellular localization of bacterial proteins were
made using the PSORT program (http://psort.hgc.jp/).

Results

Proteome analysis of the crude membrane fraction
prepared from the spheroplasts of S. livingstonensis
Acl0

S. livingstonensis Ac10 was grown at a temperature of 4°C
until the early stationary phase, and the crude membrane
fraction was subjected to 2DE to identify the major
membrane proteins. Figure 1 shows the gel image for the
crude membrane fraction; 24 protein spots with high
intensities (above 2,000 ppm) were excised from the gel
and identified by PMF analysis with a sequence database of
S. livingstonensis Ac10. The theoretical molecular weight
and isoelectric point of the identified proteins matched well
with those observed in the 2DE gels (Fig. 1; Table 1). The
identified proteins included 12 predicted outer membrane
proteins, 4 predicted inner membrane proteins, 2 predicted
periplasmic proteins, and 6 predicted cytoplasmic proteins.

Separation of inner and outer membranes by sucrose
density gradient ultracentrifugation

In the above experiment, a large proportion of the identi-
fied proteins were predicted to be outer membrane proteins,
and only a small number of predicted inner membrane
proteins were identified. Separating the inner and outer
membranes facilitates the identification of inner membrane
proteins, and subcellular fractionation enables their actual
localization to be determined with greater accuracy than
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Table 1 Crude membrane proteins of S. livingstonensis Ac10 grown at 4°C
Spot #  Gene Protein® Molecular pl° Predicted Accession
mass (kD.et)b localization®  no.
Group 1. Protein synthesis, folding, and translocation
1213 tpr TPR repeat-containing protein 46.7 923 IM AB646433
2511  yaeT Surface antigen D15 929 471 OM AB646437
3503  mpsA Ribosomal protein S1 61.2 481 CY AB285527
6102 pspA Phage shock protein A 25.6 6.80 IM AB646434
3504 tig FKBP-type peptidyl-prolyl cis—trans isomerase (trigger factors) 54.2 485 PE AB284101
2509  dnakK Chaperone protein DnaK 33.0 480 CY AB284103
3507 groL Chaperonin GroL 57.1 472 CY AB646435
3113 rpsF 308 ribosomal protein S6 14.9 506 CY AB646436
3309 tufB GTPase-translation elongation factor 333 457 CY AB284113
Group 2. Membrane transport
4303  ompA Outer membrane protein A 42.5 577 OM AB284075
2514 gspD General secretion pathway protein D 77.2 479 OM AB646438
1212 ompC Omp_C176 37.7 446 OM AB284090
2209  tsx2 Nucleoside-specific channel-forming protein 32.0 481 OM AB646439
3301  tolC2 Type I secretion outer membrane protein, TolC family protein 47.1 486 OM AB373986
3407  tolCl Outer membrane protein efflux pump 52.3 482 OM AB284106
1303 oppA Hypothetical protein 41.5 413 OM AB284107
1306  sliv_c417088  Porin 44.7 435 OM AB646440
2408  atpD FoF, ATP synthase [ subunit 49.9 467 IM AB646451
2303 sliv_c449084  Phosphate-selective porin O and P 43.4 477 OM AB646441
1507  cirA TonB-dependent receptor 71.9 424 OM AB373987
Group 3. Metabolism
3107  ribH Riboflavin synthase 101.9 837 CY AB646475
Group 4. Motility
2505  pilQ Type IV pilus secretin PilQ 74.5 4.65 OM AB646442
Group 5. Unknown function
2201  sliv_c028017  Hypothetical protein 28.9 466 PE AB646443
2410  sliv_c361036  Hypothetical protein 43.5 462 IM AB646444

4 Proteins in the database showing the highest sequence similarity to the proteins from S. livingstonensis Ac10

° Molecular mass and p! values were calculated using the draft genome sequence of S. livingstonensis Ac10

¢ Predicted localizations are characterized as follows: OM outer membrane, PE periplasm, IM inner membrane, CY cytoplasm

predictions based on primary structure, because the pre-
dictions do not consider protein—protein interactions and
protein—lipid interactions, which may affect protein
localization.

We performed sucrose density gradient ultracentrifuga-
tion of the crude membrane fraction to separate inner and
outer membranes. The crude membrane fraction was pre-
pared from cells grown at 4 and 18°C. Figure 2 shows the
sucrose density and phospholipid content of each fraction
obtained after ultracentrifugation. From the cells grown at 4
and 18°C, 10 and 25% of phospholipids, respectively, were
obtained from the bottom fraction. In the middle fractions,
(44-47% (w/w) sucrose for the cells grown at 4°C, and
41-44% (w/w) sucrose for the cells grown at 18°C),
approximately 50% of the total phospholipids were
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recovered. The sucrose density of the phospholipid-enri-
ched fraction from the cells grown at 4°C was higher than
that for the cells grown at 18°C. proOmpA, a precursor of
outer membrane protein OmpA, was found in the middle
fractions but not in the bottom fractions, indicating that the
inner membrane was enriched in the middle fractions (data
not shown). Enrichment of the inner membrane in the
middle fractions was further evidenced by identification of
the proteins recovered in these fractions as described below.

Global identification of cold-inducible inner membrane
proteins

As described above, we obtained phospholipid-enriched
fractions in the middle of the sucrose density gradient. We
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performed proteomic analysis of these fractions to deter-
mine whether the inner membrane was enriched in these
fractions and to identify inner membrane proteins that are
inducibly expressed at low temperatures, which might
support cold adaptation of S. livingstonensis Acl0. The
third fraction for cells grown at 4°C and the fifth fraction
for cells grown at 18°C (Fig. 2) were analyzed by 2DE.
The 2DE images for the phospholipid-enriched fractions
obtained from the cells grown at 4 and 18°C showed 276
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Fig. 2 Separation of inner and outer membranes of S. livingstonensis
Acl0 by sucrose density gradient ultracentrifugation. Crude mem-
branes from the cells grown at 4°C (open bar) and 18°C (closed bar)
were subjected to sucrose density gradient ultracentrifugation.
Experiments were performed four times for each sample. Phospho-
lipids in each fraction were quantified by measuring inorganic
phosphate (1-9). The pellets at the bottom of the sucrose density
gradient tube were suspended with 500 pl of 5 mM EDTA (pH 7.5)/
50% sucrose and used for phosphorus quantification (B). Means and
standard deviations are indicated
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and 382 protein spots, respectively, with intensities above
500 ppm (Fig. 3a, b). About 100 spots that were visible by
negative staining were excised from the gel for PMF
analysis, and 52 proteins could be identified (Table 2), 19
of which were predicted inner membrane proteins; 6 were
predicted outer membrane proteins; 22 were predicted
cytoplasmic proteins; and 5 were predicted periplasmic
proteins. The identified proteins were classified into the
following six groups according to their sequence similarity
to the proteins in the database (Table 2): protein synthesis,
folding, and translocation (group 1); membrane transport
(group 2); cell division and morphogenesis (group 3);
metabolism (group 4); other functions (group 5); and
unknown function (group 6). Fourteen of the proteins were
cold-inducible (more than a 2-fold increase at 4°C). Six
were predicted inner membrane proteins (AtoS, PspA,
MreB, FtsY, Ald, and SdhA); 1 was a predicted outer
membrane protein (Sliv_c417088); 2 were predicted peri-
plasmic proteins (DegP and SurA); and 5 were predicted
cytoplasmic proteins (Dpp4, PykF, LeuB, SucB, and
RibP_PPkin). Proteins decreased at 4°C were also identi-
fied (Table 2).

Discussion

Separation of inner and outer membranes
of S. livingstonensis Ac10 and identification
of cold-inducible inner membrane proteins

In this study, we established a method for separation of the
inner and outer membranes of S. livingstonensis Ac10 for
efficient identification of inner membrane proteins. We
performed sucrose density gradient ultracentrifugation of
the crude membranes that were prepared from the cells
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Fig. 3 Comparison of proteins in the inner membrane fractions from S. livingstonensis Acl0 grown at 4°C (a) and 18°C (b). The gels were

stained with SYPRO Ruby and analyzed with PDQuest ver. 7.0
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grown at temperatures of 4 and 18°C and obtained
phospholipid-enriched fractions (Fig. 2). By 2DE analysis
of the fraction obtained from the cells grown at 4°C, we
detected 276 protein spots with intensity above 500 ppm
(Fig. 3a). This number was much higher than that of the
crude membrane fraction (180 spots (>500 ppm), Fig. 1),
probably as a result of the removal of abundant outer
membrane proteins.

Using PMF analysis, we identified 52 proteins in the
phospholipid-enriched fractions and found that the pre-
dicted subcellular localization of 19 of them was inner
membrane (Table 2). The number of predicted outer
membrane proteins was 6. In the bottom fraction of the
sucrose gradient, we identified predicted outer membrane
proteins (OmpA, YaeT, OmpC, TolC2, Sliv_c417088, and
CirA), but we obtained no identifiable spot of predicted
inner membrane protein in the 2DE gel, even when a larger
amount of proteins (450 pg, the maximum loading capacity
of the gel) from the bottom fraction was applied to the gel
(data not shown). Therefore, the inner membrane was
enriched in the middle of the sucrose gradient and sepa-
rated from the outer membrane (Fig. 2). The sucrose den-
sity of the inner membrane-enriched fraction was higher
for the cells grown at 4°C than at 18°C, suggesting that the
growth temperature affects the composition of proteins and
phospholipids of the inner membrane. The ratio of proteins
to phospholipids in the inner membrane is probably higher
at 4°C than at 18°C, and this may cause the higher mem-
brane density at 4°C.

Proteins with predicted subcellular localization to the
periplasm, cytoplasm, and outer membrane were found in
the inner membrane-enriched fractions (Table 2). These
proteins were recovered in these fractions possibly
because of specific and biologically relevant interactions
with proteins and phospholipids in the inner membrane.
The inner membrane could be the final destination for
some of these proteins, where they play physiological
roles. We also speculate that some of these periplasmic
and outer membrane proteins may be trapped in the inner
membrane on route to their final destination by being
associated to the translocation apparatus. This could be
caused by low translocation efficiency at low temperatures
and/or production of a large excess amount of periplas-
mic and outer membrane proteins. In the future studies,
their binding partners in the inner membrane should be
analyzed.

We found that the following proteins were more
numerous (>2-fold) at 4°C than at 18°C: AtoS, PspA,
MreB, FtsY, Ald, SdhA, DegP, SurA, Dpp4, PykF, LeuB,
SucB, RibP_PPkin, and Sliv_c417088. These proteins
might contribute to protein folding, morphogenesis, sens-
ing the environment, and other cellular processes at low
temperatures as discussed in more detail below.

@ Springer

Cold-inducible proteins involved in sensing
the environment

The expression of AtoS, the membrane sensor kinase of the
AtoSC two-component system, was induced at 4°C (more
than 161-fold increase compared with the amount at 18°C).
AtoS is a member of the family of Per-ARNT-Sim (PAS)
domain-containing proteins, which are important signaling
modules that monitor changes in light, redox potential,
oxygen, small ligands, and overall energy level of a cell
(Taylor and Zhulin 1999). AtoSC has been proposed to
participate in many cellular processes, including flagella
synthesis and chemotaxis in E. coli (Theodorou et al.
2011). We previously found that the cell motility of
S. livingstonensis Acl10 at 4°C was more notable than at
18°C, and that the production of the flagella-related pro-
teins FIgE and FlgL was increased at 4°C compared to that
at 18°C. AtoS may be involved in the inducible production
of these flagella-related proteins and thereby contribute
to the increased motility of this bacterium at low temper-
atures. The diffusion rate of nutrient compounds is
decreased at low temperatures as a result of the low dif-
fusion coefficient and high water viscosity compared to
moderate temperatures. Under such unfavorable condi-
tions, the bacterium might show increased motility to
facilitate movement towards more favorable environments.

Cold-inducible proteins involved in biogenesis
of membrane proteins

We found that the periplasmic chaperones DegP (also
known as HtrA) and SurA are expressed at low tempera-
tures. These proteins are located adjacent to the membrane
phospholipids and/or inner membrane secretion systems,
such as the Sec apparatus (de Keyzer et al. 2003; Sklar
et al. 2007), and are involved in the targeting pathway of
outer membrane integral f-barrel proteins (Ruiz et al.
2006). We previously reported that 2 putative outer
membrane porin homologs, OmpA and OmpC, are induc-
ibly expressed at 4°C, which may counteract the low dif-
fusion rate of solutes at low temperatures and enable the
efficient uptake of nutrients (Kawamoto et al. 2007). Cold-
inducible periplasmic chaperones, DegP and SurA, are
thought to be important for increased production of these
membrane proteins at low temperatures because low ther-
mal energy and high aqueous viscosity at low temperatures
may decrease the efficiency of protein folding.

The bacterial signal recognition particle (SRP) receptor
FtsY was also inducibly expressed at low temperatures.
FtsY plays a key role in membrane protein targeting and
provides the essential link between the soluble SRP-ribo-
some-nascent chain complexes and the membrane-bound
Sec translocon (Koch et al. 2003). FtsY interacts with the
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SRP protein Ffh (Parlitz et al. 2007) and induces GTP-
dependent dissociation of SRP from the nascent-peptide
chain. Cold induction of FtsY suggests that it plays a role
in dissociation of membrane protein precursors from SRP
to facilitate production of membrane proteins at low
temperatures.

Cold-inducible proteins involved in morphogenesis

We identified an actin-like cytoskeleton protein, MreB, as a
cold-inducible protein. In bacteria, the process of cell
elongation is controlled by MreB, which is believed
to localize components of the peptidoglycan synthetic
machinery along the lateral cell wall, thereby governing the
geometry of cell wall growth (Varma and Young 2009;
Vats et al. 2009). Thus, MreB is possibly involved in
morphogenesis of S. livingstonensis Acl0 at low temper-
atures. We previously found that this bacterium shows
morphological changes in response to its growth tempera-
ture: the cells were significantly shorter at 4°C than at
18°C. MreB may play a role in regulating the morphology
of S. livingstonensis Acl0 at low temperatures.

Conclusions

We previously identified proteins inducibly produced at
low temperatures in S. livingstonensis Acl0, which sug-
gests that proteins involved in various cellular processes,
such as gene expression, protein synthesis and folding,
membrane transport, motility, and cell division, support
its growth at low temperatures (Kawamoto et al. 2007).
Recent proteomic studies also identified a lot of cold-
inducible proteins and illustrate how cellular processes of
cold-adapted bacteria proceed at low temperatures (Ting
et al. 2010; Piette et al. 2011; Wilmes et al. 2011). Nev-
ertheless, there is little information about their inner
membrane, which is involved in primary cellular processes
of Gram-negative bacteria, such as respiration, membrane
transport, and cell division. The present work represents
the first attempt to separate outer and inner membranes of a
psychrotrophic bacterium and provides new clues to elu-
cidate the cold-adaptation mechanism of S. livingstonensis
Acl0. Although the physiological roles of cold-inducible
inner membrane proteins remain unclear, further charac-
terization of these proteins may be helpful to understand
the mechanism of cellular adaptation to cold environments.
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