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Abstract Pairs of PCR primers that targeted the archae/
bacteriorhodopsin gene were used to clone the archae-
rhodopsin (aR) gene of Halorubrum xinjiangense strain
BD-1T, and this gene was sequenced and functionally
expressed in Escherichia coli. Recombinant E. coli cells
harboring the plasmid carrying this gene became slightly
purple or blue depending on whether they were supple-
mented with all- trans retinal or 3,4-dihydroretinal,
respectively, during induction with IPTG. The purple
and blue membranes from the recombinant E. coli
showed maximal absorption at 555 and 588 nm,
respectively, which are different from maximal absorp-
tion at 568 nm of the wild-type purple membrane. Pur-
ple membranes from the recombinant E. coli and from
strain BD-1T were investigated in parallel. The E. coli
purple membrane was fabricated into films and photo-
electric responses were observed that depended on the
light-on and light-off stimuli.
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Introduction

Bacteriorhodopsins (bR) are of interest because they are
potentially useful for the fabrication of biomaterial-
based devices such as artificial retinas (Frydrych et al.
2000) and optical memories (Wise et al. 2002). Khodo-
nov et al. (1997) listed many advantages of bR as
material for fabrication of devices, and those advantages
could be further improved by modifications either of the
protein (Wise et al. 2002; Weetall et al. 2000), or of the
chromophore (Druzhko and Chamorovsky 1995; Jussila
et al. 2001; Drachev et al. 1989). Modification of the
chromophore has been done by the replacement of the
retinal with various retinal analogs, e.g., 3,4-dihydrore-
tinal (Khodonov et al. 1997) or 4-keto-retinal (Druzhko
and Chamorovsky 1995). The procedure for such mod-
ification includes usually, bleaching of the purple mem-
brane, and reconstitution in the presence of the retinal
analog.

A bR-like protein, archaerhodopsin (aR) from the
Halorubrum sp. was identified (Mukohata et al. 1988;
Sugiyama et al. 1989; Uegaki et al. 1991). This protein
shows about 56–59% homology to the bR protein from
Halobacterium spp., and exhibits similar photochemical
properties. But aR and bR molecules showed differences
in their absorbance maxima, the kinetics of the photo-
cycles, and especially in alkaline-induced red-shifted
absorption. In this study, we attempted to identify the
aR in Halorubrum xinjiangense strain BD-1T, and fur-
ther functionally express the gene and modify the gene
product in Escherichia coli.

Materials and methods

Bacterial strains, plasmids, medium, and cultivation

H. xinjiangense strain BD-1T (CGMCC 1.3527T =JCM

12388T) was grown at 40�C in the medium as described
previously (Feng et al. 2004). E. coli strains (Table 1)
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were routinely grown at 37�C in Luria–Bertani (LB)
medium. E. coli strains JM109 and BL21(DE3) (Nov-
agen) and plasmids pGEM-T (Promega, WA, USA) and
pET28a (Novagen) were used as hosts and vectors for
gene sequencing and expression, respectively. When re-
quired, 100 mg of ampicillin per liter or 50 mg of
kanamycin per liter was added to the culture medium.

DNA extraction and restriction enzyme treatment

Genomic DNA and plasmid DNA extraction, and
restriction enzyme treatment on plasmid DNA and
amplified DNA fragments were carried out according to
Sambrook and Russell (2001).

Cloning and sequencing the aR gene from strain BD-1T

A fragment of and the entire aR gene were PCR-
amplified with two pairs of primers, (Primers 1, 2 and
3, and 4, Table 1). The PCR was carried out at 30
cycles under the following conditions: denaturation for
1 min at 94�C, annealing for 1 min at 54�C, and
extension for 1 min at 72�C. The amplified DNA
fragments were inserted into pGEM-T easy vectors and
the generated pGEMaR-1 and pGEMaR-2 were
transformed into E. coli JM109. DNA sequences were
determined by Beijing Genome Institute (Huada Corp.,
Beijing, China).

Functional expression of aR gene from strain BD-1T

in E. coli in the presence of all- trans retinal
and 3,4-dihydroretinal

The PCR-amplified aR gene from strain BD-1T was li-
gated into pET28a at the sites of NcoI and BamHI. The
resulting plasmid, pET28aR, was transformed into E.
coli BL21(DE3) by electroporation at the following
conditions: 25 lF, 12.5 kV/cm, and 200 X (ECM630,
BTX, USA). Synthesis of aR proteins in recombinant E.
coli cells harboring pET28aR were induced by the
addition of 1 mM IPTG and 10 lM all- trans retinal or
3,4-dihydroretinal when the culture reached OD600 of
0.4–0.6. After further continuous cultivation for 2 h,
cells were harvested by centrifugation at 10,000 g for
5 min at 4�C.

Preparation of aR membranes from strain BD-1T

and recombinant E. coli cells

The aR membranes of strain BD-1T were fractionated
by sucrose density gradient centrifugation, according to
the method described by Oesterhelt and Stoecknius
(1974). Purification of aR-membrane fractions from re-
combinant E. coli were performed in the same way ex-
cept that the recombinant E. coli cells were broken up by
sonification at 4�C (160 W, 3 s sonifying vs. 5 s break,
99 cycles) in Tris–HCl buffer (50 mM Tris–HCl, 5 mM
MgCl2, pH 8.0).

Table 1 Strains, plasmids, and primers used in this study

Characteristics
or sequences

Sources (references)
and notes

Bacterial/archael
strains
Halorubrum
strain BD-1T

From lab culture collection Feng et al. (2004)

E. coli strain JM109 Cloning host Novagen
E. coli strain BL21 Expressing host Novagen
Plasmids
pGEM-T easy vector Cloning vector Promega
pGEMaR-1 pGEM-T carrying a fragment of aR gene

from strain BD-1T
This study

pGEMaR-2 pGEM-T vector carrying the entire aR gene
from strain BD-1T

This study

pET28a Expression vector Novagen
pET28aR pET28a carrying the aR gene of strain BD-1 This study
Primers
1 5¢GAC TGG (CT)TG TTC AC(GC) AC(AG) CC 3’ Primers 1 and 2 are general primers of screen

bR-like genes. Primers 3 and 4 targeting
the sequence of Halorubrum sp. aus-1
between �11 and 795. Primers 5 and 6
targeting the sequence of strain BD-1T

between 1 and 777. The underlined
are NcoI and BamHI sites, respectively

2 5¢A(CG)G TC(GA) A(GT) (GC) ACC AT 3¢
3 5¢(A,T)(C,A,G)G A(A,T)(G,A) TGG G(T,C)A TGG AC 3¢
4 5¢(C,G)GC (T,C)(A,T)G CCG ATC AGT C 3¢
5 5¢CAT G CC ATG GAC CCG ATAGCG CT 3¢
6 5¢CGC GGA TCC GGC CAG CCG ATC AGT 3¢
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Measurement of absorption spectra

The membranes were suspended in a buffer of 50 mM
Tris–HCl (pH 8.0). Before recording the absorption of
spectra, membrane suspensions were light-adapted for
20 min. Absorption spectra were recorded with a Vis–
UV spectrophotometer (Beckman Coulter DU800) with
wavelength interval of 0.5 nm in the visible range (400–
700 nm). Data were treated using origin 6.0 Software
(Microcal Software Inc., Northampton, MA, USA).

Determination of photoelectric properties of fabricated
films made from aR-membrane fractions of strain
BD-1T and recombinant E. coli

Indium-tin-oxide (ITO) glass slide after negative-
charged treatment was immersed into Poly(allylamine
hydrochloride) (PAH) aqueous solution (2 mg/mL,
pH 6.4) for 5 min, rinsed with doubly distilled water,
and then dried by nitrogen flow. This modified glass
slide was immersed in aR-membrane suspension
(pH 9.4) for 5 min, rinsed with doubly distilled water,
and then dried with nitrogen again. In this way, we
obtained one bilayer of aR-membrane/PAH (M/PAH)
films that were marked as (M/PAH)1. This process was
repeated six times. The ITO glass with M/PAH films was
used as a working electrode and platinum wire as a
counter electrode. The electrolyte solution was 0.5 M
KCl, with pH 7.3. To test the photoelectric property of

the fabricated M/PAH films, the films were irradiated
with light from a 150 W xenon lamp and through the
filter (560 nm). Photocurrent generated by the film was
measured by using a picoamper with the sensitivity of
0.1 nA and digitalized by using a digital storage oscil-
loscope (20 MHz, Gold Star) (Chu et al. 2003).

Chemicals and reagents

DNA restriction enzymes, DNA ligase, and DNA
polymerase were purchased from Takara or Promega.
All- trans retinal was purchased from Sigma. The 3,4-
dihydroretinal was synthesized from all- trans retinal by
following the method of Drachev et al. (1989). PAH was
purchased from Aldrich Chemicals.

The Genbank accession numbers

The Genbank accession number for the aR gene of
strain BD-1T is AY510709. Other Genbank numbers of
aR or bR proteins are given in Fig. 1.

Results

Genetic cloning and characterization of aR gene
from strain BD-1T

With Primers 1 and 2 (Table 1), a DNA fragment of
388 bp was PCR-amplified from genomic DNA of strain

Fig. 1 The alignment of nine archaerhodopsin and bacteriorho-
dopsin proteins that function as proton pump. The names of the
bacterial species that the archaerhodopsin and bacteriorhodopsin

isolated are given at the beginning and Genbank accession numbers
of these proteins are provided at the end. All conserved amino acid
residues are shaded in gray
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BD-1T. This fragment showed 93% identity to a part of
the aR gene of Halorubrum aus-1, indicating that an aR
gene existed in strain BD-1T. A second pair of primers
(Primers 3 and 4, Table 1) according to the aR gene
sequence of Halorubrum aus-1 was synthesized and used
for amplification of the entire aR gene from strain BD-
1T. The amplified entire aR gene of strain BD-1T was
777 bp in length, and encoded a protein of 258 amino
acids. When this protein was aligned to other known aR
or bR proteins, all the amino acid residues that were
previously revealed to be essential for proton transport
and linkage to retinal were completely conserved
(Fig. 1). The aR protein from strain BD-1T showed high
identity (86–95%) to the aRs of Halorubrum aus-1, aus-
2, and Halorubrum sodomense, and showed relatively
low identities to the bacteriorhodopsin (55%) of Halo-
bacterium salinarum(Dunn et al. 1981), to the cruxrho-
dopsins of Haloarcula spp. (38–47%, Yatsunami et al.
1997; Kitajima et al. 1996; Tateno et al. 1994; Otomo
et al. 1992), and to the archaerhodopsin ofHaloterrigena
(49%, Ihara et al. 1999).

Expression of aR gene and absorption spectra
of aR-membranes from E. coli cells

The entire aR gene was PCR-amplified with primers 5
and 6 (Table 1) from strain BD-1T and was ligated to
pET28a. The resulting plasmid, pET28aR, was electro-
porated into E. coli cells. Depending on the presence
of all- trans retinal or 3,4-dihydroretinal, recombinant
E. coli cells that harbored pET28aR became purple (with
all- trans retinal) or grayish blue (with 3,4-dihydroreti-
nal) during cultivation in LB broth and induction with
IPTG. The membrane fractions were isolated from the
recombinant E. coli cells and their absorption spectra
were determined (Fig. 2). The maximal absorption of
the purple membrane obtained with all- trans retinal was
at 555 nm and of the blue membrane with 3,4-dihyd-
roretinal was 588 nm (Fig. 2), which were different from

the maximal absorption at 568 nm of purple membrane
from halophilic archaea (Fig. 2 and also Lukashev et al.
1994). The difference in maximal absorption of purple
membrane from recombinant E. coli and from
Halorubrum sp. was attributed to the monomer state of
archaerhodopsin in E. coli and the trimer state in wild
membrane, as revealed by Corcelli et al. (2002).

Photoelectric response of film made from wild
and recombinant purple membranes

To demonstrate that the aR proteins synthesized in re-
combinant E. coli are active for proton transport, the
purple membranes from both wild strain BD-1 and re-
combinant E. coli were used to fabricate thin films (Chu
et al. 2003). Upon illumination, the film generated
electric currents due to proton movement across the
film. Figure 3 shows the photoelectric response profiles
of the films that were made of purple membranes from
either strain BD-1T (Fig. 3a) or recombinant E. coli
(Fig. 3b). Positive and anodic responses were corre-
sponding to light-on and light-off photocurrents that
were caused by proton release and uptake, respectively.
This provided further evidence that the aR proteins in
the recombinant E. coli membrane were correctly folded
and functionally active.
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Fig. 2 Absorption spectra of purple (solid curve) and blue (broken
curve) membranes from recombinant E. coli

Fig. 3 Photoelectric response of films made from purple mem-
branes of strain BD-1T (a) and from recombinant E. coli (b)
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Discussion

Heterologous expression of bR proteins in E. coli had
been previously studied, e.g., Dunn et al. (1987) reported
the synthesis and purification of retinal-free bacterio-
rhodopsin and Hohenfeld et al. (1999) reported the
purification of histidine-tagged bR from recombinant
E. coli. But to obtain active aR protein or functional
membrane, it was necessary to refold the bR protein, in
the presence of retinal, and reconstitute with polar lipid
to form purple membrane (Dunn et al. 1987; Hohenfeld
et al. 1999). Active expression of proteorhodopsin gene
from uncultured proteobacteria and phoborhodopsin (a
photosensory protein) gene from Natronobacterium
pharaonis(NCIMB 2191) was reported (Béjà et al. 2000;
Shimono et al. 1998). In this study, we had succeeded in
the construction of an E. coli system that produces in
one-step the active aR and purple membrane. Moreover,
with this system, one aR with all- trans retinal and one
aR analog with 3,4-dihydroretinal were synthesized in
E. coli. Purple and blue membranes were obtained. We
believe that preparation of other aR analogs with
different retinal analogs, such as 3-hydroxyretinal and
4-ketoretinal, with this system is possible.
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