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Abstract The sequence of the genome of the first alkali-
philic bacteriophage has been determined. Temperate
phage BCJA1 possesses a terminally redundant genome
of approximately 41 kb, with a mol% G+C content of
41.7 and 59 genes arranged predominantly into two
divergent transcriptons. The integrase gene of this phage
is unique in that it contains a ribosomal slippage site.
While this type of translational regulation occurs in the
synthesis of transposase, this is the first time that it has
been observed in a bacteriophage integrase. The DNA
replication, recombination, packaging, and morphogen-
esis proteins show their greatest sequence similarity to
phages andprophages from the genusStreptococcus.Host
specificity, lysin, and lysogeny maintenance functions are
most closely related to genes from Bacillus species.

Keywords Alkaliphile Æ Bacillus clarkii Æ
Bacteriophage Æ BCJA1 Æ Genomics Æ Integrase Æ
Ribosomal slippage Æ Frameshifting

Introduction

Alkaliphilic microorganisms, which grow optimally at
pH values between 9 and 11, are widespread in nature.
They have been isolated from many naturally occurring
alkaline environments (such as soda lakes) man-made
alkaline environments (e.g., bauxite processing wastes),
as well as many other sites (e.g., soils and feces). Both
bacteria and archaea have alkaliphilic representatives.
Curiously, in spite of the widespread distribution of

alkaliphilic microorganisms, reports of viruses active
against these organisms are extremely rare. Indeed,
isolation of viruses active against most extremophilic
microorganisms, with the exception of thermophilic and
hyperthermophilic bacteria and archaea (Rachel et al.
2002; Prangishvili 2003), is uncommon. Recently, the
first complete sequence of a virus, /Ch1, infecting the
haloalkaliphilic archaeon Natrialba magadii, was
reported (Klein et al. 2002). The sequence of the halo-
tolerant alkaliphilic bacterium Oceanobacillus iheyensis
(Takami et al. 2002) contains a defective prophage,
called Bha35X (Mantri and Williams 2004a, 2004b) or
Bh1 (Canchaya et al. 2003). Two phages of alkaliphilic
bacilli have been reported, phage A1-K-I active against a
not further characterized Bacillus sp. (Horikoshi and
Yonezawa 1978) and, more recently, the temperate
bacteriophage BCJA1, which infects the obligately
alkaliphilic species Bacillus clarkii (Jarrell et al. 1997).

BacteriophageBCJA1c is amember of theSiphoviridae
family with B1 morphology. It possesses an isometric
head that measures 65 nm in diameter and a noncon-
tractile tail of 195 nm in length. Analysis of the protein
composition of the phage revealed approximately ten
structural proteins, with the major protein species having
apparentmolecularmasses of 36.5 and 28 kDa. The latter
were considered as possibly the major head and tail pro-
teins, respectively (Jarrell et al. 1997). The genome was
estimated to be between 32.1 and 34.8 kb in length, with a
mol%G+Ccontent of 45.6. This contribution represents
the first complete genome sequence of a bacteriophage
active against an obligately alkaliphilic bacterium.

Materials and methods

Organism and growth medium

Bacillus clarkii JaD is an obligate alkaliphile isolated
from alkaline red mud from bauxite processing waste
(Agnew et al. 1995). It was grown at 37�C in the growth
medium (pH 10) recommended for Bacillus alcalophilus
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(Slepecky and Hemphill 1992). The clear plaque mutant
of bacteriophage BCJA1, BCJA1c, was used in this
study as it routinely grew to a higher titer than the wild-
type version of the bacteriophage (Jarrell et al. 1997).
Bacteriophage BCJA1c (accession number HER 428)
and host B. clarkii (accession number HER 1406) have
been deposited in the Felix d’Herelle Reference Centre
for Bacterial Viruses, Faculty of Science, Laval Uni-
versity, Que., Canada.

Isolation of bacteriophage BCJA1c DNA

DNA was isolated from CsCl-purified bacteriophage
BCJA1c as previously described (Jarrell et al. 1997).

Sequencing procedure

A combination of three procedures was used to deter-
mine the sequence of BCJA1c DNA. In the first case, the
DNA was partially digested with a mixture of four
restriction endonucleases that recognize 4-bp sequences
and produce blunt-ended fragments. These were AccII
(Amersham Biosciences, Baie d’Urfé, Que., Canada),
HaeIII, AluI (New England Biolabs, Beverly, Mass.,
USA), and HpyF44III (MBI Fermentas, Burlington,
Ont., Canada). After preparative agarose gel electro-
phoresis, fragments of 1.5–3 kb were recovered using
Prep-A-Gene matrix (Bio-Rad Laboratories, Philadel-
phia, Penn., USA) and ligated into pUC18 digested with
SmaI and dephosphorylated with bacterial alkaline
phosphatase. The constructs were electroporated into
Escherichia coli DH5a [F� /80d lacZM15 (lacZYA-
argF) U169 recA1 endA1 hsdR17(rk

�, mk
+) phoA

supE44 k� thi-1 gyrA96 relA1], and colonies were
selected in Luria agar (Difco) containing ampicillin
(100 lg/ml, Sigma-Aldrich Canada, Oakville, Ont.,
Canada) and 40 lg/ml X-gal (5-bromo-4-chloro-3-ind-
olyl-b-D-galactoside). Individual clones were grown in
Terrific Broth (Difco), and plasmid DNA was isolated
using the alkaline lysis procedure (Sambrook et al.
1989). The DNA inserts were sequenced at the McGill
University and Genome Québec Innovation Centre
(Montreal, Que., Canada). Gap closure was accom-
plished using primer walking off the phage DNA at the
Robarts Research Institute (London, Ont., Canada) and
by PCR amplification with specific primers and ampli-
con sequencing at the Centre for Applied Genomics
(Toronto, Ont., Canada). The sequence was stripped of
poor quality and vector data, using SeqMan (DNAS-
TAR, Madison, Wis., USA) and assembled into contigs.

Sequence analysis

Open reading frames were identified using Kodon (Ap-
plied Maths, Austin, Tex.). Protein masses and isoelec-
tric points were calculated using EditSeq (DNASTAR).
Potential homologues were identified using BLASTP

(Altschul et al. 1990) or PSI-BLAST (Altschul et al.
1997) at the National Center for Biotechnology Infor-
mation (http://www.ncbi.nlm.nih.gov). Where homo-
logues were identified, pairs of sequences were compared
using the Institute of Human Genetics’ program
ALIGN at its Web site (http://www2.igh.cnrs.fr/bin/
align-guess.cgi). Conserved protein motifs were identi-
fied as part of BLASTP analyses include Pfam (Bateman
et al. 2002), Smart (Letunic et al. 2002; Schultz et al.
2000; Hofmann et al. 1999), CDD (Marchler-Bauer
et al. 2003), and COG (Tatusov et al. 2003) databases.
To predict transmembrane domains, TMHMM (Sonn-
hammer et al. 1998) at the Center for Biological Se-
quence Analysis at the Technical University of Denmark
(http://www.cbs.dtu.dk/services/TMHMM-2.0/) was
employed. Helix–turn–helix motifs were identified using
the Pôle Bio-Informatique Lyonnais Network Protein
Sequence Analysis server at http://npsa-pbil.ibcp.fr/cgi-
bin/npsa_automat.pl?page=/NPSA/npsa_hth. html.

Potential integration host factor (IHF)-binding sites
were assessed using PromScan (Studholme and Dixon,
2003) at http://molbiol-tools.ca/promscan/, while po-
tential transcriptional terminators (Brendel et al. 1986;
Brendel and Trifonov 1984) were assessed using GeSTer
(Unniraman et al. 2002). Promoters were predicted using
Softberry’s BPROM program at http://www.softberry.
com/berry. phtml?topic=promoter. Repeat sequences
were found using PHIRE (Lavigne et al. 2004).

Nucleotide sequence accession number

The BCJA1c sequence has been deposited with Gen-
Bank (accession number AY616446).

Results

DNA sequence analysis

Based upon restriction analysis the predicted size of
BCJA1 DNA was 32.1–34.8 kb (Jarrell et al. 1997).
DNA sequencing indicates that the unique sequence is
41,092 bp, and that this phage possesses terminal repe-
titious sequences of about 0.35 kb. For ease of presen-
tation, the nonredundant genomic sequence was opened
adjacent to a 33-bp bidirectional q-independent termi-
nator (AAAAAAAGAGCCCGGTTAATTCCGGGC-
TTTTTT) with a calculated DG of �7.3 kcal/mol
located downstream of gene 59 (lysin).

The overall base composition of the viral DNA
(41.7 mol% G+C) was almost 4% lower than the
published value (45.6%) determined from the melting
profile (Jarrell et al. 1997). The current value is very
similar to that of the host bacterium, Bacillus clarkii
(42.7 mol% G+C, Nielsen et al. 2004), which is a not
unexpected observation, since the base composition of
temperate phage genomes usually closely match that of
their hosts (A.M. Kropinski, unpublished results).
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Description of selected protein coding sequences

Four criteria were used to define potential coding
sequences (CDSs): either they had to exhibit sequence
similarity to existing genes in the databases or they had
to (1) contain >30 codons, (2) be preceded by a
sequence displaying similarity to the consensus ribo-
some-binding site TAAGGAGGT (Shine and Dalgarno
1974, 1975), and (3) usually employ ATG or GTG as
initiation codons. As with other phage genomes, the
genes of BCJA1c were densely packed with many inci-
dences of overlapping gene sequences.

A total of 59 potential CDSs were discovered, of
which 68% encoded polypeptides that showed signifi-
cant sequence similarity to proteins in the GenBank
databases (Table 1; Fig. 1). In approximately 40% of
the cases where homologues exist, they are to unchar-
acterized or hypothetical proteins. The properties of
some of the CDSs that had identified function are dis-
cussed in the following sections, with special emphasis to
the genes involved in replication, morphogenesis, inte-
gration, lysis, and regulation.

Replication and recombination

The replication of this phage has not been studied, but it
probably involves genomic circularization mediated
through recombination between the redundant ends of
the molecule, followed by expansion involving h-type
replication and ultimately rolling circle, or r replication,
providing the substrate for packaging. Bacteriophage
genomes often contain genes with homology to primases
or helicases, and BCJA1 is no exception. Gene 16
specifies an ATP-dependent DNA helicase containing
the NTP-binding domain T31 GCGKT36 [TGxGK(T/S),
Walker box A, Walker et al. 1982] and a D122 EAH125

motif involved in Mg2+ binding and catalysis (Walker
box B). What sets BCJA1 apart from most phages is the
presence of a RepA homologue. This protein, often
associated with plasmid replication, is involved in
binding to the origin of replication and recruiting rep-
lication proteins. Only two other phages possess RepA
proteins, and these are the Escherichia coli plasmid
prophages of N15 (Ravin et al. 2003) and P1 (Chattoraj
et al. 1985; Abeles et al. 1984). This suggests that in the
lysogenic state BCJA1 also exists extrachromosomally.

RepA binds to iterated sequences (iterons) on N15
and P1 DNA, and these are characteristic of many phage
replication origins. The use of base compositional skew
analysis has been used to define replication origins (Ori)
(Lobry 1999; Kowalczuk et al. 2001; Grigoriev 1998), but
unfortunately, in this case it did not prove informative.
In addition to iterons, Ori regions contain protein-
binding motifs for replication proteins such as DnaA,
HU, FIS, and IHF, the latter three of which induce DNA
bending (Betermier et al. 1994; Grove et al. 1996; Swinger
et al. 2003). A sequence (TTTTCCACA) was found on
the minus strand centered at 10780, i.e., within gene 17,

which is identical to the consensus DnaA-binding site
(TTWTNCACA) (http://www.nmr.chem.uu.nl/�mike/
html/dna.html). There are two strong IHF-binding sites
in CDS 16. Numerous direct repeats lie in the CDS 17–22
region including two copies of ATTCGAAGCAT, three
copies of GGCAAAAAG, and four copies of TTGA-
AGGA. These all lie within approximately 4 kb of each
other. A site (TCACAGAATTACTCAACAAAAAA-
GGA) that bears strong sequence similarity to the con-
sensus FIS-binding site (TN2YN2AAWTN7AAW-
WRA) is found between 9622 and 9647. These finding
suggest that the BCJA1 Ori lies somewhere between
CDSs 17 and 22.

Other CDSs which may participate in DNA replica-
tion or recombination include RecF (CDS 13) and RusA
endonuclease (Holliday junction resolvase) homologues.
The latter is sufficiently similar to the E. coli enzyme to
permit molecular modeling.

Lysis

Bacteriophage-induced lysis usually involves a two-gene
lysis cassette composed of a holin and an endolysin
(murein hydrolase). The holin creates pores in the inner
or cytoplasmic membrane, permitting the endolysin to
access the peptidoglycan layer in the periplasm, resulting
in cell lysis and release of progeny viruses (Young and
Bläsi 1995; Young 1992). With some exceptions the
endolysin gene is preceded or overlapped by a gene
encoding a holin. The product deduced from CDS 59 is
a polypeptide of 355 amino acids that displays sequence
similarity to a variety of putative bacterial or prophage
lytic proteins classified at N-acetylmuramoyl-L-alanine
amidases. This enzyme rather than lysozyme is also used
by Streptococcus pneumoniae prophages MM1 (Obregon
et al. 2003) and EJ-1 (NC_005294), Bacillus subtilis
phages SPbc2 (NC_001884) and SPP1 (Alonso et al.
1997), and Bacillus cereus prophage phBC6A51 (Iva-
nova et al. 2003).

Holins are characterized by their relatively small size
(71–161 amino acid residues), contain two to three
membrane-spanning helices and a charged C terminus,
and exhibit poor sequence identity to other members of
this group of functionally similar proteins (Young 1992;
Grundling et al. 2000; Young and Bläsi 1995). The
predicted product of CDS 57 is likely the holin, since it is
a protein containing 87 amino acids arranged into two
transmembrane domains with a high concentration of
basic amino acids at the C terminus.

Integration

In the lysogenic state, prophage genomes are mostly
found integrated into the host genome. Integration
is brought about through site-specific recombination
between homologous phage (attP) and bacterial (attB)
sites, catalyzed by the phage protein integrase (Int) in
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conjunction with the host-encoded accessory protein
IHF (Campbell 1992). In the case of BCJA1, two pro-
teins show homology to integrases. These are the prod-
ucts of CDSs 3A and 3B, respectively. Since BLASTX
analysis of this region of the genome showed that a
potential mistake had been made in the sequencing, this
region was amplified by PCR and resequenced. How-
ever, the sequence proved to be correct. Interestingly,
CDS 3B contains a potential ribosome slippage site
(Pande et al. 1995; Alam et al. 1999; Harger et al. 2002),
which, if utilized, would result in the synthesis of a fu-
sion protein with 369 amino acid residues containing the
N terminus of CDS 3B and the C terminus of CDS 3A.
Immediately downstream of this site is a stem-loop
structure that would result in ribosomal pausing, but it
lacks the characteristic pseudoknot structure (Alam
et al. 1999; Reeder and Giegerich 2004). While this type
of translational regulation occurs in the synthesis of
transposase (Gertman et al. 1986), this is the first time
that it has been observed in a bacteriophage integrase.

The Int family of recombinases (tyrosine recombin-
ases) has been the subject of considerable research
activity, revealing which residues are conserved and
which are involved in attP binding, dimerization, and
catalysis (Nunes-Duby et al. 1998; Esposito and Scocca
1997; Bankhead and Segall 2000). While these proteins
show a poor level of overall sequence similarity, motif
analysis against the the CDD database (Marchler-Bauer

et al. 2003) revealed the presence of cd01189. This motif
is defined as INT_phiLC3_C (phiLC3 phage and phage-
related integrases, site-specific recombinases), which
contains three conserved oligopeptides, I223 NKTW227,
H309 GLRHTHAS317, and Y328 VSERLGHADI338.
The active site lies within the tetrad E344 YAH347. The
closest homologues to the BCJA1c integrase are to be
found in Streptococcus thermophilus bacteriophages
Sfi21 (Brüssow and Bruttin 1995) and /O1205 (Stanley
et al. 1997).

The attP sites contain regions for the binding of Xis,
Fis, and IHF proteins. While we found no evidence for a
Xis homologue, examination of the region downstream
of gene 3 resulted in the identification of two pairs of the
sequence TTTTACACA within a 228-bp region, which
we propose may represent arm-type integrase-binding
sites (Nash 1990). They overlap with two IHF-binding
sites bearing strong sequence similarity to the consensus
and two potential Fis sites. Finally, attP regions are
usually AT-rich, and the 282-bp downstream of int has
an average 67% A+T content.

Immunity region

BCJA1 is a temperate phage, and our analysis has re-
vealed that central regulation probably involves, as in
coliphage k, opposing repressor (CDS 5) and antire-

Fig. 1 Genome map of phage
BCJA1c with integrase (black),
regulatory genes (red), genes
involved in replication or
recombination (dark blue),
DNA packaging (green),
morphogenesis (brown), and
lysis (pink). Coding sequences
with undefined homologues are
in light blue, while unique genes
are displayed in outline. q-
Independent terminators are
shown as ball-on-stick figures.
Regions of homology to
Streptococcus pyogenes
prophage 370.1 are shown as
filled purple bars, while regions
with similarity to Bacillus
halodurans proteins are
illustrated by purple boxes.
With the exception of the fourth
line, each line in the diagram
represents 11.2 kb
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pressor (cro, CDS 6) genes. Both contain helix–turn–
helix motifs associated with DNA binding.

We currently do not know whether the wild-type
phage BCJA1 is UV inducible; however, this is doubtful,
because the repressor protein lacks both Ala–Gly or
Cys–Gly motifs that are associated with RecA-stimu-
lated autodigestion of the repressor proteins in phages
such as k, /80, and P22 (Little 1991; Craig and Roberts
1980; Roberts et al. 1977; Raymond-Denise and Guillen
1991). It also lacks a C-terminal protease domain asso-
ciated with repressor cleavage and induction.

If CDS 6 encodes the repressor, we would expect that
repressor-binding sites might be located nearby. Indeed,
we identified two 16-bp hyphenated inverted repeats
with the half consensus sequence AGCTAA in the CDS
5–6 intergenic region. In almost all cases, phage opera-
tors are 14 [e.g., Mu (Goosen and van de Putte 1987)]-
to19-bp [e.g., /80, (Ogawa et al. 1988)] hyphenated
palindromes. Since these sites were not found elsewhere
in the BCJA1 genome, this also suggests that the major
transcripts of this phage originate from the CDS 5–6
intergenic region (Fig. 2b).

Transcription

The most obvious region for promoters is the intergenic
region between the repressor and cro genes. Analysis of
this region, using Softberry’s BPROM program and by

visual screening, revealed sequences that exhibit signifi-
cantly similarity to the consensus promoter TTGACA
(N15-17) TATAAT (Fig. 2). The repressor gene contains
a single potential promoter (PRep), while in the case of
cro, four promoters have been tentatively identified.
Two of the putative promoters (PRep and PCro4) addi-
tionally exhibit the extended �10 region ‘‘TGN’’ (Burr
et al. 2000; Mitchell et al. 2003; Fig. 2b). In addition to
the bidirectional q-independent terminator mentioned
above, another terminator (DG �6.9 kcal) is located
between nucleotides 1129 and 1158, which presumably
restricts transcriptional readthrough from gene 2 into
the integrase. Three additional terminators were dis-
covered elsewhere in the genome (Fig. 1).

Morphogenesis

Since the genome is terminally redundant, we assume
that BCJA1 packages DNA by a head-full mechanism
with the terminase complex initiating packaging at a pac
site; unfortunately, the location of the latter is unknown.
We propose, on the basis of sequence similarity, that the
products of genes 33 and 34 encode the small and large
subunits of the terminase complex, respectively. Inter-
estingly, while the small subunit shows greatest similar-
ity to prophage terminases in Bacillus and Clostridium
species, the large subunit is most closely related to S.
pneumoniae phage MM1 terminase. A high percentage

Fig. 2 a The sequence
immediately downstream of the
BCJA1c integrase gene showing
potential sites involved in
integration. b The intergenic
region between repressor and
antirepressor (cro) genes of
BCJA1. Putative repressor-
binding sites are boxed, while
potential promoters are
underlined. Note that there are
four PCro sequences and a single
PRep
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of the genes involved in morphogenesis show homology
to other phages facilitating their functional identifica-
tion. CDSs 35–45 are involved in capsid morphogenesis,
while CDSs 46–53 are associated with tail assembly.
Polyacrylamide gel electrophoretic analysis of denatured
BCJA1 virion proteins revealed at least ten structural
proteins with masses ranging from 17–120 kDa (Jarrell
et al. 1997). The two major proteins were 36.5 and
28 kDa and were predicted to be the major capsid and
tail proteins, respectively. In silico analysis of CDS 40
reveals a 34.9-kDa protein with less than 40% sequence
identity to the major capsid proteins of S. pneumoniae
phage MM1 and Lactococcus lactis phage ul36 (Labrie
and Moineau 2002). These results suggest that the
BCJA1 capsid protein is not proteolytically modified at
the time of or after prohead assembly.

The most likely major tail protein is encoded by CDS
46. Unfortunately, its molecular weight (16.9 kDa) is
significantly less than the protein tentatively identified as
the major tail protein on the basis of its molecular mass
(gp 50, 28 kDa). On the basis of comparative mass,
homology, and synteny, we propose that CDS 46 rep-
resents the major tail protein of BCJA1.

The product of CDS 53most probably encodes a host-
specificity protein or phage tail fiber. Interestingly,
like the tail fiber proteins of the T7-like coliphages, the
N-terminal region is much more conserved than the
C-terminal ligand-binding domain (Kovalyova and
Kropinski 2003). While the closest overall sequence
similarity is to a Bacillus halodurans protein, iterative
PSI-BLAST analysis revealed relationships in the car-
boxy region to large proteins in B. cereus phage
phBC6A51 (NP_831679), Streptococcus agalactiae pro-
phage kSa2 (NP_688832), Lactobacillus johnsonii pro-
phage Lj965 (NP_958595, Ventura et al. 2004), and
Streptococcus mitis phage SM1 (NP_862890, Ventura
et al. 2004). In the latter, the similar sequence ‘‘pblB’’ was
experimentally characterized as a platelet-binding pro-
tein (Bensing et al. 2001a, 2001b).

Discussion

While phages are the most abundant and probably the
most diverse life forms on Earth (Rohwer 2003), rela-
tively few viruses have been isolated and even fewer fully
characterized against the extremophilic bacteria. This is
not due to the lack of bacterial species growing in ex-
treme environments. Quantitatively, the greatest num-
bers of sequenced tailed phages are for members of the
bacterial phyla Proteobacteria and Firmicutes. What has
emerged from phage genomic studies is the realization of
the extent to which nonhomologous recombination has
created genomic mosaics (Hendrix et al. 1999; Hendrix
2002) and has complicated our understanding of their
taxonomy (Lawrence et al. 2002; Proux et al. 2002). This
is also borne out from our analysis of BCJA1, which one
might expect to be ecologically isolated and thus, less
subject to horizontal gene transfer.

We initially predicted that most homologues of the
BCJA1 proteins would occur among the five sequenced
‘‘Bacillus’’ genomes: B. anthracis (Read et al. 2003);
B. cereus (Ivanova et al. 2003); B. halodurans (Takami
et al. 2000); B. subtilis (Kunst et al. 1997) and Oceano-
bacillus iheyensis (Takami et al. 2002) or the fully char-
acterized Bacillus phages, which include B. subtilis
phages SPP1 (Alonso et al. 1997), PZA (Paces et al.
1989), B103 (Pecenkova et al. 1997), SPbc2 (Ravantti
et al. 2004), and GA-1 (Salas 2004); and B. thuringiensis
phage Bam35. This was not the case, though BCJA1
CDS 3–8 are collinear with B. halodurans prophage
Bha35X/Bh1 genes BH3551–BH3546. The possible
exception is the Cro homologue of BCJA1 (CDS 6),
which does not display sequence homology to B. halo-
durans gene BH3548. Interestingly, the latter encodes a
basic protein of 98 amino acids, containing a helix–turn–
helix motif. This unannotated gene is spatially arranged
relative to the putative Bha35X/Bh1 repressor gene in an
identical orientation to that of BCJA1 CDS 6–7, sug-
gesting that BH3548 probably encodes a Cro homologue.
The other region displaying B. halodurans homologues is
defined by BCJA1 CDS 50 (BH0961) CDS 53 (BH0962),
and CDS 59 (BH0963). These genes in B. halodurans are
found upstream of an amidase–holin pair, suggesting the
presence of another defective prophage in the bacterial
genome. This cluster of genes also occurs in O. iheyensis.

The high degree of similarity between Bacillus phage
BCJA1c and Streptococcus phage and prophage genes
was unexpected. Similarity is particularly evident (Ta-
ble 1) in the genes involved in DNA replication, recom-
bination, andmorphogenesis. This is practically apparent
using a dotplot comparison of the nucleotide sequence of
BCJA1 with Streptococcus pyogenes prophage 370.1
(Ferretti et al. 2001; Fig. 1), which, in typical phage
evolution format, shows blocks of homology separated
by regions that do not share a common ancestor. Canc-
haya et al. (Canchaya et al. 2003) have proposed that
prophage 370.1 is a member of the Sf11-like group of
Siphoviridae employing pac-site DNA packaging. It has
also been shown that the morphogenesis genes of pro-
phage Bha35X/Bh1 are homologous to those of S. py-
ogenes prophage 315.5 (Banks et al. 2002;Beres et al.
2002). This adds further proof to the argument that
horizontal gene transfer has occurred freely among the
members of the bacterial phylum Firmicutes.

Proteins achieve conformational stability by means of
covalent bonds (Cys-Cys), electrostatic forces, hydrogen
bonds, and van der Waals interactions. These are all
influenced by extremes of pH. We had hoped that a
physicochemical comparison of alkaliphilic versus non-
alkaliphilic viral structural homologues would provide
us with some understanding of the nature of protein
structure and its adaptation to high pH environments.
Phage BCJA1 virions are completely stable from pH 6–
11, but lose 75% of their titer after 1 h at pH 4 (Jarrell
et al. 1997). Using the portal, major capsid, and major
tail proteins as indicators, there was no significant
difference in the relative concentrations of strongly
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acidic (D, E), strongly basic (K, R), hydrophobic (A, I,
L, F, W, V) or polar amino acids (N, C, Q, S, T, Y) when
comparing BCJA1 and its closest homologues. While
within the window of pH stability, only the ionic inter-
actions between charged side chains would be affected,
other protein stabilizing interactions would function to
achieve virion structural stability. These forces function
in both alkaliphilic and nonalkaliphilic systems.
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