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Abstract. In this paper we analyze a stabilized finite element
method to solve the transient convection-diffusion-reaction
equation based on the decomposition of the unknowns into re-
solvable and subgrid scales. We start from the time-discrete
form of the problem and obtain an evolution equation for
both components of the decomposition. A closed-form ex-
pression is proposed for the subscales which, when inserted
into the equation for the resolvable scale, leads to the stabi-
lized formulation that we analyze. Optimal error estimates in
space are provided for the first order, backward Euler time
integration.

1 Introduction

In this paper we describe and analyze a finite element for-
mulation to solve the transient convection-diffusion-reaction
problem

∂tu+Lu = f in Ω× (0, T) , (1)
u = 0 on ∂Ω× (0, T) , (2)
u = u0 on Ω×{0} , (3)

where L is the convection-diffusion-reaction operator

Lu := a ·∇u− ν∆u+σu . (4)

Here, Ω ⊂ Rd (d = 2, 3) is a bounded and polyhedral do-
main, a is a divergence-free velocity field, ν > 0 is the
diffusion coefficient and σ ≥ 0 is the (constant) reaction
coefficient.

The functional setting for the problem can be defined
in terms of the spaces V := H1(Ω) and V0 := H1

0 (Ω).
For f ∈ L2(0, T ; H−1(Ω)), u0 ∈ L2(Ω), and a ∈ (L∞(Ω))d

problem (1)–(3) admits a unique solution u which belongs
to L2(0, T ;V0)∩C0(0, T ; L2(Ω)), and which also verifies
∂tu ∈ L2(0, T ; H−1(Ω)). The norm in L2(Ω) is denoted
by ‖ · ‖, whereas ‖ · ‖m stands for the norm in Hm(Ω),
m =−1, 0, 1, 2, . . .

The variational formulation of the problem that we need
reads: find u ∈ L2(0, T ;V0) such that

(∂tu, v)+b(u, v)= l(v) ∀ v ∈ V0 ,

b(u, v) := ν(∇u,∇v)+ (a ·∇u, v)+σ(u, v) ,

l(v) := 〈 f, v〉 , (5)

where (·, ·) stands for the L2(Ω)-inner product and 〈·, ·〉 for
the duality pairing in H−1(Ω)×H1(Ω).

Many schemes can be employed to discretize (5) in time.
Since our main concern is the space discretization, we will
use the simple backward Euler approximation described in
the following section. Our ideas extend easily to any other
algorithm, as well as to a space-time finite element formu-
lation (case in which the variational equation (5) has to be
modified).

Our aim is to present a finite element method free of the
oscillations associated to the standard Galerkin formulation
when diffusion is small. Many of such methods have been de-
veloped during the last two decades, among which the SUPG,
the GLS, the characteristic Galerkin, the Taylor Galerkin, the
residual free bubble stabilization, and others, can be named
(see [3] for a comparison between these methods).

Our starting point will be the decomposition of the un-
known into resolvable and subgrid scales. The former are
intuitively associated to the component of the solution which
can be represented by the finite element mesh, whereas the
latter can not be captured. Nevertheless, its effect onto the
resolvable scale needs to be accounted for.

The approach we will follow is similar to that presented
in [10]. However, it is interesting to note that other methods
share very similar concepts, as for example the nonlinear
Galerkin method (see, e.g., [13]).

The main conceptual ingredients of the formulation to be
presented here are the following. First, we let the subscales
vary in time, and thus they need to be tracked. Second, we
propose a closed-form expression for them at each time step.
This is necessarily heuristic. However, we describe a Fourier
analysis that provides some rationale to our proposal. A very
important point is that we take the subscales orthogonal to
the finite element space [4]. Finally, we add some additional
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approximations that lead to a method which is computation-
ally feasible, in the sense that its cost is similar (very often
smaller) to that of other stabilization methods.

The plan of the paper is the following. In Sect. 2 we
present the backward Euler scheme and provide an error es-
timate which shows that this method is first order accurate in
time. We note that it is most common to give this kind of esti-
mates once the problem has been already discretized in space.
Section 3 describes our numerical formulation from a purely
heuristic point of view. This formulation is then analyzed in
Sect. 4, where it is shown that it yields optimal rates of con-
vergence in space. The key point is that the error estimates
hold uniformly in the diffusion coefficient ν.

2 Semidiscrete problem

First of all, let us re-scale the time variable as t ← t/T , so
that the new time interval is [0, 1] and the coefficient 1/T has
to be inserted in front of the time derivatives. This will allow
us to explicitly display which terms in our stability and error
estimates disappear as the steady-state is reached, that is, as
T →∞.

Let us consider a uniform partition of [0, 1] into N time
intervals of length δt. Assuming for simplicity that f is con-
tinuous in time and denoting by a superscript the time level
at which the algorithmic solution is computed, the backward
Euler discretization of (5) is:

1

T
(δtu

n, v)+b(un+1, v)= ln+1(v) ∀ v ∈V0 , (6)

and u0 = u0 in L2(Ω), where

δtu
n := 1

δt
(un+1−un) , ln+1(v) := 〈 f n+1, v〉 .

It is convenient for notation purposes to introduce the se-
quence U := {u0, u1, ..., uN } ∈ L2(Ω)×VN

0 , as well as the
norm |||·||| defined on such sequences by

|||V |||2 := 1

T
‖V‖2

�∞(L2)
+ ν‖V‖2

�2(H1
0 )

+ δt‖− ν∆V +a ·∇V‖2
�2(L2)

+σ‖V‖2
�2(L2)

:= 1

T
max

n=0,...,N
‖vn‖2+

N−1∑
n=0

δt
[
ν‖∇vn+1‖2

+ δt‖− ν∆vn+1+a ·∇vn+1‖2+σ‖vn+1‖2
]
. (7)

This is the norm in which stability and convergence can be
proved (note that we have identified the L2(Ω)-norm of ∇v
with the H1

0 (Ω)-norm of v). The distinctive feature of our an-
alysis is that we include the sum of the convective and viscous
terms in |||·|||. In particular, our results apply to any value of
the physical coefficients ν, ‖a‖L∞(Ω) and σ . In general, C,
possibly with subscripts, will denote a generic constant inde-
pendent of these parameters, and also independent of δt (and
of h in Sect. 4).

Problem (6), incorporating the initial condition, can be
written as: find a sequence of algorithmic solutions U such
that

B(U, V )= L(V ) (8)

for all sequences V , where

B(U, V ) := 1

2T

(
u0, v0)

+
N−1∑
n=0

[ 1

T

(
un+1−un, vn+1)+ δt b

(
un+1, vn+1) ] , (9)

L(V ) := 1

2T

(
u0, v

0)+ N−1∑
n=0

δt
〈
f n+1, vn+1〉 , (10)

It is seen that the initial condition u0 = u0 is incorporated in
the variational problem (8).

Both stability and convergence are stated in the following
result:

Theorem 1. There is a unique solution to problem (8),
which is bounded in the norm |||·|||. Moreover, assume that
the solution of (5) verifies the regularity requirement ∂2

ttu ∈
L2(0, T ; L2(Ω)). Then, for δt small enough:

|||Uex−U||| ≤ Cδt , (11)

where Uex = {u0, u(t1), u(t2), ..., u(tN )} is the exact solution
(tn := nδt).

We postpone to sketch the proof until the end of Sect. 4, since
the concepts involved are similar to those employed in the
analysis of the fully discrete problem.

3 Finite element approximation using orthogonal
subscales

3.1 Orthogonal subscales for the stationary
advection-diffusion-reaction equation

In this section we describe the numerical formulation that we
will use. First, we consider the stationary equation Lu = f ,
and later on we will move to the transient case. The varia-
tional formulation of the problem is now: find u ∈ V0 such
that

b(u, v)= l(v) ∀ v ∈ V0 . (12)

The basic idea is to split the continuous spaces V and V0
into the spaces of resolvable and subgrid scales:

V0 =Vh,0⊕ Ṽ0 , V =Vh⊕ Ṽ ,

where Vh is the finite element space built from a partition
Ph = {K} of Ω in the classical way, and Vh,0 is the subspace
of Vh made up of functions vanishing on ∂Ω.

Problem (12) can be equivalently written as: find uh ∈
Vh,0, ũ ∈ Ṽ0 such that

b(uh, vh)+b(ũ, vh)= l(vh) ∀ vh ∈ Vh,0 , (13)

b(uh, ṽ)+b(ũ, ṽ)= l(ṽ) ∀ ṽ ∈ Ṽ0 . (14)

After integration by parts of some terms and assuming that
the diffusive fluxes of u = uh+ ũ are continuous across inter-
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element boundaries, these two equations yield:

b(uh, vh)+
∑

K

∫
K

ũ L∗vh dΩ+
∑

K

∫
∂K

ũ ν
∂vh

∂n
dΓ = l(vh) ,

(15)∑
K

∫
K

ṽ Lũ dΩ =
∑

K

∫
K

ṽ ( f −Luh) dΩ , (16)

where L∗v := −ν∆v−a ·∇v+σv is the adjoint of L.
From (16) it follows that

Lũ = r in K ∈Ph ,

r := f −Luh+vh,ort , (17)

where vh,ort is the element that makes Lũ− r belong to Ṽ0,
which is the space in which (17) has to be understood. Ob-
viously, this equation for the subscales is as complicated as
the original one, except for the fact that it is defined on each
element domain. Note also that the values of ũ on ∂K should
be known to solve it, and these are unknown. However, rather
than solving for ũ we propose to model it, that is to say, we
propose to give a closed-form expression for ũ that, hope-
fully, will have a similar effect as the exact one when plugged
in (15). The model we suggest is

ũ(x)≈ τ r(x) in K ∈Ph , (18)

with τ a constant on each K . Moreover, we assume that∑
K

∫
∂K

ũ ν
∂vh

∂n
dΓ ≈ 0 . (19)

Equations (18) and (19) are our two modeling assumptions. In
the following section we come back to (18). For the moment,
let us accept it and concentrate on the function vh,ort in (17).
It is associated to how the space of subgrid scales is chosen.
Our particular option is to take

Ṽ =V⊥
h ∩V ,

where orthogonality is understood in L2(Ω). Note that V⊥
h is

not closed in V, but it will be a closed subspace of the final
approximating space.

In order to obtain a feasible numerical method we need to
introduce two further approximations. These are:

Ṽ ≈V⊥
h ≈ Ṽ0 . (20)

The first approximation means that we drop the requirement
Ṽ ⊂ H1(Ω), that is to say, we allow the subscales to be
non-conforming. The second approximation implies that we
assume that elements in V⊥

h are small on ∂Ω.
Using approximations (20) we have that

vh,ort ∈ Ṽ⊥
0 ≈Vh , ũ ∈ Ṽ0 ≈ V⊥

h .

In particular, we note that vh,ort is a finite element func-
tion, and therefore numerically computable. Due to assump-
tion (18), the equation to obtain it is simply to impose that
(ũ, vh)= 0 for all vh ∈ Vh , that is,∑

K

[
(τ( f −Luh), vh)K + (τvh,ort, vh)K

]= 0 .

for all vh ∈ Vh . If we introduce the weighted L2(Ω)-inner
product (v,w)τ :=∑K τ(v,w)K , and call Πτ the associated
projection, we see that vh,ort and the subgrid scale can be ex-
pressed as:

vh,ort =−Πτ( f −Luh) ,

ũ = τΠ⊥
τ ( f −Luh), Π⊥

τ := I −Πτ . (21)

It is understood in these expressions that Luh and the param-
eters τ are evaluated elementwise. This closes the modeling
process. Once τ is known, ũ can be computed from (21) and
inserted in (15) (using also (19)).

There are other strategies to model the subscales. For ex-
ample, in [9, 11] it is proposed to add artificial diffusion only
in their subspace, and in the nonlinear Galerkin method they
are treated with a coarse numerical approximation [7, 13].
Likewise, when subscales are approximated by bubble func-
tions, as in [1, 2], solving for them is what can be considered
the modeling step.

3.2 Behavior of the stabilization parameters from a Fourier
analysis

If ũ is a solution of the equation in Ṽ0

−ν∆ũ+a ·∇ũ+σ ũ = r in K ∈Ph , (22)

we want to understand in which sense ũ(x) ≈ τ r(x) (both
functions belonging to Ṽ0) and to give an expression for τ .
Now we will assume that a is constant within each element K .

Let us consider the following Fourier transform defined
on each K :

ĝ(k) :=
∫
K

e−i k·x
h g(x) dΩx ,

where k= (k1, . . . , kd) is the dimensionless wave number and
h the diameter of K . If nj is the j-th component of the normal
exterior to K , it is easily checked that

∂̂g

∂xj
(k)=

∫
∂K

nje
−i k·x

h g(x) dΓx+ i
kj

h
ĝ(k) .

We assume that the subscales only contain high wave num-
bers, and thus

∂̂ũ

∂xj
(k)≈ i

kj

h
̂̃u(k) ,

∂̂2ũ

∂xi∂xj
(k)≈−kikj

h2
̂̃u(k) . (23)

Note that all the results valid for Fourier transforms of func-
tions of rapid decay in Rd will apply to ̂̃u.

Equation (23) allows us to obtain an expression for τ . In-
deed, if we take the Fourier transform of (22) we have:

̂̃u(k)≈ T (k)̂r(k) ,

T (k) :=
(
ν
|k|2
h2
+ i

a ·k
h
+σ

)−1
.
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Plancherel’s formula and the mean value theorem imply

‖ũ‖2
L2(K)

≈ 1

(2π)d
‖̂ũ‖2

L2(Rd)

≈ 1

(2π)d

∫
Rd

|T (k)|2|̂r(k)|2 dk

= 1

(2π)d
|T (k0)|2

∫
Rd

|̂r(k)|2 dk

= |T (k0)|2‖r‖2
L2(K)

,

for a certain k0. If we identify τ with |T (k0)|, it allows us to
conclude that if we take

τ =
[(

c1
ν

h2
+σ

)2+
(

c2
|a|
h

)2
]−1/2

there exist values of c1 and c2 independent of h, ν, |a| and σ
for which both ũ and τr have (approximately) the same L2-
norm on element K.

Since we are interested in the asymptotic behavior of τ in
terms of h, ν, |a| and σ , another possibility (slightly simpler)
is

τ =
(

c1
ν

h2
+ c2

|a|
h
+σ

)−1
. (24)

This is the expression extended to the transient case. When a
is variable, |a| is replaced by ‖a‖L∞(K).

3.3 Tracking of subscales for the transient problem

Let us consider now the transient problem (1)–(3), discretized
in time using the backward Euler method. The variational
formulation is given in (6). To this variational problem we
can apply now the same decomposition as for the station-
ary problem. Neglecting again the integral over the element
boundaries and using the same reasoning as before, the prob-
lem for the finite element approximation is:

T−1(δtu
n
h, vh)+ T−1(δt ũ

n, vh)+b
(
un+1

h , vh
)

+
∑

K

∫
K

ũn+1 L∗vh dΩ = ln+1(vh) , (25)

for all vh ∈ Vh,0, and the equation for the subscales is

T−1δt ũ
n+Lũn+1 = rn+1

t ,

rn+1
t := f n+1− (T−1δtu

n
h+Lun+1

h

)+vh,ort (26)

in K ∈Ph and for vh,ort such that (26) holds in Ṽ0. To start the
algorithm we take ũ0 ≈ 0, which means that u0 is resolvable
by Vh . Equation (26) can also be written as( 1

Tδt
+L

)
ũn+1 = 1

Tδt
ũn+ rn+1

t .

Calling

τt :=
( 1

Tδt
+ 1

τ

)−1
(27)

and using the same strategy as for the stationary problem, we
obtain

ũn+1 = τt
1

Tδt
ũn+ τtr

n+1
t . (28)

Imposing that the subscales be orthogonal to Vh and using the
same approximations as for the stationary case, it is found that

vh,ort =−Πτt

[
1

Tδt
ũn+ f n+1− (T−1δtu

n
h+Lun+1

h )

]
,

ũn+1 = τtΠ
⊥
τt

[
1

Tδt
ũn+ f n+1− (T−1δtu

n
h+Lun+1

h )

]
,

where Lun+1
h and τt are evaluated within each K ∈ Ph and

Πτt is the projection computed with τt instead of τ .
This completes the description of the method: the subscale

ũn+1 obtained can be inserted in (25), resulting in a finite
element problem which is expected to have better stability
properties than the original Galerkin formulation. From the
mathematical point of view, this means that sharp stability
estimates uniform in ν can be derived. However, to simplify
further the numerical method we will use the following addi-
tional approximations, again within each element domain:

Πτt ≈Π (standard L2(Ω)-projection) , (29)

τtΠ
⊥ f ≈ 0 , (30)

τtΠ
⊥∆uh ≈ 0 . (31)

Approximation (29) depends on the variation of the coeffi-
cients τt from element to element. From the computational
point of view, it is very convenient to use Π, since L2 pro-
jections can be computed very efficiently. Taking τtΠ

⊥ f ≈ 0
means that f belongs to the finite element space Vh or it is
approximated by an element of this space. In any case, the
term τtΠ

⊥ f is of the same order as the optimal error that can
be expected, since for f ∈ Hm(Ω), m =−1, 0, . . . , we may
expect u ∈ Hm+2(Ω) and an L2 error of order O(hr), with
r =min{m+2, p+1} and p the degree of the finite element
interpolation, and this is precisely the order of τtΠ

⊥ f . Refer-
ring to approximation (31), it greatly simplifies the numerical
implementation of the method. Moreover, we are interested
precisely in the case in which the diffusive term is small.
What we can not neglect is the orthogonal projection of the
convective term, which is what has to provide the enhanced
stability.

We also have the exact relationships:

Π⊥(T−1δtu
n
h)= 0 , Π⊥(σuh)= 0 , T−1(δt ũ

n, vh)= 0 .

Using these equations, approximations (29)–(31) and insert-
ing the subscales in (25) we finally find the equation for the
resolvable scales:

1

T

(
δtu

n
h, vh

)+b
(
un+1

h , vh
)+(Π⊥ (a ·∇un+1

h

)
, a ·∇vh

)
τt

= 1

Tδt

(
ũn, a ·∇vh

)
τt
+ l(vh) ∀ vh ∈ Vh,0 . (32)

Once un+1
h is computed, ũn+1 can be updated by

ũn+1 = τt
1

Tδt
ũn− τtΠ

⊥ (a ·∇un+1
h

)
. (33)

within each element K .
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This completes the definition of the formulation proposed
in this paper and analyzed in the following section. How-
ever, before doing this there is an important remark to be
made. It is observed from (32) that ũn is needed, that is, sub-
scales need to tracked in time. From the computational point
of view, a possible way to do this is to evaluate the subscales
using (33) and to store them at each integration point of the
numerical scheme adopted in the evaluation of the integrals.
This allows us to compute (ũn, a ·∇vh)τt numerically.

Finally, let us mention that there is the possibility of
avoiding the tracking of the subscales by assuming that they
are “quasi-static”, that is, by taking δt ũn ≈ 0. In this case, the
equation for ũn+1 becomes

ũn+1 = τt
1

Tδt
ũn+1− τtΠ

⊥
τt

Lun+1
h ,

from where it is found that ũn+1 can be computed as for the
stationary problem:

ũn+1 =−τΠ⊥
τ (Lun+1

h )

and the resulting simplified stabilized finite element formula-
tion, after making the approximations described before, is

1

T

(
δtu

n
h, vh

)+b
(
un+1

h , vh
)

+
(
Π⊥ (a ·∇un+1

h

)
, a ·∇vh

)
τ
= l(vh) ∀ vh ∈Vh,0 ,

which replaces (32).

4 Analysis of the fully discrete problem

In this section we prove that the finite element formulation
given by (32) approximates the semidiscrete problem (6) with
optimal orders of convergence.

To keep our arguments as close as possible to those of the
standard finite element analysis of stationary problems, let us
consider that the test functions are taken independently within
each time interval and define the sequences:

Uh = {un
h} , Ũ = {ũn} , Vh = {vn

h} .
Problem (32), incorporating the initial condition prescribed
weakly, can be written as: find a sequence of algorithmic so-
lutions Uh such that

Bh(Uh, Vh)= L(Vh) (34)

for all sequences Vh , where

Bh (Uh, Vh) := B (Uh, Vh)−
N−1∑
n=0

δt
(
ũn+1, a ·∇vn+1

h

)
,

and B and L are defined in (9) and (10), respectively. The
equation for the subscales is

1

Tδt

(
ũn+1− ũn)+ 1

τ
ũn+1+Π⊥ (a ·∇un+1

h

)= 0 . (35)

In principle, this equation holds within each element domain.
However, to simplify the analysis we will consider that the

parameter τ computed with (24) is constant. This happens
for example if a is constant and Ph is quasi-uniform, case
in which h in (24) can be taken as the diameter of the finite
element partition rather than the element diameter (see [6]
for the techniques employed when Ph is not quasi-uniform).
Assuming this quasi-uniformity, the inverse estimates

‖∇vh‖ ≤ Cinv

h
‖vh‖ , ‖∆vh‖ ≤ Cinv

h
‖∇vh‖ (36)

hold true. Likewise, we will assume that the components of
the semidiscrete solution U belong to H p+1(Ω), where p is
the degree of the polynomial defining the finite element space
Vh , and that for any function v ∈ H p+1(Ω) there exists a finite
element interpolant v̂h such that

‖v− v̂h‖m ≤ Cinth
p+1−m‖v‖p+1 , (37)

for m = 0, 1, . . . , p+1 (p≥ 1).
The expression of τ that we will use is (24). The constants

c1 and c2 need to be related to the constant Cinv appearing
in (36). In particular, we will take them as

c1 = C2
inv

α2
, c2 = Cinv

α
, (38)

where the constant α > 0 measures the size of τ . For this par-
ameter we also need to assume that

τ ≤ CTδt , (39)

which in particular implies that we can not let δt → 0 without
refining the finite element mesh.

Let Π0 be the L2 projection onto Vh,0. It will be shown
in the proof of the following theorem that the terms in (32)
added with respect to the standard Galerkin method provide
control over Π⊥ (a ·∇un+1

h

)
, whereas control over Π0(a ·

∇un+1
h ) is already inherent to the Galerkin method. In order

to achieve full control over a ·∇un+1
h we assume that the fol-

lowing stability condition holds:

‖a ·∇vh‖ ≤ Cstab‖
(
Π⊥+Π0

)
a ·∇vh‖ ∀ vh ∈Vh . (40)

This condition can be proved to hold for the most common
finite elements using the technique of [5].

The final ingredient we need is the norm in which stability
and convergence will be proven, which is

|||Vh|||2h :=
1

T
‖Vh‖2

�∞(L2)
+ ν‖Vh‖2

�2
(

H1
0

)
+ τ‖a ·∇Vh‖2

�2(L2)
+σ‖Vh‖2

�2(L2)

:= 1

T
max

n=0,...,N−1

∥∥vn+1
h

∥∥2+ ν

N−1∑
n=0

δt
∥∥∇vn+1

h

∥∥2

+ τ

N−1∑
n=0

δt
∥∥a ·∇vn+1

h

∥∥2+σ

N−1∑
n=0

δt
∥∥vn+1

h

∥∥2
.

Stability is stated through the classical inf-sup condition:

Theorem 2 (Stability). There exists a constant β > 0, inde-
pendent of h, such that

inf
Uh

sup
Vh

Bh(Uh, Vh)

|||Uh |||h |||Vh|||h ≥ β . (41)
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Proof. Taking Vh =Uh in (34) and using the skew-symmetry
of the convective term it is found that:

Bh (Uh, Uh)= 1

2T

∥∥uN
h

∥∥2+ 1

2T

N−1∑
n=0

∥∥un+1
h −un

h

∥∥2

+
N−1∑
n=0

δtν
∥∥∇un+1

h

∥∥2+
N−1∑
n=0

δtσ
∥∥un+1

h

∥∥2

−
N−1∑
n=0

δt
(
ũn+1, a ·∇un+1

h

)
. (42)

Using the equation for the subscales and condition (39) it is
found that

−
N−1∑
n=0

δt
(
ũn+1, a ·∇un+1

h

)
=−

N−1∑
n=0

δt
(
ũn+1,Π⊥ (a ·∇un+1

h

))
= 1

2T

∥∥ũN
∥∥2+ 1

2T

N−1∑
n=0

∥∥ũn+1− ũn
∥∥2+

N−1∑
n=0

δt

τ

∥∥ũn+1
∥∥2

≥ C
N−1∑
n=0

δtτ
∥∥Π⊥ (a ·∇un+1

h

)∥∥2
. (43)

This already shows that (34) is well posed and admits
a unique solution Uh .

Taking now Vh =
{
τΠn+1

0

} ≡ {τΠ0
(
a ·∇un+1

h

)}
in (34)

and using the inverse estimates (36) yields:

Bh
(
Uh,

{
τΠn+1

0

})≥ N−1∑
n=0

[
− τ

T

∥∥un+1
h −un

h

∥∥ ∥∥Πn+1
0

∥∥
− δtντ

Cinv

h

∥∥∇un+1
h

∥∥ ∥∥Πn+1
0

∥∥
+ δtτ

∥∥Πn+1
0

∥∥2

− δtστ
∥∥un+1

h

∥∥ ∥∥Πn+1
0

∥∥
− δtτ|a|Cinv

h

∥∥ũn+1
∥∥ ∥∥Πn+1

0

∥∥ ] . (44)

From the expression (24) for τ and (38), it is found that

ντ
Cinv

h
≤ ν1/2τ1/2 1

α
, τ|a|Cinv

h
≤ 1

α
, τσ ≤ τ1/2σ1/2 .

Using this, Young’s inequality and assumption (39) in (44)
leads to

Bh
(
Uh,

{
τΠn+1

0

})≥ 1

4

N−1∑
n=0

δtτ
∥∥Πn+1

0

∥∥2

−C
N−1∑
n=0

[
1

T

∥∥un+1
h −un

h

∥∥2

+ δtν
∥∥∇un+1

h

∥∥2

+ δtσ
∥∥un+1

h

∥∥2+ δt

τ

∥∥ũn+1
∥∥2
]

.

From this, the stability condition (40), (42) and (43), it fol-
lows that, for c sufficiently small,

Bh
(
Uh, Uh+ c

{
τΠn+1

0

})≥ C|||Uh |||2h . (45)

In fact, if the maximum of ‖un
h‖ is achieved at n = N0,

the sequence {u0
h, u1

h, . . . , uN0
h , 0, . . . , 0} has to be added to

Uh+ c
{
τΠn+1

0

}
, but this does not alter (45).

It only remains to show that

|||{τΠn+1
0 }|||h ≤ C|||Uh |||h

which follows easily from the expression for τ and using
again the inverse estimates (36).

Once stability has been proven, let us proceed to prove
convergence. The objective is to show that

ε(δt, h) := τ−1/2h p+1

(
N∑

n=0

δt‖un‖2
p+1

)1/2

(46)

is the error function of the formulation. We will show first that
this is also the error function of the consistency error (which
now is not zero) and the interpolation error.

Lemma 1 (Bound for the consistency error). There is a con-
stant C such that

Bh(U−Uh, Vh) ≤ Cε(δt, h)|||Vh |||h (47)

for all sequences Vh.

Proof. Since U satisfies B(U, Vh)= L(Vh) and Uh is solution
of (34), we have that

Bh(U−Uh, Vh)= −
N−1∑
n=0

δt
(
ũn+1, a ·∇vn+1

h

)
≤
(

N−1∑
n=0

δt

τ

∥∥ũn+1
∥∥2

)1/2

×
(

N−1∑
n=0

δtτ
∥∥a ·∇vn+1

h

∥∥2

)1/2

≤
(

N−1∑
n=0

δt

τ

∥∥ũn+1
∥∥2

)1/2

|||Vh |||h , (48)

where now ũn+1 is the solution of

1

T
δt ũ

n+ 1

τ
ũn+1 =−Π⊥ (a ·∇un+1) .

Weighting this equation by ũn+1, adding up for n and using
Young’s inequality, it is found that

1

2T

∥∥ũN
∥∥+ 1

2T

N−1∑
n=0

∥∥ũn+1− ũn
∥∥2+

N−1∑
n=0

δt

τ

∥∥ũn+1
∥∥2

≤
N−1∑
n=0

δt

(
τ

2

∥∥Π⊥ (a ·∇un+1)∥∥2+ 1

2τ

∥∥ũn+1
∥∥2
)

.
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Using this, the best approximation property of the L2 projec-
tion with respect to its associated norm and the interpolation
estimates (37), we have that

N−1∑
n=0

δt

τ

∥∥ũn+1
∥∥2 ≤ C

N−1∑
n=0

δtτ
∥∥a ·∇un+1−Π

(
a ·∇un+1)∥∥2

≤ C
N−1∑
n=0

δtτ|a|2h2p
∥∥un+1

∥∥2

p+1 .

The last term can be bounded by Cε2(δt, h). This, together
with (48), completes the proof of Lemma 1.

Lemma 2 (Estimates for the interpolation error). Let U be
the solution of (6) and Ûh = {û0

h, û1
h, . . . , ûN

h } a finite element
interpolant of U, each component satisfying (37). Then, there
is a constant C such that

Bh(U− Ûh, Vh) ≤ Cε(δt, h)|||Vh |||h , (49)

|||U− Ûh |||h ≤ Cε(δt, h) . (50)

Proof. From the definition of Bh we have that

Bh(U− Ûh, Vh)=
N−1∑
n=0

[
1

T

((
un+1−ûn+1

h

)− (un− ûn
h

)
, vn+1

h

)
+ νδt

(∇ (un+1− ûn+1
h

)
,∇vn+1

h

)
+ δt

(
a ·∇ (un+1− ûn+1

h

)
, vn+1

h

)
+σδt

(
un+1− ûn+1

h , vn+1
h

)
− δt

(
ũn+1, a ·∇vn+1

h

) ]
, (51)

where now ũn+1 is the solution of

1

T
δt ũ

n+ 1

τ
ũn+1 =−Π⊥ (a ·∇(un+1− ûn+1

h )
)

. (52)

To prove (49) we have to check that each of the terms in (51)
can be bounded by Cε(δt, h)|||Vh |||h . Let us prove this for the
first and last terms, since the others can be bounded using
similar arguments.

Using (39) we have that 1/T ≤ Cδt/τ . From this and the
interpolation estimate (37) we get

1

T

N−1∑
n=0

((
un+1− ûn+1

h

)− (un− ûn
h

)
, vn+1

h )

≤ C
1

T 1/2
‖Vh‖�∞(L2)

1

T 1/2

N∑
n=0

h p+1‖un‖p+1

≤ C|||Vh |||h
N∑

n=0

δt1/2τ−1/2h p+1‖un‖p+1 .

To bound the last term in (51) observe first that

−
N−1∑
n=0

δt
(
ũn+1, a ·∇vn+1

h

)
≤

N−1∑
n=0

δt1/2τ−1/2
∥∥ũn+1

∥∥ δt1/2τ1/2
∥∥a ·∇vn+1

h

∥∥
≤ |||Vh |||h

(
N−1∑
n=0

δt

τ

∥∥ũn+1
∥∥2

)1/2

. (53)

Similarly to the proof of the previous lemma, weighting (52)
by ũn+1, adding up for n and using Young’s inequality we
obtain

N−1∑
n=0

δt

τ

∥∥ũn+1
∥∥2

≤
N−1∑
n=0

(
δt

2τ

∥∥ũn+1
∥∥2+Cδtτ

∥∥Π⊥ (a ·∇ (un+1− ûn+1
h

))∥∥2
)

.

Since the norm of Π⊥ is ≤ 1, it follows that

N−1∑
n=0

δt

τ

∥∥ũn+1
∥∥2 ≤ C

N−1∑
n=0

δtτ
∥∥a ·∇ (un+1− ûn+1

h

)∥∥2

≤ C
N−1∑
n=0

δtτ|a|2h2p
∥∥un+1

∥∥2

p+1 ,

which is bounded by Cε2(δt, h). Using this in (53) shows that
the last term in (51) is bounded by Cε(δt, h)|||Vh |||h . The rest
of the terms in (51) can be bounded in a similar manner. Also
similar arguments can be used to prove (50). We omit the
details.

Theorem 3 (Convergence). There is a constant C such that

|||U−Uh|||h ≤ Cε(δt, h) .

Proof. The proof is standard: from Theorem 2 and using
Lemma 1 and 2 (estimate (49)), there exists a sequence Vh
such that

β|||Ûh−Uh|||h |||Vh|||h ≤ Bh(Ûh−U, Vh)+ Bh(U−Uh, Vh)

≤ Cε(δt, h)|||Vh |||h ,

and therefore |||Ûh−Uh|||h ≤ Cε(δt, h). The result follows now
from Lemma 2 (estimate (50)) and the triangle inequality.

This convergence estimate is optimal. For the station-
ary case, it reduces to the same error estimate as for the
Galerkin/least-square method [8], and is similar to what is
found in [12] for the transient problem.

Appendix: Sketch of the proof of Theorem 1

Even though it is not the classical approach, Theorem 1 can
be proved using exactly the same steps as in the analysis of
the fully discrete problem. Let us sketch how this can be done.
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The first step is to give a stability estimate in the form (41),
using now the bilinear form (9) that defines the semidiscrete
problem (8) and the norm (7).

Taking V =U in the definition (9) of B, we obtain

B(U, U)= 1

2T

∥∥uN
∥∥2+ 1

2T

N−1∑
n=0

∥∥un+1−un
∥∥2

+
N−1∑
n=0

δtν
∥∥∇un+1

∥∥2

+
N−1∑
n=0

δtσ
∥∥un+1

∥∥2
. (A.1)

This already proves that problem (8) is well posed.
In the proof of Theorem 2 we got control on the convec-

tive term in two steps. First, we saw that the subscales provide
control on the component orthogonal to Vh (see (43)), and
then we showed that the projection of the convective term
onto Vh can be controlled by taking the test function equal to
this projection multiplied by τ . For the semidiscrete problem
we can obtain directly control on the viscous plus convec-
tive term by using the density of �2(H1

0 (Ω)) in �2(L2(Ω))

(which is a consequence of the density of H1
0 (Ω) in L2(Ω)).

This guarantees that for all ε > 0 there exists a sequence
Vc = {v0

c , v
1
c , . . . , v

N
c } such that vn

c ∈ H1
0 (Ω) for all n and

N−1∑
n=0

δt2‖sn−vn
c‖2 ≤ ε

N−1∑
n=0

δt2‖sn‖2 . (A.2)

where sn ≡−ν∆un+a ·∇un . It is easy to prove that the term
in the right-hand-side is bounded. From (A.2) one can easily
show that

B(U, δtVc)≥−
N−1∑
n=0

δt

T

∥∥un+1−un
∥∥ ∥∥vn+1

c

∥∥
+ δt

N−1∑
n=0

δt
∥∥sn+1

∥∥2
(1− ε)

−σ

N−1∑
n=0

δt2
∥∥un+1

∥∥ ∥∥vn+1
c

∥∥ .

This inequality, together with (A.1), allows us to obtain a sta-
bility estimate of the form B(U, U+ cδtVc(U)) ≥ C|||U|||2 for
all U and for c small enough. The next step is to obtain a con-
sistency estimate. If Uex is the exact solution in Theorem 1

and U the semidiscrete solution, we have that

B (U−Uex, V )= 1

T

N−1∑
n=0

(
en+1

c , vn+1) ,

where en+1
c := u

(
tn+1

)−u(tn)− δt ∂tu|tn+1 is the consistency
error at time tn+1 = (n+1)δt. It can be expressed in terms
of the Taylor residual, whose �2(L2(Ω))-norm can be shown
to be bounded by Cδt provided ∂2

ttu ∈ L2(0, T ; L2(Ω)), as
stated in Theorem 1.

Once stability and consistency has been proven, a result
similar to Theorem 3 (which in the present setting can be con-
sidered Lax’s Theorem) yields convergence.
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