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Abstract. We derive globally convergent multigrid methods
for the discretized Signorini problem in linear elasticity. Spe-
cial care has to be taken in the case of spatially varying
normal directions. In numerical experiments for 2 and 3 space
dimensions we observed similar convergence rates as for cor-
responding linear problems.

1 Introduction

Contact problems in computational mechanics are of signifi-
cant importance for a variety of practical applications. Exam-
ples are metal forming processes, crash analysis, the design
of gear boxes, bearings, car tires or implants in biomechanics.
Here, we focus on Signorini’s problem in linear elasticity [10,
21, 22, 30] describing the linearized frictionless contact of an
elastic body with a rigid foundation. Even in this simple case,
the construction of fast, reliable solvers is far from trivial, due
to the intrinsic non-differentiable nonlinearity of the problem.

Regularization techniques [7, 11, 13, 14] require careful
handling of regularization parameters in order to find a rea-
sonable compromise between efficiency and accuracy. Dual
techniques (cf. e.g. [5, 13–15]) are based on saddle point for-
mulations incorporating the constraints by means of Lagrange
multipliers. Active set strategies [2, 16, 18, 20] iteratively pro-
vide approximations of the contact set. A linear subprob-
lem with given contact set has to be solved in each iteration
step and multigrid methods are typically used for this pur-
pose. An active set strategy with inexact linear solver has
been proposed by Dostál [8]. Recently, Schöberl [28, 29] has
developed an approximate variant of the projection method
(cf. e.g. [13, p. 5]) using a domain decomposition precondi-
tioner and a linear multigrid solver on the interior nodes.
Mesh-independent convergence rates are proved, provided
that the number of interior nodes is growing with higher order
than the number of nodes on the Signorini boundary. Several
authors have applied multigrid techniques to scalar obsta-
cle problems directly (see e.g. [4, 6, 12, 16, 19, 23, 26]). Block
versions of these methods can be applied in linear elastic-
ity, provided that normal directions are constant along the

Signorini boundary. New difficulties arise, as soon as spa-
tially varying normals occur. In this case, the slip conditions
at the contact boundary can not be represented on coarse
grids.

In this paper we use a direct approach as introduced
in [23, 26]. Our algorithm does not involve any regularization
or dual formulation and should be considered as a descent
method rather than an active set strategy. The basic idea is
to minimize the energy on suitably selected d-dimensional
subspaces, where d = 2, 3 is the dimension of the deformed
body. In this way, we obtain nonlinear variants of succes-
sive subspace correction methods in the sense of Xu [35].
See e.g. [9, 31] for a similar approach to smooth nonlinear
problems. Well-known projected block Gauß–Seidel relax-
ation is recovered by choosing the d-dimensional subspaces
spanned by the fine grid nodal basis functions associated
with a fixed node. In order to increase convergence speed
by better representation of the low-frequency components of
the error, we additionally minimize on subspaces spanned by
functions with large support. The suitable selection of these
coarse grid spaces is crucial for the efficiency of the resulting
method. Our choice is based on sophisticated modifications
of the multilevel nodal basis. Straightforward implementation
of the resulting algorithm requires additional prolongations
in order to check the constraints prescribed on the fine grid.
As a consequence, the complexity of one iteration step is
O(n J log n J ) for uniformly refined triangulations and might
be even O(n2

J ) in the adaptive case. Optimal complexity of
the multigrid V-cycle is recovered by approximating fine grid
constraints on coarser grids using so-called monotone restric-
tions. This modification may slow down convergence, as long
as the algebraic error is too large. In our numerical experi-
ments we observed that initial iterates as provided by nested
iteration are usually accurate enough to provide fast conver-
gence throughout the whole iteration process. Our approach
can be extended to more complicated situations like elastic
contact or contact with friction. This will be the subject of
forthcoming work.

The paper is organized as follows. First we give a brief in-
troduction to Signorini’s problem. A general framework for
our method including basic convergence results is presented
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in Sect. 3. In particular, it turns out that the discrete coinci-
dence set is detected in a finite number of steps, if the given
discrete problem is non-degenerate. Then, our nonlinear it-
eration automatically becomes a linear subspace correction
method for the resulting linear problem. Hence, asymptotic
convergence rates can be obtained by linear multigrid conver-
gence theory. This will the subject of a separate paper.

A suitable multilevel splitting and the monotone restric-
tions are described in Sect. 4, respectively. In case of spa-
tially varying normals, various fine grid directions are incor-
porated in each local coarse grid space. Similar techniques
provide appropriate monotone restrictions of fine grid con-
straints. The resulting truncated monotone multigrid method
can be arranged as a multigrid V-cycle with projected block
Gauß–Seidel smoothing and sophisticated restriction and pro-
longation. Implementation was carried out in the framework
of the finite element toolbox UG [3]. In our numerical experi-
ments to be reported in the final section, we observed mesh
independent asymptotic convergence rates. Using nested it-
eration overall efficiency is similar to the linear selfadjoint
case.

2 Signorini’s problem

We consider the deformation of an elastic body as described
by the unknown displacement vector u = (u1, . . . , ud) de-
fined on the polygonal (polyhedral) reference configuration
Ω ⊂ Rd , d = 2, 3. Deformation is caused by volume forces f
and traction forces P. We assume that the deformed body is
in equilibrium state such that

−σij(u), j = fi in Ω. (1)

Here and in the following, summation is implicitly taken over
indices i, j, s occurring twice and σ, j = ∂σ

∂xj
denotes the par-

tial derivative. We further assume that the stress tensor σ is
related to the strain tensor ε,

εkl(u)= 1

2
(uk,l +ul,k), 1 ≤ k, l ≤ d, (2)

by Hooke’s Law

σkl(u)= Eklijεij(u), 1 ≤ i, j, k, l ≤ d. (3)

Hooke’s tensor E has the symmetry properties

Eijkl = Eklij = Ekl ji . (4)

The body’s surface ∂Ω is decomposed into three disjoint
parts

∂Ω = ΓD ∪ ΓF ∪ ΓC

with ΓD having positive measure. We assume that the body is
clamped at ΓD so that

ui = 0 on ΓD (5)

and traction forces P are applied at ΓF , giving

σij(u) ·nj = Pi on ΓF. (6)

Here n= (n1, . . . , nd) denotes the outer normal on ∂Ω. The
remaining part ΓC of the body’s surface may (or may not) be
in contact with a given rigid foundation. Identifying normals
on Ω and on the deformed configuration (cf. e.g. [22, p. 19]),
we obtain linearized contact conditions

σn(u)(u ·n− g) = 0

u ·n− g ≤ 0

σn(u) ≤ 0

σT (u) = 0




on ΓC. (7)

The function g denotes the initial gap betweenΩ and the rigid
foundation, σn = σijninj and (σT )i = σijnj −σnni denote the
normal and tangential contributions to the stress vector, re-
spectively. Observe that σT (u)= 0 means frictionless contact.
We emphasize that the subset of ΓC where contact actually
takes place is not known in advance.

Signorini’s problem (cf. [10, 21, 22, 30]) amounts to solve
the equilibrium conditions (1) subject to the boundary condi-
tions (5), (6) and (7). Multiplying with a test function v and
integrating by parts, Signorini’s problem can be reformulated
in a weak sense as the variational inequality

u ∈ K : a(u, v−u)≥ f(v−u) ∀v ∈ K. (8)

Here, the bilinear form

a(u, v)=
∫
Ω

σij(u) vi, j dx

is symmetric and elliptic on H = {v ∈ (
H1(Ω)

)d | v|ΓD = 0}.
For reasonable data, the functional

f(v) =
∫
Ω

fi vi dx +
∫
ΓF

Pi vi ds .

is linear and bounded on H . Finally,

K = {v ∈ H | v ·n≤ g on ΓC}
denotes the set of admissible displacements. Note that K
is a closed convex subset of H . The variational formulation
(8) can be equivalently rewritten as the convex minimization
problem

u ∈ K : J(u) ≤ J(v) ∀v ∈ K, (9)

for the quadratic potential energy functional J : H −→ R,

J(v)= 1

2
a(v, v)− f(v). (10)

Existence and uniqueness of a weak solution u can now be
established by direct methods of variational calculus (see
e.g. [22, p. 113]).

Let TJ be a given partition ofΩ into triangles (tetrahedra)
with minimal diameter h J = O(2−J). NJ denotes the set of
vertices contained inΩ∪ΓF ∪ΓC . Discretizing (9) by contin-
uous, piecewise linear finite elements SJ ,

SJ = {v= (v1, . . . , vd) ∈ C(Ω)d ∩ H
∣∣

vi |t is linear ∀i = 1, . . . , d, t ∈ TJ },
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we obtain the discrete minimization problem

u J ∈ KJ : J(u J )≤ J(v) ∀v ∈ KJ . (11)

Here the set K ⊂ H is replaced by its discrete analogue
KJ ⊂ SJ ,

KJ = {
v ∈ SJ | v(p) ·nJ(p)≤ gJ(p) ∀p ∈ NJ ∩ΓC

}
based on suitable approximationsnJ and gJ of n and g. The
subscript J will be mostly skipped in the sequel. Note that
in general KJ �⊂ K. Other discretizations, for example by
piecewise bilinear functions on quadrilaterals, can be con-
structed in a similar way.

Of course, (11) admits a unique solution. For shape regu-
lar partitions TJ the approximate solutions u J are converging
to u as the meshsize tends to zero. Optimal error estimates in
the H1 norm are available for H2-regular problems. We refer
to [21, p. 109] or [22, p. 127] for details.

3 Extended relaxations

The finite element space SJ is spanned by the nodal basis

λ(J)p E
i, i = 1, . . . , d, p ∈ NJ

with cartesian unit vectors Ei ∈ Rd and piecewise linear,
scalar functions λ(J)p satisfying

λ(J)p (q)= δpq, p, q ∈ NJ (Kronecker delta).

A nonlinear version of successive subspace correction
(cf. Xu [35]) based on the splitting SJ = V1 + . . .+ Vn J with
d-dimensional subspaces

Vl = span{λ(J)pl
E1, . . . , λ(J)pl

Ed}, l = 1, . . . , n J = #NJ ,

gives rise to the well-known projected block Gauß–Seidel re-
laxation MJ (cf. e.g. [13, p. 151]). As the convergence speed
of this method usually deteriorates rapidly with increasing re-
finement, we consider the extended splitting

SJ = V1 + . . .+ Vn J + V ν
n J+1 + . . .+ V ν

m . (12)

The additional d-dimensional subspaces V ν
l , l = n J + 1,

. . . ,m are intended to improve the representation of low-
frequency contributions of the error. Hence, basis functions
µ1,ν

l , . . . ,µd,ν
l of V ν

l should have large support. The spaces
V ν

l may vary in each iteration step, in order to allow a step-
wise adaptation of the splitting (12) to the coincidence set.
The extended relaxation based on the extended splitting (12)
now reads as follows.

Starting with the given ν-th iterate uνJ = wν0 ∈ KJ , we
compute a sequence of intermediate iterateswνl =wνl−1 +v∗,ν

l ,
l = 1, . . . ,m. The new iterate is uνJ = wνm . The corrections
v

∗,ν
l are the unique solutions of the local subproblems

v
∗,ν
l ∈ Dl

∗,ν : J(wνl−1 +v∗,ν
l ) ≤ J(wνl−1 +v) ∀v ∈ Dl

∗,ν,
(13)

with closed, convex sets Dl
∗,ν defined by

Dl
∗,ν = {v ∈ V ν

l |wνl−1 +v ∈ KJ } ⊂ V ν
l . (14)

We clearly have Dl
∗,ν = V ν

l , if all v ∈ V ν
l satisfy v(p)= 0

∀p ∈ NJ ∩ΓC . Otherwise, it might be too costly to check
whether some v ∈ V ν

l is contained in Dl
∗,ν or not. Hence, in

this case optimal corrections v∗,ν
l , l = n J +1, . . . ,m, are re-

placed by approximations vνl ∈ V ν
l provided by approximate

local problems

vνl ∈ Dl
ν : J(wl−1 +vνl )≤ J(wl−1 +v) ∀v ∈ Dl

ν. (15)

The closed, convex subsets Dl
ν ⊂ V ν

l are intended to approx-
imate Dl

∗,ν. They are defined by

Dl
ν = {v ∈ V ν

l | v(pl) ·ei(pl) ∈ [ψ i,ν
l , ψ

i,ν
l ] ∀i = 1, . . . , d}.

(16)

Here pl ∈ NJ ∩ int suppµi,ν
l and ψ i,ν

l , ψ
i,ν
l ∈R are suitably

chosen. The unit vectors ei(pl) are obtained from Ei by the
Householder reflection mapping E1 to e1(pl) = n(pl). For
completeness, we select arbitrary pl ∈ NJ ∩ int suppµi,ν

l and
set ei(pl)=Ei , ψ i,ν

l = −∞, ψ i,ν
l = +∞, if all v ∈ V ν

l sat-
isfy v(p)= 0 ∀p ∈ NJ ∩ΓC . For notational convenience, the
index ν will be mostly suppressed in the sequel.

Adapting multigrid terminology, the leading projected
block Gauß–Seidel relaxation MJ plays the role of a fine
grid smoother, ūνJ = wνn J

= MJ(uνJ) is the smoothed iterate
and subsequent corrections vl , l = n J +1, . . . ,m are called
coarse grid corrections. Note that ūνJ ∈ KJ holds for all
u0

J ∈ SJ .

Theorem 1. Assume that

0 ∈ Dl ⊂ Dl
∗. (17)

Then the approximate extended relaxation

uν+1
J = uνJ +

n J∑
l=1

v∗
l +

m∑
l=n J +1

vl (18)

with v∗
l and vl computed from (13) and (15), respectively, is

globally convergent.

Proof. The sequence of iterates uνJ , ν = 0, 1, . . . , is bounded
because our scheme (13) is monotone in the sense that

J(uν+1
J ) ≤ J(wνl+1)≤ J(wνl )≤ J(ū0

J) <∞ , ν = 1, 2, . . . ,

and we have J(vν) → ∞ for any unbounded sequence
vν ∈ SJ .

As uνJ is bounded and SJ has finite dimension, it is suf-
ficient to show that each convergent subsequence of uνJ con-
verges to u J . Let uνk

J be an arbitrary, convergent subsequence
of uνJ , with some limit u∗ ∈ SJ ,

uνk
J → u∗, k → ∞. (19)

It is easily checked that MJ is continuous so that

MJ(u
νk
J )→ MJ(u

∗), k → ∞. (20)

Again, monotonicity of the iteration implies

J(u
νk+1
J )≤ J(uνk+1

J ) ≤ J(MJ(u
νk
J ))≤ J(uνk

J ).
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In virtue of the convergence (19), (20) and the continuity of J
on KJ , this leads to

J(MJ (u
∗))= J(u∗). (21)

It is easily seen that (21) holds, if and only if all local correc-
tions of the projected block Gauß–Seidel relaxation applied to
u∗ are zero, i.e., MJ(u∗)= u∗. As the finite element solution
u J is the only fixed point of the projected block Gauß–Seidel
relaxation (cf. e.g. [13, p. 152]), we have shown u∗ = u J . This
completes the proof. �

As a corollary, we also obtain convergence of the interme-
diate iterates

wνl → u J ν→ ∞. (22)

Indeed, the sequencewνl , ν = 0, 1, . . . , is bounded and due to
the monotonicity

J(uνk+1
J ) ≤ J(w

νk
l )≤ J(uνk

J )

and the continuity of J on KJ the limit w∗ of an arbi-
trary convergent subsequence wνk

l , k = 0, 1, . . . , must satisfy
J(w∗)= J(u J), giving w∗ = u J .

For given w ∈ KJ , we define the discrete coincidence set

NJ
•(w)= {p ∈ NJ ∩ΓC |w(p) ·n(p)= g(p)}.

No contact occurs at NJ
◦(w)= NJ \NJ

•(w). Once the coin-
cidence set NJ

•(u J) is known, the minimization problem (11)
can be rewritten as the reduced linear problem

a(u J , v)= f(v) ∀v ∈ SJ
◦ (23)

where the subspace SJ
◦ ⊂ SJ is defined by

SJ
◦ = {v ∈ SJ | v(p) ·n(p)= 0 ∀p ∈ NJ

•(u J )}.
In the remainder of this section, we will show that the it-
eration (18) is asymptotically reducing to a linear subspace
correction method for the linear problem (23).

Lemma 1. Assume that the discrete problem (11) is non-
degenerate in the sense that

f(λ(J)p n(p))−a(u J, λ
(J)
p n(p)) > 0 ∀p ∈ NJ

•(u J) (24)

and that the coarse grid spaces V ν
l in (12) are chosen such

that

µi,ν
l (p) ·n(p)= 0 ∀p ∈ NJ

•(ūνJ) (25)

holds for all ν ≥ 0.
Then there is a ν0 ≥ 0 such that

NJ
•(uνJ)= NJ

•(u J) ∀ν ≥ ν0. (26)

Proof. Let p ∈ NJ
◦(u J)∩ΓC or, equivalently, u J(p) ·n(p) <

g(p).Convergence of uνJ implies uνJ(p) ·n(p) < g(p) ∀ν ≥ ν0
with sufficiently large ν0. Hence,

NJ
◦(u J)⊂ NJ

◦(uνl ) ∀ν ≥ ν0.

Now, let pl ∈ NJ
•(u J). As a consequence of (24) and of con-

vergence of intermediate iterates (22), we obtain

f(λ(J)pl
n(pl))−a(wνl , λ

(J)
pl
n(pl)) > 0 ∀ν ≥ ν0 (27)

for l = 1, . . . , n J and sufficiently large ν0. Now assume that
pl /∈ NJ

•(ūνJ) or, equivalently,

ūνJ (pl) ·n(pl)=wνl−1(pl) ·n(pl)+v∗,ν
l (pl) ·n(pl) < g(pl).

In the light of (13), the correction v∗,ν
l then satisfies the varia-

tional equality

a(v∗,ν
l , v)= f(v)−a(wνl−1, v) ∀v ∈ Vl.

Hence, f(v)−a(wνl , v) = 0 ∀v ∈ Vl in contradiction to (27).
We have shown

NJ
•(u J)⊂ NJ

•(ūνJ) ∀ν ≥ ν0.

It is clear from (25) that NJ
•(ūνJ) ⊂ NJ

•(uν+1
J ), giving

NJ
•(u J)⊂ NJ

•(uνJ) ∀ν≥ ν0 +1. This completes the proof.�
Recall that continuous versions of non-degeneracy (24)

provide stability of the free boundary (cf. e.g. [27, p. 198]).
As a by-product of the proof, we also get

NJ
•(ūνJ)= NJ

•(u J) ν ≥ ν0. (28)

Condition (25) guarantees that corrections in the direc-
tion of µi,ν

l do not affect the actual guess of the coincidence
set NJ

•(ūνJ). As a consequence of (25) coarse grid correction
asymptotically reduces to linear subspace correction for the
reduced problem (23) provided that no constraints are active.
This can be ensured by appropriate choice of local obstacles
ψ

i,ν
l , ψ i,ν

l .
Assume that V ν

l solely depends on NJ
•(ūνJ), i.e., V ν

l =
Vl(NJ

•(ūνJ )). Then, a sequence of local obstacles ψ i,ν
l , ψ i,ν

l ,
ν ≥ 0, is called quasioptimal (cf. [23]), if convergence of the
intermediate iterates wνl (see (22)) and convergence of the co-
incidence sets NJ

•(ūνJ) (see (28)) implies that there is a pos-
itive number ψ∗, independent of ν, and some ν0 ≥ 0, such
that

ψ
i,ν
l ≤ −ψ∗ < 0<ψ∗ ≤ ψ

i,ν
l ∀ν ≥ ν0. (29)

holds for all i = 1, . . . , d and l = n J +1, . . . ,m.
Theorem 2. Assume that the assumptions of Lemma 1 are
satisfied. Assume further that the coarse grid spaces only de-
pend on the actual guess of the coincidence set, i.e., V ν

l =
Vl(NJ

•(ūνJ )), and that the local obstacles ψ i
l , ψ

i
l are qua-

sioptimal in the sense of (29).
Then there is a ν0 > 0 such that the approximate extended

relaxation (18) is reducing to the linear successive subspace
correction induced by the splitting

SJ
◦ = V ◦

1 +· · ·+ V ◦
m

with

V ◦
l =

{
Vl ∩SJ

◦ , l = 1, . . . , n J

Vl(NJ
•(u J)) , l = n J +1 . . . ,m
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as applied to the reduced linear problem (23).
Proof. Let l = 1, . . . , n J . There is nothing to show, if pl /∈ ΓC .
Let pl ∈ NJ

•(u J). As a consequence of Lemma 1 and (28),
the normal components of v∗,ν

l are zero, if ν is suffi-
ciently large. In this case, we have v∗,ν

l ∈ Vl ∩SJ
◦ = V ◦

l and
V ◦

l = Dl
∗,ν so that

J(wl−1 +v∗,ν
l ) ≤ J(wl−1 +v) ∀v ∈ V ◦

l . (30)

In the remaining case pl ∈ NJ
◦(u J)∩ΓC it follows directly

from (28) that v∗,ν
l must satisfy (30) with V ◦

l = Vl for suffi-
ciently large ν.

Now, let l = n J +1, . . . ,m. Then, exploiting (28) we get
V ν

l = Vl(NJ
•(u J )), i.e., V ν

l = V ◦
l , for sufficiently large ν.

Convergence of the intermediate iterates wνl (22) implies that
the corrections vνl must tend to zero. Utilizing (29), it follows
that

vνl (pl) ·ei(pl) ∈ [−ψ∗, ψ∗] ⊂ (ψ
i,ν
l , ψ

i,ν
l )

holds for sufficiently large ν. In this case,

J(wl−1 +vνl )≤ J(wl−1 +v) ∀v ∈ V ◦
l

and the assertion follows. �
Using optimal constraints (14) instead of quasioptimal

approximations (16), we asymptotically get the same linear
subspace correction method for (23).

4 Truncated monotone multigrid methods.

Assume that TJ is resulting from J refinements of an inten-
tionally coarse triangulation T0. Though the algorithms and
convergence results to be presented can be easily generalized
to the non-uniform case, let us assume for the moment that the
triangulations are uniformly refined. More precisely, each tri-
angle t ∈ Tk is subdivided into four congruent subtriangles in
order to produce the next triangulation Tk+1.

Using this hierarchy of grids and the corresponding hi-
erarchy of finite element spaces, we now choose suitable
spaces Vn J +1, . . . , Vm . Each space Vl = Vl(p,k) is associated
with a node p ∈ Nk on some refinement level k ≤ J −1. We
frequently use the notation V (k)

p = Vl(p,k) , µ(k)p = µl(p,k) , etc.
The ordering l = l(p, k) is taken from fine to coarse, i.e.,
l(p, k)≤ l(q, j) implies k ≥ j .

Starting with

(
µ(J)p

)i =
{

0 if i = 1 and p ∈ NJ
•(ūνJ)

λ(J)p e
i(p) else

, (31)

we recursively define truncated basis functions(
µ(k−1)

p

)i =
∑
q∈Nk

λ(k−1)
p (q) ei(p) ·e j(q)

(
µ(k)q

) j
(32)

(summation over j) and we set

V (k)
p = span{(µ(k)p

)1
, . . . ,

(
µ(k)p

)d} k = J −1, . . . , 0. (33)

Note that supp
(
µ(k)p

)i = supp λ(k)p and
(
V (k)

p

)ν =
V (k)

p (NJ
•(ūνJ)) only depends on NJ

•(ūνJ).

Lemma 2. Let 0 ≤ k ≤ J, p ∈ Nk and 1 ≤ i, j ≤ d. Then

(
µ(k)p

)i
(q) ·e j(q)=

{
0 if j = 1 and q ∈ NJ

•(ūνJ)

λ(k)p (q) e
i(p) ·e j(q) else

(34)

holds for all q ∈ NJ .

Proof. The assertion is clear for k = J . Assume that (34) holds
for some k ≤ J . If j �= 1 or q /∈ NJ

•(ūνJ) we obtain (summa-
tion on s)(
µ(k−1)

p

)i
(q) ·e j(q)=

∑
r∈Nk

λ(k−1)
p (r) ei(p)

·es(r)
(
µ(k)r

)s
(q) ·e j(q)

=
∑
r∈Nk

λ(k−1)
p (r) λ(k)r (q) e

i(p)

·es(r) es(r) ·e j(q)

=
∑
r∈Nk

λ(k−1)
p (r) λ(k)r (q) e

i(p) ·e j(q)

= λ(k−1)
p (q) ei(p) ·e j(q)

exploiting the identity

ei(p) ·es(r) es(r) ·e j(q)= ei(p) ·e j(q) p, q, r ∈ NJ .

Now let q ∈ NJ
•(ūνJ). Then definition (31) yields

(
µ(J)p

)i
(q) ·n(q)= 0 ∀i = 1, . . . , d, p ∈ NJ .

Using (32) the assertion now follows by induction. �
Lemma 2 reveals the construction principle of coarse grid

spaces V (k)
p . If q /∈ NJ

•(ūνJ), we get

(
µ(k)p

)i
(q)= λ(k)p (q) e

i(p) ∀i = 1, . . . , d.

Hence, V (k)
p = span{λ(k)p E

1, . . . , λ(k)p E
d}, if there is no

contact in the neighborhood of p or, more precisely, if
int supp λ(k)p ∩NJ

•(ūνJ)= ∅. In this case, we obtain the same
local correction v(k)p as classical multigrid method with canon-
ical Galerkin restriction and block Gauß–Seidel smoother. On
the other hand, if q ∈ NJ

•(ūνJ ), Lemma 2 provides

(
µ(k)p

)i
(q) ·n(q)= 0 ∀i = 1, . . . , d.

Hence, the spaces V (k)
p satisfy condition (25).

Roughly speaking, coarse grid basis functions
(
µ(k)p

)i
are

obtained by careful truncation and bending of nodal basis
functions λ(k)p e

i(p). In case of constant normal directions,
i.e., n(p) ≡ n ∀p ∈ NJ ∩ΓC , the coordinate directions can
be arranged such that E1 = n. In this case (32) reduces to
canonical restriction(
µ(k−1)

p

)i =
∑
q∈Nk

λ(k−1)
p (q)

(
µ(k)q

)i
. (35)

Note that canonical restriction (35) could be used in the case
of spatially varying normals as well, because the resulting
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coarse grid basis functions would still satisfy (25). How-
ever, varying normals cause large energy of such coarse grid
functions which leads to poor convergence rates of the corres-
ponding subspace correction. Similar effects caused by jump-
ing coefficients have been investigated e.g. by Wan et al. [32].

In order to complete the construction of our multi-
grid method, we now describe the recursive construction

of local obstacles ψ i
l(p,k) =

(
ψ (k)

p

)i
, ψ i

l(p,k) = (
ψ (k)

p

)i
, k =

J −1, . . . , 0, occurring in (14). Starting with

(
ψ(J)

p

)1 = −∞,
(
ψ
(J)
p

)1 = g(p)− ūνJ(p) ·n(p)(
ψ(J)

p

)i = −∞
(
ψ
(J)
p

)i = +∞ i = 2, . . . , d
p ∈ NJ ,

(36)

we assume that local obstacles (ψ(k)
p
)i , (ψ

(k)
p )

i have been con-
structed for some k ≤ J . For fixed p ∈ Nk−1 and i = 1, . . .d
local obstacles on the next coarser level are now obtained by
monotone restriction defined as follows

(ψ (k−1)
p )i = d−1

i max(Ψ i
p)− , (ψ (k−1)

p )i = d−1
i min(Ψ i

p)+ .
(37)

The factor di ≤ d denotes the number of non-zero entries in
the i-th row of

(
ei(p) ·e j(q)

)
i, j=1,...d . Further let

Ψ i
p =

{
(ψ

(k)
q ) j

ei (p)·e j (q)
,

(ψ
(k)
q ) j

ei (p)·e j (q)

∣∣ q ∈ int supp λ(k−1)
p ∩Nk,

j = 1, . . . , d, j �= 1 or q /∈ NJ
•(ūνJ), ei(p) ·e j(q) �= 0

}
.

The sets (Ψ i
p)− and (Ψ i

p)+ contain the non-positive and
non-negative elements of Ψ i

p, respectively. Observe that the
weights ei(p) ·e j(q) may be positive, negative or zero.

Once all local corrections v(k−1)
p = vl(p,k) on level k −1

have been computed from (15), we update the obstacles ac-
cording to

(
ψ (k−1)

p

)i →
(
ψ (k−1)

p

)i −v(k−1)
p (p) ·ei(p)

(
ψ (k−1)

p

)i → (
ψ (k−1)

p

)i −v(k−1)
p (p) ·ei(p)

p ∈ Nk−1.

(38)

Monotone restriction (37) and update (38), are repeated in-
ductively until the coarsest level k = 0 is reached. It is clear
by construction that

(
ψ (k)

p

)i ≤ 0 ≤ (
ψ (k)

p

)i
k = J −1, . . . , 0. (39)

Lemma 3. Let ūνJ ∈ KJ . Then the subsets Dl = D(k)
p ,

D(k)
p =

{
v ∈ V (k)

p

∣∣ v(p) ·ei(p) ∈
[(
ψ (k)

p

)i
,
(
ψ (k)

p

)i
]

∀i = 1, . . . , d

}

satisfy condition (17).

Proof. From corrections on levels J to k ≤ J we obtain the
intermediate iterate w(k),

w(k) = uνJ +
J∑

j=k

∑
p∈Nj

v(k)p .

We show by induction that

w(k) +
∑

p∈Nk−1

z(k−1)
p ∈ KJ ∀z(k−1)

p ∈ D(k−1)
p , k = J, . . . , 1,

(40)

holds after monotone restriction (37). Simultaneously, we
prove the auxiliary result

w(k) +
∑
p∈Nk

z(k)p ∈ KJ ∀z(k)p ∈ D(k)
p , k = J, . . . , 0, (41)

where D(k)
p is taken after update (38) for k = J −1, . . . , 0.

Assertion (41) is clear for k = J . Assuming that (41)
holds for some k = J, . . . , 1 we now prove (40). Let
z(k−1)

p = (z(k−1)
p )i (µ

(k−1)
p )i ∈ D(k−1)

p . Inserting (32), we get
the representation∑
p∈Nk−1

z(k−1)
p =

∑
p∈Nk

z(k)p

with

z(k)p =
∑

q∈Nk−1

λ(k−1)
q (p) (z(k−1)

q )i e
i(q) ·e j(p)

(
µ(k)p

) j ∈ V (k)
p .

Let j �= 1 or p /∈ NJ
•(ūνJ ). Exploiting (37), we get

z(k)p (p) ·e j(p)=
∑

q∈Nk−1

λ(k−1)
q (p) (z(k−1)

p )i e
i(q) ·e j(p)

∈
[(
ψ (k)

p

) j
,
(
ψ (k)

p

) j
]

for all j = 1, . . . , d. In the remaining case, j = 1 and p ∈
NJ

•(ūνJ), Lemma 2 leads to

z(k)p (p) ·e1(p)= 0 ∈ [ (
ψ (k)

p

)1
,
(
ψ (k)

p

)1 ]
.

Hence, z(k)p ∈ D(k)
p ∀p ∈ Nk and (40) follows from (41).

Finally, it is easily seen that the update (38) is performed
in such a way that (41) holds for k −1. �

Lemma 4. The local obstacles ψ i
l(p,k) =

(
ψ (k)

p

)i
, ψ i

l(p,k) =(
ψ (k)

p

)i
, k = J −1, . . . , 0, as obtained from (37) and (38) are

quasioptimal in the sense of (29).

Proof. The local obstacles as obtained from (37) and (38)
depend continuously on the smoothed iterate ūνJ and on the
coarse grid corrections v(k)p . As ūνJ → u J and v(k)p → 0, it is
sufficient to show that (29) holds if ūνJ and v(k−1)

p are replaced
by u J and 0, respectively. This can be done by induction. �

In case of constant normal directions, i.e., ei(p) =
ei(q) ∀p, q ∈ NJ , definition (37) reduces to the restriction
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ψ (k−1)

p

)1 =
min

{(
ψ (k)

q

)1 ∣∣ q ∈ (int supp λ(k−1)
p ∩Nk)\NJ

•(ūνJ)
}

as proposed by Mandel [26] in the scalar case (see also [23]).
No tangential constraints occur on coarse grids. However, in
case of spatially varying normal directions monotone restric-
tion (37) causes tangential constraints on coarse levels though
no such constraints are present on the finest grid. This leads to
more pessimistic coarse grid constraints in comparison with
the scalar case. Improvements of (37) are possible by gener-
alizing ideas from [23].

Now we are ready to state the main result of this section.

Theorem 3. The truncated monotone multigrid method
based on local spaces V (k)

p from (33) and on local obstacles
ψ (k)

p , ψ (k)
p as obtained from (37) and (38) is globally conver-

gent. If the discrete problem (11) satisfies the non-degeneracy
condition (24), then there is a ν0 ≥ 0 such that the iteration
reduces to the linear subspace correction method for the lin-
ear reduced problem (23) induced by the splitting

SJ
◦ =

J∑
k=0

∑
p∈Nk

(
V (k)

p

)◦
(42)

with
(
V (J)

p

)◦ = V (J)
p ∩ SJ

◦, p ∈ NJ , and
(
V (k)

p

)◦ =
V (k)

p (NJ
•(u J)), p ∈ Nk, k = J −1, . . . , 0.

Proof. Utilizing (39) and Lemma 3, global convergence fol-
lows from Theorem 1. Asymptotic reduction to a linear iter-
ation follows from Theorem 2 in combination with Lemma 3
and Lemma 4. �

Note that splitting (42) depends only on the choice of ad-
ditional coarse grid spaces and not on the choice of quasiop-
timal restriction. In the light of Theorem 3 linear multigrid
convergence theory can be applied in order to derive asymp-
totic convergence rates. This will the subject of a forthcoming
paper.

5 Implementation

We shall derive an algebraic reformulation of the truncated
monotone multigrid method considered in Theorem 3. The re-
sulting algorithm can be implemented as a usual multigrid
V-cycle. Denoting

apq = (
a(λ(J)p e

i, λ(J)q e j)
)

i, j=1,...,d
, bp = (

f(λ(J)p e
i)
)

i=1,...,d

we define the stiffness matrix and right hand side

A= (apq)p,q∈NJ , b= (bp)p∈NJ .

The vector representation of the given iterate uνJ is

uνJ = (up)p∈NJ , up = (ui
p)i=1,...,d , ui

p = uνJ(p) ·ei(p).
(43)

We shall use a similar partitioning of vectors v =
(vi

p)p∈Nk ,i=1,...,d ∈ Rdnk on all levels 0 ≤ k ≤ J . The residual

is given by

r = b−AuνJ .
Solving the defect problem

v∗ ∈ D : 1
2v

∗ ·Av∗ −r ·v∗ ≤ 1
2v ·Av−r ·v ∀v ∈ D

(44)

with constraints

D = {v ∈ Rdn J | v1
p ≤ g(p)−u1

p ∀p ∈ NJ ∩ΓC}
exactly, we would obtain the exact solution uJ = uνJ +v∗.
The approximate correction as obtained by one step of pro-
jected block Gauß–Seidel relaxation with d ×d blocks apq is
denoted by GSJ (A, r,D). Hence, vector representation of
the smoothed iterate ūνJ is given by

ūνJ = uνJ + GSJ(A, r,D).

Now, we describe the coarse grid correction of ūνJ . It is
clear how to obtain the actual coincidence set NJ

•(ūνJ). We
define the truncated stiffness matrix A(J) = trc(A) by set-
ting those rows and columns of A to zero that are associated
with basis functions λpe

1(p) , p ∈ NJ
•(ūνJ). In practical im-

plementation this is realized by appropriate flags. Using the
partitioning v = (vi

p)p∈Nk,i=1,...,d of some vector v ∈ Rdnk on
some level k, the vector trc(v) is obtained by annihilating all
v1

p with p ∈ NJ
•(ūνJ)∩Nk . The truncated residual is given by

r J = trc(b−AūνJ).
Recursive definition (32) of µ(k)p gives rise to the restric-

tion matrixRk−1
k ,

Rk−1
k = (

λ(k)p (q)epq
)

p∈Nk−1 ,q∈Nk

epq = (ei(p) ·e j(q))i, j=1,...,d .

Prolongation is defined by

P k
k−1 = (

Rk−1
k

)T
.

Local obstacles

ψ (k) =
(
ψ (k)

p

)
p∈Nk

, ψ (k)
p

=
((
ψ (k)

p

)i
)

i=1,...,d
,

ψ
(k) =

(
ψ
(k)
p

)
p∈Nk

, ψ
(k)
p =

((
ψ (k)

p

)i
)

i=1,...,d

are initialized according to (36). Monotone restriction

ψ (k−1) = Rk−1
k

(
ψ (k)) , ψ

(k−1) = R
k−1
k

(
ψ
(k)

)
,

is defined according to (37). Local obstacles ψ (k), ψ
(k)

give
rise to the constraints

D(k) =
{
v ∈ Rdnk |ψ(k) ≤ trc(v) ≤ψ(k)

}
.

For given matrix A(k) = (a(k)pq )p,q∈Nk , residual r(k) and con-
straints D(k), the approximate correction resulting from one
step of projected block Gauß–Seidel relaxation with d × d
blocks a(k)pq is denoted by GSk(A

(k), r(k),D(k)). Now we are
ready to rewrite our algorithm as a multigrid V-cycle.
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Algorithm 1.

given: uνJ ∈ Rnk

compute: ūνJ = uνJ + GSJ(A, r,D) (fine grid smoothing)
initialize:
A(J) = trc(A) r(J) = trc(b−AūνJ) (truncated stiffness
matrix and residual)
ψ (J), ψ

(J)
according to (36) (local obstacles)

for k = J −1, . . . , 1 do
{
v(k) = GSk(A

(k), r(k),D(k)) (projected block Gauß–Seidel
smoothing)
r(k) = r(k) −A(k)v(k) (update of residual)

ψ (k) =ψ (k)−v(k) , ψ
(k) = ψ (k)−v(k) (update of local

obstacles cf. (38))
A(k−1) =Rk−1

k A(k)P k
k−1 (Galerkin restriction of stiffness

matrix)
r(k−1) =Rk−1

k r(k) (restriction of residual)

ψ (k−1) = Rk−1
k

(
ψ (k)) , ψ

(k−1) = R
k−1
k

(
ψ
(k)

)
(mono-

tone restriction of local obstacles cf. (37))
}
v(0) = GS0(A

(0), r(0),D(0)) (approx. solution on T0)
for k = 1, . . . , J −1 do
{
v(k) = v(k)+P k

k−1v
(k−1) (interpolation)

}
new iterate: uν+1

J = ūνJ +P J
J−1v

(J−1)

Our implementation of Galerkin restriction takes advan-
tage of the fact that local update of the coincidence set only
causes local update of the stiffness matrix.

Let us briefly consider some variants of the above multi-
grid algorithm which can be analyzed in the same general
framework and which have convergence properties as stated
in Theorem 3.

In order to further improve coarse grid transport in the
transient phase, i.e., until the exact coincidence set is known,
we consider a fully truncated variant performing trunca-
tion recursively on all levels in all directions i = 1, . . . , d.
More precisely, we introduce d different sets of critical nodes
N •,i

k , i = 1, . . . , d, on each refinement level k. Starting with
N •,1

J = N •
J (ū

ν
J) and N •,i

J = ∅, i = 2, . . . , d, the update

N •,i
k = (N •,i

k+1 ∩N •
k )∪{p ∈ Nk | constraint in the direction of

ei(p) was activated when computing v(k)p }

takes place after correction on level k. Recursive truncation
can be formulated algebraically by introducing an opera-
tor trck that annihilates coefficients associated with i and
p, if p ∈ N •,i

k . Implementation uses appropriate flags. Cor-
responding quasioptimal local obstacles are obtained by
a similar modification of (37). We have already seen that no
constraints are active in local coarse grid problems, if the ex-
act coincidence set N •

j (uj) has been detected and coarse grid
corrections are small enough. Hence, in the non-degenerate
case, fully truncated monotone multigrid still asymptoti-
cally reduces to the linear subspace correction generated
by (42).

Multiple pre- and post-smoothing or W-cycles are per-
formed in the usual way. In terms of subspace corrections

such algorithms can be formulated by multiple occurrence of
the same coarse grid space V (k)

p .
Exact solution on the initial grid T0 corresponds to replac-

ing the spaces V (0)
p , p ∈ N0, by V (0) = S0.

In case of adaptively refined grids, coarse grid smoothing
is applied only at new nodes and their neighbors. Again, there
is a corresponding interpretation in terms of subspaces V (k)

p .
In the adaptive case, it may happen that the dimension of V (k)

p
is less than d.

Other finite element discretizations like piecewise quadrat-
ics or bilinear elements on quadrilaterals can be treated in
a similar way. We only have to plug in the appropriate nodal
basis functions instead of λ(k)p .

6 Hertz contact problem

In our first example, we consider a plane strain problem for
a half circle centered at (0, 0.4) with radius 0.4 in elastic
contact with a rigid plane. The material of the half circle
is assumed to be homogeneous and isotropic with Young’s
modulus E = 270 269 N/mm2 and Poisson’s ratio ν = 0.248.
We prescribe vertical displacement u(x, y) = −0.005 at
ΓD = {(x, y) ∈ Γ | y = 0.4} and the Signorini boundary con-
ditions (7) at ΓC = ∂Ω \ΓD. The continuous problem is
discretized by linear and bilinear finite elements on trian-
gles and quadrilaterals, respectively. In this example, normals
nJ(p)= n(p), p ∈ NJ , are chosen to be the outer normal of
the plane. An example with varying normals will be given in
the next section.

Fig. 1. Initial partition T0

Starting with the initial partition T0 as depicted in Fig. 1,
a sequence T0, . . . ,TJ , J = 11, is produced by adaptive
refinement. Local error indicators are provided by an hier-
archical a posteriori error estimate in the spirit of [24]. Since
Ω is not resolved by the coarse grid, new nodes are moved
onto the boundary ∂Ω.

For the iterative solution of the discrete problems we use
the fully truncated variant of our monotone multigrid method
as described at the end of the preceding section. On each
level k > 0, we apply 4 pre- and 4 post-smoothing steps.
Problems on level 0 are solved up to machine precision by
projected block Gauß–Seidel iteration. On subsequent levels
k ≥ 1 the iterate ũk = uν+1

k is accepted, if the estimated al-
gebraic error is reduced below 0.05%, i.e., if the stopping
criterion

‖uν+1
k −uνk‖ ≤ 0.005 σalgσapp‖uνk‖

is satisfied with safety parameters σalg = 1, σapp = 0.1. As
a consequence, the estimated algebraic error does not in-
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estimated errors in %
level # dof # iterations # coincidence set displacements normal stress

0 30 – 1 64.93 72.12
1 78 3 1 46.68 58.48
2 146 3 1 37.52 33.31
3 222 3 3 18.20 7.54
4 508 3 5 12.52 0.47
5 1016 3 7 7.51 0.52
6 2220 3 15 4.77 0.33
7 5600 3 29 2.91 0.21
8 13 032 3 51 1.92 0.22
9 39 976 3 89 1.10 0.20

10 67 274 3 119 0.84 0.20
11 109 534 3 161 0.65 0.20

Table 1. Approximation history

Fig. 2. Refinement history
for partitions Tj for j =
1, 3, 7, 11 (color reflects the
meshsize)

terfere with the estimated discretization error on the final
level (cf. [25], p. 108). We choose initial iterates u0

k = ũk−1
for k = 1, . . . , 11 (nested iteration).The resulting approx-
imation history is reported in Table 1. It turns out that
only 3 iteration steps are required on each refinement
level.

The error of displacements is measured in the energy
norm. Note that the estimated error is proportional to
n1/2

k which is in good agreement with well-known O(h)-
estimates. The underlying hierarchy of tringulations is il-
lustrated in Fig. 2. The color reflects the meshsize, ranging
from red (small elements) to blue (large elements). Observe
that the red spots of strong local refinement in the final tri-
angulation T11 coincide with the boundary of the contact
set.

Contact stresses are of primary interest in many appli-
cations, (cf. e.g. [1]). Final approximation of tangential (red)
and normal boundary stress (blue) is depicted in Fig. 3. We
emphasize that tangential stresses are zero up to an alge-
braic error which could be reduced down to machine preci-
sion by sufficiently many multigrid iterations. We now check
the accuracy of normal stress. Following [17], see also [22,
p. 141], normal contact stresses can be computed analyti-
cally from the Hertz solution. Approximating the width of

Fig. 3. Final approximation of boundary stress at ΓC

the contact surface of u by the width of the contact surface
of the discrete solution u11 an approximate Hertzian nor-
mal contact stress can be computed analytically. As usual
(see e.g. [7, 33]) this approximate Hertzian contact stress is
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Fig. 4. Iteration history on level J = 11 and asymptotic convergence rates

Fig. 5. Initial partition T0 and de-
formed final partition T5

taken as reference solution. The last column of Table 1 con-
tains the relative deviation of maximal normal stress of ũk
from maximal Hertzian normal stress. Both coincide up to
an error of less than 0.5% for k = 4. Note that the coin-
cidence set contains only 5 nodes on this level. Saturation
on finer meshes might be due to the fact that Hertzian so-
lution relies on a parabolic instead of a circular shape of
ΓC [34]. The impressive overall accuracy is a consequence
of our solution approach which does not involve any relax-
ation of contact conditions in contrast to dual methods or
penalty.

We now investigate the convergence behavior of our
multigrid method on the final grid T11. The left picture
of Fig. 4 shows the algebraic error ‖u11 − uν11‖ for ν =
0, . . . , 33. The red curve is obtained using the initial iterate
u0

11 = ũ3
10 (nested iteration). We observe linear convergence

throughout the iteration. In fact, the exact discrete coinci-
dence set is detected after 1 step. Leading high convergence
speed is due to fast reduction of the high frequency con-
tributions of the error. The blue curve illustrates the itera-
tion history for the (artificial) initial iterate u0

11 = 0. In this
case the discrete coincidence set is detected after 10 itera-
tions. In spite of leading fully nonlinear iterations we again
observe a linear reduction of the error throughout the it-
eration. This effect is not typical (cf. e.g. next section) but
reflects the simplicity of the Hertzian model problem under
consideration.

In our final experiment, we compute approximate asymp-
totic convergence rates ρk according to

ρk = ‖uν
∗+1

k −uν
∗

k ‖
‖uν

∗
k −uν

∗−1
k ‖ (45)

Fig. 6. Final approximation of boundary stress at ΓC
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Fig. 7. Iteration history on level J = 5 and asymptotic convergence rates

on each level k = 0, . . . , 11. Here, ν∗ is chosen such that

‖uν
∗+1

k −uν
∗

k ‖< 10−12 .

As illustrated by the right picture in Fig. 4, asymptotic con-
vergence rates seem to saturate at about ρ∞ = 0.4 for increas-
ing levels k → ∞.

7 Elastic cylinder and two rigid rods

We consider the deformation of an elastic cylinder with
axis {(x, y, z) | y = 0.5, z = 1.0}, radius 1 and length 1
against two rigid cylindrical rods with axis {(x, y, z) | x =
0.25, z = −0.25} and {(x, y, z) | x = 0.75, z = −0.25}, re-
spectively, radius 0.25 and infinite length. We choose ho-
mogeneous and isotropic material with Young’s modulus
E = 206 000 N/mm2 and Poisson’s ratio ν = 0.28. Dirich-
let boundary conditions u(x, y) = −0.05 are prescribed at
ΓD = {(x, y, z) ∈ ∂Ω | z ≥ 0.75} and Signorini boundary con-
ditions at ΓC = {(x, y, z) ∈ ∂Ω | z ≤ 0.25}. The remaining
part of the boundary is kept stress free.

The continuous problem is discretized by trilinear fi-
nite elements on quadrilaterals. The normals nJ(p)= n(p),
p ∈ NJ , are directed in radial direction of the cylinder. The
initial partition T0 is shown in Fig. 5.

Again, we produce a sequence T0, . . . ,TJ , J = 5, by suc-
cessive local refinement moving new nodes at the boundary
onto ∂Ω. In order to maximize the significance of the non-
linearity at ΓC in the discrete problem, only those elements
having at least one vertex p = (px, py, pz) with pz < 0.04
are refined in each step. Again, we consider the fully trun-
cated monotone multigrid with 4 pre- and 4 post-smoothing
steps, and the coarse-grid problems on level 0 are solved up
to machine precision.

The deformed final partition T5 is shown in the right
picture of Fig. 5, the final approximation of contact stress
is shown in Fig. 6. Recall that the condition σT = 0 is
fulfilled up to algebraic accuracy, and that in contrast
to penalty methods, the error of the computed boundary
stresses depends only on algebraic accuracy and discretiza-
tion parameters.

The convergence history on the final grid T5 is shown
in the left picture of Fig. 7. Again the red curve corres-
ponds to nested iteration. As in the previous example, the

resulting initial iterate is sufficiently accurate to enter the
asymptotic regime immediately. This is different for the
artificial guess u0

5 = 0. As illustrated by the blue curve,
it takes about 50 transient steps to reach the asymptotic
regime. Note that the asymptotic convergence rates are the
same, as predicted by Theorem 2. We remark, that it is
possible to shorten the initial transient phase by various
heuristic strategies, e.g., by additional truncation in case

of very small absolute values of
(
ψ (k)

p

)i
,

(
ψ (k)

p

)i
. Using

a W-cycle instead of V-cycle also shortens the transient
phase.

In order to illustrate the convergence behavior for de-
creasing meshsize, we compute approximate asymptotic
convergence rates ρk, k = 0, . . . , 5, according to (45). The
right picture in Fig. 7 indicates that asymptotic conver-
gence rates saturate at about ρ∞ = 0.65 for increasing levels
k → ∞. Similar results are observed for classical multigrid
methods as applied to unconstraind problems. Indeed, pre-
scribing boundary stresses as depicted in Fig. 6 instead of
constraints and applying a standard multigrid solver from
UG, we obtained almost the same aymptotic convergence
rates.
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