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Abstract. Recently subdivision techniques have been intro-
duced in the numerical investigation of the temporal behav-
ior of dynamical systems. In this article we intertwine the
subdivision process with the computation of invariant mea-
sures and propose an adaptive scheme for the box refinement
which is based on the combination of these methods. Using
this new algorithm the numerical effort for the computation
of box coverings is in general significantly reduced, and we
illustrate this fact by several numerical examples.

1 Introduction

Recently subdivision methods have been successfully ap-
plied to the numerical analysis of complex dynamical be-
havior (e.g. [7, 3, 2, 4, 5]). These methods can be used for
two essentially different purposes: the first is to understand
the geometric structure of an underlying attractor. Secondly
the goal may be to approximate the observable dynamical
behavior of the underlying system in a specific region of
state space by the computation of invariant measures. This
paper concerns the second possibility, and we propose an
adaptive scheme incorporated into the subdivision technique
which allows to reduce the numerical effort significantly.

Obviously the dynamical behavior just needs to be ap-
proximated on the support of a certain invariant measure.
Indeed, the idea for the adaptive principle stated here is
to intertwine the subdivision techniques with the computa-
tion of a natural invariant measure, anSBR-measure, say.
Roughly speaking, the size of the covering boxes is reduced
in those parts of state space where the natural invariant mea-
sureµ is concentrated, and, on the other hand, boxes are not
subdivided in areas which haveµ-measure zero.

The main goal of this article is to illustrate the efficiency
of the new method by numerical examples. For that purpose
we consider several dynamical systems for which the SBR-
measure is known analytically since this allows us to com-
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pare the numerical results obtained by theadaptivesubdivi-
sion algorithm to those obtained by thestandardsubdivision
procedure. The adaptive algorithm is essentially based on the
combination of two existing methods for which convergence
results are known. However, this fact does not immediately
imply convergence of the adaptive method as well. Rather
this theoretical but relevant problem is currently under in-
vestigation, and the results will be published elsewhere.

An outline of the paper is as follows: in Sect. 2 we recall
the standard subdivision technique from [3]. The numerical
method for the approximation of SBR-measures is described
in Sect. 3. Then, in Sect. 4, we present our adaptive subdivi-
sion technique, and the efficiency of this method is illustrated
by several examples in Sect. 5.

2 The standard subdivision algorithm

The purpose is to approximate invariant sets of discrete dy-
namical systems of the form

xj+1 = f (xj), j = 0, 1, . . . ,

wheref is a continuous mapping onRn. The central object
which is approximated by the subdivision algorithm devel-
oped in [3] is the so-calledrelative global attractor,

AQ =
⋂
j≥0

f j(Q), (2.1)

whereQ ⊂ R
n is a compact subset. Roughly speaking, the

setAQ should be viewed as theunion of unstable manifolds
of invariant objects insideQ. In particular,AQ may con-
tain subsets ofQ which cannot be approximated by direct
simulation.

The subdivision algorithm for the approximation ofAQ

generates a sequenceB0, B1, B2, . . . of finite collections
of boxes with the property that for all integersk the set
Qk =

⋃
B∈Bk

B is a covering of the relative global attractor
under consideration. Moreover the sequence of coverings is
constructed in such a way that the diameter of the boxes,

diam(Bk) = max
B∈Bk

diam(B)

converges to zero fork → ∞.
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Given an initial collectionB0, one inductively obtains
Bk from Bk−1 for k = 1, 2, . . . in two steps.

(i) Subdivision:Construct a new collectionB̂k such that⋃
B∈B̂k

B =
⋃

B∈Bk−1

B

and diam(B̂k) ≤ θ diam(Bk−1)

for some 0< θ < 1.
(ii) Selection:Define the new collectionBk by

Bk =
{

B ∈ B̂k :f−1(B)∩B̂ /=∅ for some B̂∈B̂k

}
.

The following proposition establishes a general conver-
gence property of this algorithm.

Proposition 2.1 ([3]). Let AQ be the global attractor rela-
tive to the compact setQ, and letB0 be a finite collection
of closed subsets withQ0 = Q. Then

lim
k→∞

h
(
AQ, Qk

)
= 0,

where we denote byh(B, C) the usual Hausdorff distance
between two compact subsetsB, C ⊂ R

n.

3 Approximation of SBR-measures

Recently it has been shown in [4] how to compute numer-
ically approximations of anSBR-measuresupported on a
hyperbolic invariant set. Since we want to use this method
in our adaptive scheme we now sketch the main ingredients
of this algorithm. To make the ideas more transparent we
simplify the description drastically by avoiding all technical
details concerning the underlying mathematical foundation
in Ergodic Theory.

The crucial observation is that the calculation of invariant
measures can be viewed as a fixed point problem. LetM

be the set of probability measures onR
n. Thenµ ∈ M is

invariant if and only if it is a fixed point of theFrobenius-
Perron operatorP : M → M,

(Pµ)(B) = µ(f−1(B)) for all measurableB ⊂ R
n. (3.1)

For a discretization of the operatorP : M → M we
replaceM by a finite dimensional setMk: let Bi ∈ Bk,
i = 1, . . . , N , denote the boxes in the covering obtained
after k steps in the subdivision algorithm and set as before
Qk =

⋃
B∈Bk

B. We chooseMk to be the set of “discrete
probability measures” onBk, that is,

Mk =

{
u : Bk → [0, 1]

∣∣∣∣
N∑
i=1

u(Bi) = 1

}
.

Assuming thatf (Qk) ⊂ Qk the discretized Frobenius-Perron
operatorPk : Mk → Mk is given by

v = Pku, v(Bi) =
N∑
j=1

m(f−1(Bi) ∩ Bj)
m(Bj)

u(Bj), (3.2)

i = 1, . . . , N,

where m denotes Lebesgue measure. Now a fixed point
u = Pku of Pk provides an approximation to an invariant
measure off .

Remark 3.1. For the mathematically precise statement on
the convergence of this method one would have to introduce
the concept ofsmall random perturbations. The reason is that
this allows one to use a result of Yu. Kifer on the conver-
gence of invariant measures in the perturbed systems to the
SBR-measure ([9]). However, the purpose of this article is
to develop and to test an adaptive scheme for the box re-
finement in the subdivision algorithm rather than to explain
the theoretical background concerning the computation of
SBR-measures. Therefore the reader is referred to [4] for the
rigorous mathematical treatment.

4 The adaptive subdivision algorithm

As mentioned above, the standard subdivision algorithm may
approximate a part of the global attractor which is dynam-
ically irrelevant in the sense that no invariant measure has
support on this subset. The reason is thateachbox is subdi-
vided in a step of the subdivision algorithm regardless of any
information on the dynamical behavior. In particular, also
those subsets of the relative global attractor corresponding
to unstable or transient dynamical behavior are approximated
by the standard procedure.

On the other hand, if one is mainly interested in the ap-
proximation of the support of the (natural) invariant measure
rather than in the precise geometric structure of the global
attractor then this strategy may lead to unnecessary high
storage and computation requirements. In the following we
present a modified subdivision strategy which avoids this
drawback: roughly speaking,

– in the subdivision step we use the information on the
actual approximation of the invariant measure to decide
whether or not a box should be subdivided;

– in the selection step we keep only those boxes which
have a nonempty intersection with the support of the
invariant measure.

To be more precise, let{δk} be a sequence of positive
real numbers such thatδk → 0 for k → ∞. The algorithm
generates a sequence of pairs

(B0, u0), (B1, u1), (B2, u2), . . .

where theBk ’s are finite collections of compact subsets
of R

n and the discrete measuresuk : Bk → [0, 1] can be
interpreted as approximations to the SBR-measureµSBR:

uk(B) ≈ µSBR(B) for all B ∈ Bk.

Given an initial pair (B0, u0), one inductively obtains
(Bk, uk) from (Bk−1, uk−1) for k = 1, 2, . . . in three steps:

(i) Subdivision:Define

B
−
k−1 = {B ∈ Bk−1 : uk−1(B) < δk−1}

and

B +
k−1 = Bk−1\B

−
k−1.

Construct a new (sub-)collectionB̂ +
k such that⋃

B∈B̂ +
k

B =
⋃

B∈B +
k−1

B
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where

diam(B̂ +
k ) ≤ θ diam(B +

k−1)

for some 0< θ < 1.
(ii) Calculation of the invariant measure:Set

B̂k = B
−
k−1 ∪ B̂ +

k .

For the collectionB̂k calculate the approximating in-
variant measure as the fixed point ˆuk of the discretized
Frobenius-Perron operator defined by (3.2).

(iii) Selection:Set

Bk = {B ∈ B̂k : ûk(B) > 0}
and

uk = ûk|Bk
.

Remark 4.1. (a) In the realization of the algorithm we typ-
ically subdivide the boxes in the collectionB +

k by bi-
section. This guarantees that the number of boxes is not
growing too fast. For the details concerning the imple-
mentation the reader is again referred to [3, 4].

(b) In principle there is some freedom in choosing the se-
quence{δk} of positive numbers used in the subdivi-
sion step. Note however that this sequence determines
the number of boxes which will be subdivided and hence
it has a significant influence on the storage requirement.
In the computations it turned out to be quite efficient to
choose the average

δk =
1

Nk

∑
B∈Bk

uk(B) =
1

Nk
,

whereNk is the number of boxes inBk.
(c) In the numerical realization of the selection step (iii) we

check whether̂uk(B) > ε whereε > 0 is chosen suffi-
ciently small with respect to the machine precision.

5 Numerical examples

In this section we illustrate the efficiency of the adap-
tive scheme by several numerical examples. First we con-
sider three one-dimensional mappings for which the SBR-
measures are known analytically. For these cases we will see
that, as expected, the new technique is particularly useful if
the underlying invariant density has singularities. Addition-
ally we consider the H́enon map as a two-dimensional exam-
ple and show the box refinement produced by the adaptive
subdivision algorithm at a certain step.

Before proceeding let us indicate some details concern-
ing the implementation of the adaptive subdivision algo-
rithm:

(a) The subdivision is always done by bisection and the
boxes are stored in a binary tree. This way we keep
the storage requirement at a low level.

(b) For the computation of the transition probabilities
m(f−1(Bi) ∩ Bj) in (3.2) we use an exhaustion tech-
nique as described in [8]. This method is particularly
useful when – as in our examples – local Lipschitz con-
stants are available for the underlying dynamical system.

Table 1. Comparison between the standard and the adaptive subdivision
algorithm for the Logistic Map. The minimal box volume in each row is
2−`

` number of boxes L1-error
standard adaptive standard adaptive

6 64 17 0.1390 0.1431
8 256 34 0.0670 0.0765
12 4096 151 0.0210 0.0258
16 65536 679 0.0064 0.0073
20 220 2831 - 0.0021

(c) The computation of the discrete measures is done by an
inverse power method. In the solution of the correspond-
ing linear systems the fact is taken into account that
the discretized Frobenius-Perron operator is extremely
sparse.

The adaptive algorithm is integrated into the C++ code
GAIO (Global Analysis of InvariantObjects). A link to a
detailed description ofGAIO can be found on the homepages
of the authors.

Three one-dimensional examples

Motivated by the numerical investigations in [6] we apply
the adaptive subdivision algorithm to three different one-
dimensional dynamical systems on the interval [0, 1]. In each
case we have chosen the initial collectionB0 = {[0, 1]}.

1. As a first example we consider the Logistic Mapf1 :
[0, 1] → [0, 1],

f1(x) = λx(1 − x)

for λ = 4. The unique absolutely continuous invariant
measureµ of f1 has the density

h1(x) =
1

π
√

x(1 − x)

(see e.g. [10]). Using the standard and the adaptive al-
gorithm we have approximated this density on several
levels and the results are shown in Table 1. We remark
that even the computation for̀ = 20 only takes about
50 sec on an MIPS R4400 cpu.
In Fig. 1 we illustrate the fact that the size of the boxes
is much smaller for those which are close to zero or
one. Indeed, this is what we expect since the density has
singularities in these points.

2. We consider the mapf2 : [0, 1] → [0, 1],

f2(x) =




2x

1 − x2
for 0 ≤ x <

√
2 − 1,

1 − x2

2x
for

√
2 − 1 ≤ x ≤ 1.

Its invariant density is

h2(x) =
4

π(1 + x2)
,

see Fig. 2.
In Table 2 we present the numerical results for this case.
As expected the application of the adaptive subdivision
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Fig. 1. Illustration of the relation between
the density and the actual box refinement
produced by the adaptive subdivision algo-
rithm for ` = 10: a the densityh1; b the
radii versus the midpoints of boxes

Fig. 2. a The mapf2; and b its invariant
densityh2

Table 2. Comparison of the numerical results forf2 (` as in Table 1)

` number of boxes L1-error
standard adaptive standard adaptive

6 64 45 0.0027 0.0053
8 256 187 6.5 · 10−4 0.0013
10 1024 759 1.7 · 10−4 3.2 · 10−4

12 4096 3047 4.6 · 10−5 7.8 · 10−5

algorithm is not more efficient than the standard one
since the invariant measure is quite close to Lebesgue
measure.

3. Finally we consider the mapf3 : [0, 1] → [0, 1],

f3(x) =

(
1
8

− 2

∣∣∣∣x − 1
2

∣∣∣∣
3
) 1

3

+
1
2
,

with the invariant density

h3(x) = 12

(
x − 1

2

)2

.

The graphs off3 andh3 are shown in Fig. 3.
We now discuss the numerical results presented in Ta-
ble 3. Note that the derivative off3 has singularities
at two points inside [0, 1]. This is the reason why sev-
eral boxes get lost in the realization of the selection step
in the standard subdivision algorithm. Consequently the
computation of the invariant measure does not lead to
satisfying results. In contrast to this no boxes are lost
in the application of the adaptive subdivision technique,
and accordingly theL1-error is decreasing with an in-
creasing number of subdivision steps.

Table 3. Comparison of the numerical results forf3 (` as in Table 1)

` number of boxes L1-error
standard adaptive standard adaptive

6 63 11 0.0260 0.2931
8 249 30 0.0105 0.2583
10 993 189 0.0110 0.0435
12 3967 816 0.0133 0.0065

The H́enon map

We apply the adaptive subdivision algorithm to a two-
dimensional example, namely a scaled version of the well
known Hénon map

f : R
2 → R

2, f (x, y) = (1− ax2 + y/5, 5bx).

In the computations we have fixed the parameters bya = 1.2,
b = 0.2, and we have chosenB0 = {[−2, 2]2}.

In Fig. 4 we present a tiling of the square [−2, 2]2 ob-
tained by the adaptive subdivision algorithm after several
subdivision steps. The resulting box-collectionB consists
of the grey boxes shown in part (a) of this figure. We expect
that due to the numerical approximation some boxes have
positivediscretemeasure although they do not intersect the
support of thereal natural invariant measure. Having this in
mind we neglect those boxes with very small discrete mea-
sure and show in Fig. 4b a subcollectioñB ⊂ B with the
property that∑
B∈B̃

u(B) ≈ 0.99 (5.1)

(see also Remark 4.1(c)).

Remark 5.1. For our choice of the parameter values we
cannot explicitly write down a natural invariant measure.
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Fig. 3. a The mapf3; andb its invariant
densityh3

Fig. 4. a A tiling of the square [−2, 2]2 obtained by the adaptive subdivision algorithm; andb the subcollectionB̃ of boxes with discrete density bigger
than 0.35 (see also (5.1))

Hence it is impossible to compare our numerical results us-
ing analytical ones. Moreover, it is not even known for an
arbitrary choice of the parameter values whether or not the
Hénon map possesses an SBR-measure. However, recently it
was proved by M. Benedicks and L.-S. Young that the Hénon
map indeed has an SBR-measure for a “large” set of param-
eter values, see [1].

Finally we apply the numerical techniques described in
[4] to determine the essential dynamical behavior of the
Hénon map for this choice of parameter values. An approx-
imation of the (natural) invariant measure obtained by the
adaptive subdivision algorithm is shown in Fig. 5. This com-
putation is based on the total number of 1514 boxes inside
the square [−2, 2]2, whereas the support of the invariant
measure is covered by 1442 boxes. The results indicate that
the H́enon map exhibits complicated dynamical behavior.

Moreover it can be shown that the areas where the den-
sity is colored red resp. blue are permuted cyclically by the
mapping. Hence altogether we may conclude that for these
parameter values the Hénon map exhibits a two-cycle (the
“macro-dynamics”) in addition to unpredictable (chaotic) be-
havior. This fact is also demonstrated by aJava-animation
for which a link can be found on the homepages of the
authors.
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