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Abstract. In this paper, we will present efficient strategies  This paper can be interpreted as part Il of [9]. In the first
how composite finite elements can be realized for the dispart, we have set up the spaces in a theoretical way proving
cretization of PDEs on domains containing small geometricthe basic approximation results. Here, we will focus on the
details. In contrast to standard finite elements, the minimaimplementation details and present numerical experiments.
dimension of this new class of finite element spaces is com- In the literature, there exist several approaches for coars-
pletely independent of the number of geometric details of theening finite element spaces and the corresponding systems
physical domains. Hence, it allows coarse level discretiza-of linear equations, see [1], [2], [12], [13], [14], [3], [5]. For
tion of PDEs which can be used, e.g., preferably for multi- detailed comments on these references we refer to part | of
grid methods and homogenization of PDEs in non-periodicthis paper.

situations.

2 Grid generation

In this section, we will explain how a sequence of grids
1 Introduction for composite finite elements can be generated. In contrast
to standard finite element grids these grizinnotbe re-

. . N . . arded as an approximation of the domains. However, we
In many engineering situations, the physical objects unde

; . : ~will not define standard finite element spaces on these grids
consideration have an extremely complicated shape contalrb—

ing a huge number of ceometric details. Anv reasonable ut include the geometric details in the definition of finite
9 9 . 9 : - ANy T element function spaces in an appropriate way. We assume
mesh generator will produce grids where the (minimal) num-

d > e e -
ber of elements is strongly related to the number of theséhatﬁ C I is a domain with piecewise smooth boundary

tric details. A th inimal) di 7" := 012. However, we have in mind that this boundary
geometric detarls. As a consequence, the (mlnl'ma) ImenFnight contain a huge number of micro-structures. We begin
sion of the corresponding finite element space is huge, to

. S . Quith outlining the principal underlying ideas for the genera-
This fact strongly reduces the efficiency of fast multi-level tion of composite finite element grids.

solvers for the arising system of linear equations since no In the first phase, a hierarchy of auxiliary coverings

adequate coarse discretization is available. In [9] and [10],{~ : 7
. - ; TeYo<o<s,,, Of the boundary is generated by refining only
Composite Finite Elementsave been introduced for these those elements of an initial covering 6f 2 which inter-

]L(I'nr:?s cl)frgrc:glems. Hiere, rt:el grr}lmirr?gl) d:]rgegflopﬂ?f the sect the boundary. Note that the possibly very coarse auxil-
€ element space IS completely independent of the geo|'ary grid 7o cannotbe regarded as an approximation of the

metric details while the asymptotic approximation propertyboundary but only has to satist c dom#. Here, and

IS \{a“d "’.‘ISO for'the' Very coarse Q|scret|zat|ons. In Comb"in the following domr denotes the interior of the domain
nation with multi-grid methods, this new class of elements

provides appropriate coarse discretizations for the so-calle§overed by the grid: dom := int (UKCT K) The finest

coarse-grid corrections. “near-boundary” grid,7s, .., should have the property that
Composite finite elements can also be applied for the ho“small distortions” of the elements and grid points results

mogenization of partial differential operators in non-periodicin an adapted grid,, which represents a proper resolu-

situations. The finite element discretization of a differen-tion of the boundary. Proper resolution means thatan be

tial operator can be re-interpreted as a differential operatorparametrized smoothly by edges and faces of elements of

Studying the behaviour of these operators on coarser and, . lying at the boundary.

coarser levels (relative to the size and number of micro- Let us assume that we want to discretize a partial differ-

structures) gives insights on the behaviour of homogenizeential equation on a refinement levelThen, in the second

differential operators. phase the full grids are generated up to |ekeThis is done
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by refining the initial gridrg by using any refinement strat-
egy for the elements lyinmsideof {2 and, for the elements
intersecting the boundary, by using the same refinement pa
tern as employed for assembling the near-boundary grids) \
This results in &ull grid on level? covering the whole do-
main and a sequence of near-boundary grids on finer level
¢ > ¢ resolving the boundary. It turns out that, by using
this construction of grids, the work for assembling the sys-
tem of linear equations on levélis essentially governed by
the number of grid points on levél If all complete grids
would be generated up to the finest le¥gly > ¢, then, the
complexity of the method would be related to the number
of grid points on theinestlevel. The definition of the com-
posite finite element spaces on these grids will be given in
the next section.

As mentioned above, for the grid generation, the deci-
sion whether an element intersects the boundary plays an N
important role. This information can be generated in various
ways and strongly depends on how the geometric informa-
tion is supplied by the user. Since the generation of this \
information is independent of the definition of composite fi-
nite elements, we will explain appropriate search algorithmsrig. 1. The first row shows a sequence of near-boundary grids on different
in the appendix. In the following, we will formulate the al- levels. Only those triangles are refined Which intersegt the poundary. In the
gorithms for the grid generation in an algorithmic way using second row the adapted near-boundary grid on léygt is depicted which

L. .11 properly resolves the boundary. Then, a full gridis depicted which will
a pSEUdO computer language similar to PASCAL. We will be used to define the degrees of freedom of the finite element space on

need the following definitions. level ¢. Finally, in the last row, a CFE-mesh of the domain is presented
which later is referred to a®5

J

A

Definition 1 Let 7 denote a finite element grid. The neigh-
bourhood of an elemenk € 7 is defined by /" (K) =
{K'er|K'nK #0}. The set of vertices of a finite ele- while 5.1 # 0 do begin
mentK € 7 is denoted by (K) and the set of edges by / :T;ff g

E(K). for all K € 7, do begin
Let 7o be a possibly very coarse, user-supplied coarse if {K' € 17 (K): K'nI#0AdiamK’ > tol}
grid satisfyingf2 ¢ dom7,. We assume that, for any element # 0 then begin _
K, there exists aegular refinement patterdefined on an refine K" regularly and generate set of children
affine equivalent reference element in a coordinate-free way o (K); _
(cf. [4, Sect. 3.4]). Theet of childrens () consists of finite for all K € o (K) do begin
elements (on the finer level) satisfyidg’ N K"’ = () for all Toe1 = Tenn U K7
non-identicalk’, K" € o (K) and domk = domo (K). For parent (K') := K
a triangleK, the set of children is given by the four triangles end end end end end;
arising by connecting the midpoints of the edges. A typical hierarchy of near-boundary grids is depicted

Let tol denote a tolerance which is user-supplied andin Fig. 1.
characterizes the required resolution of the boundary. To Note that this refinement algorithm can easily be gener-
be more concrete we assume that the geometric details caized to the case where the toleramogis varying over the
be resolved by elements having diameg@(tol) and the  domain.
refinement near the boundary can be stopped for elements In the next step the finest near-boundary grid is adapted
satisfying diam¥ < tol. The formal definition of the near- to the boundary by small distortions of the elements and grid

boundary grids is given by the following recursion points. LetKX € 7 denote a finite element ariel(K’) the set
- of edges. Foe = XY € E (K), we define the functiow (e)
Ti+1/2 *= by

{K €7 |3K' € 4 (K):diamK' > tol NK' NI # 0},
Ti+l = {O’(K) K e 7~—i+l/2} .

Since we will investigate the work needed for realizing com-
posite finite elements, we formulate this definition also in an

v(e) = boundary if Jxy, 22 € {X,Y}izm € QNaa ¢ 2
' 0 otherwise.

For elementds, the function is defined analogously by

algorithmic way. The procedunefine is called by ) = boundary if Je € E(K):v (e) = boundary 1
lmax = —1; refindtol, fmay) ; v(K) = 0 otherwise. (1)
and defined by This function is depicted in Fig. 2.
procedure refing(tol; ) ; To adapt the finest grid to the boundary one has to in-

begin vestigate all edges having the attriblteundary For such
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In the second row of Fig. 1, the result of the adapta-
tion procedure is depicted applied to the near-boundary grid
shown in the first row of the same figure.

It is important that, by this adaptation process, lig-
cal parent/child relations are preserved. However, the phys-
ical nestedness of the grids is violated, i.e., dofk’) C
domK is not valid in general. The computation of the set
I' N e in the algorithmadapt strongly depends on how the
boundaryI" is prescribed by the user. Appropriate search
algorithms will be presented in the appendix. We assume
that the given toleranceéol is small enough such that the
meshy, . IS non-degenerate, i.e., the interior angles of the
elements are not too large. Now, we will diminish the num-
ber of elements of the grid,, by rejecting elements lying
essentially outside of2. This is done by the procedure-

Fig. 2. lllustration of the functionsy, v and u.. In the depicted case, there duce mesh In the following, the functiory. denotes the
holds v (e1) = v(K3) = boundary and v(ez) = v (es) = v (K1) = area measure of a set. Furthermore, we assume that a user-
v (K3) = v (K4) = 0. However, all triangles intersect the boundary imply- SPeCcified tolerance (depending on the required degree of ap-
ing ~ (K;) = boundary for all 1 < i < 4. The trianglek, lies essentially ~ Proximation), sayo, is given to determine whether an ele-

outside the domainy (K N £2) < §, and can be rejected ment lying essentially outside @2, i.e.,u (K N §2) < 4, can
be rejected from a grid without reducing the approximation
order.

an edges = XY, we assume that there exists a pathe I
having the property that, if eitheX or Y is replaced byZ,
then, the diameters of the elements touchihgre increased

at most by a moderate factor and are still shape-regular. For
exampleZ € eN I" might be a good choice or the orthogo-
nal projection ofX onto I'. This replacement can formally
be expressed by employing a functianmapping an edge

e = XY with v (e) = boundary onto R¢ x R4

procedure reducemesh
begin
for all K € 74, do begin
if V(K) g2 or u(Kn{§2)<éthen
Thmax = Tlmax \ I
end;
for £ = fmax — 1 downto 0 do begin
1 ={K €7 | o (K)N 71 7 0}

) = (X, 2)if Y is replaced by, U{K € 7 | t?ere exists a vertex in 741
=1 (2,Y) if X is replaced byZ. with z e K}
end end;

The proceduredapt is called b
P P y The elementK, in Fig. 2 is an example of a triangle

forall K € 7, with v (K) = boundary do adapf(K) ; which satisfiesV (K4) C §2 but p(Ksn9§2) < 6. In the
appendix, we will discuss strategies for the computation of

and defined by pw(ENI).
procedure adapt(k); This completes the generation of the hierarchy of near-
begin boundary meshes. We come now to the second phase of the
for all e = XY € E(K) do begin algorithm where the full grid on levélis generated. The full

. - . grids are generated by refining sequentially the initial grid
it v (€) = boundary then begin %, using, for the elements which intersects the boundary, the

rep_lace the vert!ces’ Y by Ae); same refinement pattern as for the generation of the “near-
Comment: Note that this replacement changes the Shapeboundary“ grids. Let < /max. The procedure for generating

of K andall , . 7, is defined by

other elements which have this point as a vertexathn .
levels. procedure generatefull grid(¢);

begin
end
end end: for m =0to ¢ — 1 do begin
’ for all K € 7,, do begin
if o (K) =0 do begin

Remark 2 Note that, for quadrilateral elements, the algo- refine K a/md generate the set ofc/:hﬂdremK);
rithm adapt could result in the following situation (see the for all K’ C o (K) do parent (K') = K;
elementK in Fig. 2). LetK be a quadrilateral with vertices gnd: .
{Xi}1<i<4 In counter-clockwise ordering satisfying € {2, Tl *= Tma1U o (K)
X3 ¢ 2,and X, X4 € I'. Then (e) # boundary holds for end end end;
all edgese € E (K) and, hence, the procedusdapt does The final gridsT, are given by replacing those grid

not move any poink;. The situation can easily be remedied points of 7; which were adapted to the boundaryproce-
by subdividingK into two triangles. Similar constructions dure adapt by the modified grid points. This step can con-
can be applied ir8-d as well. veniently be included in th@rocedure generatefull grid
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such thatr, is obtained in one stroke. We omit here the In this paper, we will focus on the efficient realization of
algorithmic details. composite finite elements. For this reason, we will formu-

The result of these algorithms is a hierarchy of near-late the method in terms of grid functions and nodal values
boundary grids where the finest grid, , represents a proper instead of finite element functions itself. In this light, let
resolution of the boundary. Furthermore, full grids up to a{y7}, .o denote the usual Lagrange basis%f with O
level ¢ are generated by refining an initial coarse ggdWe  denoting the set of corresponding nodal points, i.e., for all
emphasize that, fof < /max the gridsr, cannotbe regarded x,y € 6., we have

as approximations of the domain but simply satisfy la=y

Q2 c domr,,, 0<m<{, v (W) = {O otherwise.

domr, € dom7y 0 <0 < € < fmax: A grid function is a mapping? : ©, — C while the space

However, we assume that the grig, . properly resolves of grid functions is denoted by"®-. Each grid function
the boundary which, in order to obtain higher accuracy, can3 € C°~ is linked to a finite element function by the global
be refined and, furthermore, can be adapted to the boundaifinite element interpolation operator via

by standard techniques (cf. [4, Sect. 8.2]). A full mesh on ,,, _ .

a relatively coarse level is depicted in the second row of ™ (7] (2) = Z B ¢y, (@), «edomr.

Fig. 1. Composite finite element spaces will be defined on yeo,

composite finite element grids. To be more concrete we havehe local version of/™*t is defined on an element and
to choose a covering of2 which will be a subset of, U given by

14 . . .
ey Tm « The details are in the following in -
Uniies L@ =) fWe, @), zeK
Definition 3 Let {7,.},,,,,, b€ generated as explained yEOK

above. The subset of these grids lying inside @fre denoted with @ = 6. A K. In the following, we will replace the

by 7., and defined by index , frequently by¢. For example, we set
Tmi={K €Tp | 0 (K)=0}. 0, =6, IM:=I" o =g
Finally, the composite finite element grid on levés given and analogously for other quantities. We are now able to de-
by fine intergrid operators by using the finite element interpo-
lation. Let 3, € C®* denote a grid function. We interpolate

‘ . .

max B¢ recursively on the near-boundary grids by
TZCFE = U U K. .— Tint

m=f . o Bm+1 () = L7 [Bm] (2) Vo € Oppaa,

Ketm m:/€7€+1,...7€max_1.

A typical composite finite element grid is depicted in the The intergrid operatoB,, — Gm+1 is denoted by
last row of Fig. 1. pmtl . 0Om _, Omn

Remark 4 The grid 77"# contains those triangles of g3 . =: PG

Uf;i} T, Which are not refined furthermore, i.e., lie (essen-
tially) inside of2. The gridrS F'F represents a proper resolu-

tion of the domain2, while, in general, it cannot be regarded

as a standard finite element mesh since hanging nodes o
cur and~SF# is highly non-uniform. We emphasize that the
higher resolution near the boundary is needed to describes,, := P 18,1, £<m < fmax
the support of the coarse level basis functions. The near-
boundary meshes are not used, e.g., to add more degrees 8
freedom to the coarse level space. we (@) = I [B,] (2), Va € dom 7, .

We recall the definition of the interior grid%g (see Defi-
nition 3). A grid function, € C® is linked to the corre-
épondingcomposite finite element functidoy, recursively,
computing nodal values on the near-boundary grids by

pd then interpolating these values on eleméits 777 %:

In the next section we will define the composite finite

element space on these grids. The corresponding operatal; — u, is denoted byu, :=

IEFE[3,]. We illustrate this definition by characterizing the
basis functions of the corresponding composite finite element
space. Let!, € C® denote the unit grid function on the grid

3 Composite finite elements 7, characterized by

In the previous section we have generated a sequence f?(y) - { 1forz =y,

near-boundary  grids {7, }1< <, @Nd  full  grids i 0 otherwise,
{Tm }o<m<e Which covers the domairf2. On these finite
element gridsr (either full grids or a near-boundary grid)
we can define standard finite element spagedy

and the corresponding basis functiopl*¥ (z) =
IFTE [ef]. On an elemenk €7, which is not refined fur-

_ ) . thermore, the basis functiopS”” is given by the stan-
Sy ={ve " (domr) |[VK e 7:v |k dard finite element interpolationS ™ * | ;= Ii2* [et]. Oth-
is a polynomial of degregy }. erwise, there exists childres (K) # () on the finer level
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=8 Fig. 3. Two typical basis functions of{FF. The shape of
the basis functions is very similar to the standard hat functions
where the support is restricted to the dom&ln

(+1. Let K’ € o (K) with nodal points@x+ := K’ N Op1.  AFTFu, =1,
In these nodal points, the prolonged grid functigit is de-
fined by evaluating the standard finite element interpolatio

Ij"t [e]. This interpolation process is well-defined since ASFE (3,4) = a (¢CFF, GCFFY |

with the grid operatoA{’"” defined by

. Vr,y € Oy
the near-boundary grids satis@+; C domm. If K/ €744, ) .
thenpCF |/ is given by interpolating the generated nodal @nd the right hand sidg (z) := F (¥SFF). In the follow-
values onK’. Otherwise, ifo (K') # ), the interpolation ing, we will explain how the grid operatoky’”* and the
process has to be iterated on finer levels. In Fig. 2, a typicalight hand side can be generated efficiently by using local

basis function is depicted. Galerkin products. We use the fact that the images of the
The definition of the composite finite element space onunit grid functionse;, form the columns of the grid operator
level ¢ is given by the span of the basis functions: AZTE We first compute an auxiliary fine grid operafor,
CFE ._ CFE . +CFE [ .¢ corresponding to the near-boundary grig.,. To be more
S - span{% =1 [61‘] ‘ T e @"'}' concrete, we define local versioms of the bilinear form

In the following we will explain how the system matrix cor- a by replacing the integration domaif2 in (3) by domr.

responding to a Galerkin discretization of a boundary valuelLet = denote a finite element grid artd the corresponding

problem can be assembled via local Galerkin products.  set of nodal points. Then, the corresponding grid operator is
given by

4 Assembling of the linear system Ar (@,9) = ar (7,¢7) 7,y € O,

In the first step, we computd, . This grid operator is

We have in mind that, on a domaiéd C R?, a differential  recrsively coarsened by employing tealerkin product
equation has to be solved by using the Galerkin methodgq, p < 5, < limax, WE Set

As a model problem we consider the Helmholtz problem
in a variational setting. Let’ := H1(12) denote the usual Ay (,y) = A: (z,y) + (Prey’, Ay P el
Sobolev space ant’ the dual space of. For givenF ¢ "
V', we are seeking € V' such that

a(u,v)=F((), YveV (2)
with the bilinear forma : V x V' — IR defined by

m+1’

T,y € O,

where, forn,n’ € C®=, the scalar product, ), is defined
by

M) = > n@n (@),

a(u,v) = / (Vu, Vv) + k*uvdz 3) LEOM,

¢ More formally, we define the adjoint operatd®™

m+1

COm1 — O of Pm*1 with respect to the(-,-), scalar
product by

Fv) = /Q foda (PR, w), 0 = (0 Riaw),,, V7 € COm, 0w € COm,

and a positive constait We assume that the linear forf
is given by

m+l

1 H . . . . FE
with suitable f € L?(£2). We state that more complicated USing this notation the system mate{'"* can be com-
problems can be treated with composite finite elements aButed recursively as follows
well l_Jut, in or_der to expla_in the main application, .namely_, A=A, ®)
the discretization of complicated domains, we restrict to this e o
simple model equation. A, = A?m + R A s P )

The Galerkin discretization to problem (2) is given by T I A )
seekingu, € SZCFE such that max » max s ,

It is easy to see thaA{F¥ := A, holds. The algorithmic

a(ug,v)) = F(vg), Vo€ SFFF (4)  formulation of the recursion is given below. The procedure
holds. Introducing the basis representation coarsenis called by
ug () = Z ue (y) @yCFE (z)., (5) for m = {max— 1 downto ¢+ 1 do coarserfm, 7., An);

=, coarsen((, ¢, AGE)

problem (4) is equivalent to solving the system of linear
equation and defined by
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procedure coarsetim, 7,A); For subsetsu C 2, we define recursively layers of finite
begin elements aboup.
for all z € ©,, do 1
m L D= K K
COmputeA (.7 l') = R%+1A7n+1pf;’;+le;ﬂ; m (OJ) dom{ € Tm ‘ Nw 7& @} 5
for all K €7, do Litw) = dom { K € 7,y | K 0L, () 70}
forall z,y € O :=0,, N K do

m . om) - The corresponding spaces of grid functions with local sup-
Ax,y) = A(z,y) +ax (o), 00 bonaing sp 9 P

port are defined by
G (W) = {ﬂ € C | suppd C L, (w)} :

end;

The generation of the right-hand sides on leebn be
done analogously. The result of these procedure is a syste
of linear equations

CFE
AZ

Now, we can express the localness of the grid operators. We
Kave to impose the following

Assumption 5 We assume that there are constants cg,

®) andc
4 such that

where the grid functiom, is linked to the continuous solu- Yw C £2,Vi € Np :
tion of (4) by (5). The algorithm is efficient in the sense that ‘ 1e .
the computational cost of assembling (8) is only moderately P7*GE (w) C G, % (Li, (W), V€ < m < lmax— 1,
higher as the cost for generating the standard finite elemenk™ . Gi - (w) C Gut/2 " (W), V0 < m < lmax— 1,
matrix on levell. The complexity of the presented algorithm 4, Gl (w) C Gi*ea (W). Ve < m < Lax.
is discussed in detail in the following section. Tm

Uy :fg

Under these assumption the operat&'s” is local,
_ . o independent of the refinement levéland /. The details
5 Complexity analysis for composite finite elements are in the following

The work for generating the system of linear equations (8)Theorem 6 Assume that the Assumption 5 is fulfilled with

strongly depends on the complexity of the boundAryLet constants independent of th_e refine.ment le¥elsax. Then,
N,,, denote the number of elements of: the number of non-zero entries per line and columApf

is bounded by a constant independent aind /max-
N"l = #{7_77,,}, m:£,€+l,...,£max. i . i X

Proof. The assertion is proved inductively. We employ the
We assume that the number of nodal poi6ts, is of the  recursion (6, 8). Fofn = fmax, we know that
same order a$v,,, i.e., A A

#0,, < CN,, o
. _ holds and hence, for all C (2, we have
with a constantC' depending only on the degree of approx-

imation p but not on the leveln. The complexity of the  AtmuGm (@) C G ().
algorithm will depend on the su, := Y™ N,, and  Now, assume that, for fixeth, £ < m < fmax there exists a

the number of elements of the full grit¥, := #r,. We as-  constantp,,.+1 with the property that, for alb C 2, i € Ng
sume that the information whether an elemé&hintersects

the boundany” is available and also (approximations to) the Am+1Gins1 (@) C Gty (). 9)
pairs In the following, we will investigate the sparsity of the oper-
(A, B) = argmin{||z — y|| 1 (X,Y) € V (K) x I'x} ator Ay, assuming condition (9). Fes C (2, let 5 € G}, (w)

be an arbitrary grid function. From Assumption 5, we know
(cf. procedureadapt) either are already computed or re- thatA. (€ G¥¢a (w). Furthermore,
quire O (1) operations per elemert’. In the appendix we o
will describe algorithms which meet these requirements.P7*13 e G5 (L%, ()
Then, it follows directly from the definition of the proce- _
duresrefine, adapt, reduce mesh and generatefull grid ~ 2nd by (9) it follows that
that the generation of the sequence of near-boundary meshg\sm+l PG e GYrertrmn ( I (w))
{Tm Yo<e<s, ., the full grid 7, and the composite finite ele- o R _ _
- r , ) ) and, finally again by using Assumption 5, we obtain
ment gridrS 7 needsO (Ng +3, ) arithmetic operations.
The storage requirements are of the same order. R™, A P8 € grrent [ (Brertomea) /2] (L%, ()

In order to control the work for assemblirgf ©' it is
necessary to make appropriate assumptions on the localne
of these operators. To formulate these conditions we will _ et L+ep+| (Ltep+pmer) /2 | +i
need the following notation. The support of a grid function RiAma Pi 5 € G . )7 (@)
B € C® is defined by It follows that (9) implies that

suppd := {w € O [ 4(x) # 0} Al (@) C G ()

\g@ich is equivalent to
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with p,, = max(cA, l+cp+ [(1 tept pm+1) /ZJ). This This estimate can be interpreted, e.g., in two dimensions as

leads to the estimate follows. The additional work for generatin©'“ compared
1+e, p to standarq finite elements ﬁgmlax Whereh;m";x is the amount .
Pm < Max (cA, l+cp+ Py "‘+1> of work which would be necessary to generate the whole fine
2 2 grid matrix. Note that the estimate above is too pessimistic in

Clearly, this recursion implies that,, is bounded indepen- cases where the micro-structures consist of a fixed number of
dent offmay and/. A more detailed investigation shows that V€'Y Small holes intersecting ondy (1) coarse grid elements.
pm < 3+ 2R +c, +c4. This directly implies that the num- The estimate is too optimistic, e.g., in cases of porous media
ber of non-zero entries per row and column is bounded by'nere the number of micro-structures is of ordey”.

a constant depending only on the degree of approximation

is in ndent on the refinement param . .
gut s independent on the refinement parametexsd £iax 6 Numerical results

. . . In this section, we present results of numerical experiments
From this theorem it follows directly that the work performed with composite finite elements. We have consid-

needed for assembling the system matrix for composite f"ered CFE-spaces based on linear interpolation on triangula-

nite elements is bounded gy <N[ + Z{) Obviously, the  tions. We have investigated
cost of generating the system matrix for standard finite el-
ements on a grid withV, elements is of ordeV, imply- functions

. . . I
ing that the addItIOI’Ta| ellmount- of work 'SFOf ordgt, . In 2. the performance of CFE coarse-level discretizations for
the following, we will give estimates of >, for two typ- multi-grid methods,

ical situations. We assume that the grids are quasi-uniforma, the locally homogenized partial differential operators.
and and express the estimates in terms of the step size
hm = max{diamK : K € 7,,}. Furthermore, we assume
that the step sizes satisfy+1 < crephe With cep < 1. 6.1 Approximation property

First, let us assume that the full fine grid has to be gen-
erated due to the required accuracy, i3 fmax holds. For composite finite elements based on linear interpolation,
Then, the amount of work for generatirmgnfxE is of or- it was proved in [9, Theorems 8, 10] that, for quasi-uniform,
der h; . In order to apply a multi-grid solver to the sys- shape regular triangulation and additional weak but tech-
tem of linear equations, one has to generate the wholdiCal assumptions, the spa&’™? has the approximation
sequence of matrice$ACF _ by means of the properg/pfng -functions. For allu € H=(2), there exists
Galerkin product. From the complexity analysis, it follows “¢ € Sy such that
that th%l\vlv]grk needed. for assembling the hierarchy of matri-||u — gy < Chﬁf"’ lull,, m=01, (10)
ces{AL""},_ ., s of order

1. the approximation quality of this CFE-space f&i°-

where the constant' is independent ofi, £ and {max. Fur-
thermore, it was proved in [15] that the constahtlepends

émax émax
Z p—d < Z (he (C ,)fm) - = p-d 1 ) only on theshapeof the micro-structures but not on the size
oo e N rel fran] — cd of them. In order to check this estimate, we have chagen

as the Galerkin approximation te by means of problem
This implies that the work needed for assembling the full (2, 3) with appropriate chosen right-hand side and setting
hierarchy of matrices is of the same order as the generatioh? = 1. The domain?; was the unit sphere where 576 holes

of only the fine grid matrix. have been removed in the interior. The domain together with
Now, we will consider the following situation. Assume the corresponding CFE-grid is depicted in Fig. 4.
that the aim is to generate directly the matfg“'* while The right-hand side of (2) was chosen such thét) =

the finer matriceACF'Z are not required. Then, the amount =2+ is the exact solution. The following table reports the
of work is determined by the number of elements.,qf m > observed convergence rates.
¢ which intersects the boundary. Let := [, dz denote the

_ lu—we—1lly o lu—ue—1llo
area (volume) of the domain ang- := [,.dI, the length Level dof [lu—uelly "y, " llu—tello "yua,
(area) of the surfacd’. From the quasi-uniformity of the 1 4 4.88e-l 5.35e-2
meshes, it follows thal, = O (ch;,?) and, form > ¢, we g 294 ig%ei igg éggeé %ég

— 1—d ; : ; — ofle- . Joe- .
have N,, = O (crh, ) WJLth the spacg dimensio = 2, 3. 4 24 82802 190 17303 4.00
Therefore, the quantity >, can be estimated by 5 245  4.27e-2 1.94 4.24e-4 4.08
, , 6 895 2222 193 1.15e-4  3.68
1—‘ max max
- N. < 1-d 7 3323 1.17e-2 1.89 3.29e-5 3.50
2 m;ﬂ m = Cﬁ;m”hm 8 12586 5.98e-3 196  8.09e6  4.07

, c We see that, starting from the very coarse refinement lev-
<C Z cr (hzmax (Cref)im) <C Fd_lh%n;f. els, the observed convergence rates are very close to the
1—cf expected asymptotic rates. We point out that, for the consid-

ered domains, the size of the holes are of the order of the

Lrmax 1—d

m=£+1
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Level # of # of # of
. X . .
Iterations Iterations Iterations
/ for 4 for £25 for £23
1 direct solver direct solver direct solver
2 5 5 5
3 7 9 8
4 8 11 10
/ 5 8 11 13
> 6 8 10 12
. . . " . 7 8 9 11
F_|g. 4. On_ the Ieft-ha_lnd side, th_e domaml‘ conta_|n|n_g 57_6 holes is de- _ 8 9 8 10
picted while on the right-hand side the anisotropic situation of the domain
{23 is shown. We observe very high convergence rates being independent
of the refinement level and the number and size of the micro
structures.

step size of the fine grid,_ . confirming the assertion that e come now to the investigation of the homogenized
the constant of the estimate (10) is independent ofsthe ~ OPerators.

of the micro-scales. In the next subsection, we will study the
performance of CFE-discretization in combination with the

multi-grid method. 7 Composite finite elements for discrete homogenization

We have computed homogenized operators on different re-
finement levels in order to get insights how these operators
depends on the local geometry. To explain the detalils, let
ASFE denote the system matrix on the grigandz € O,

a nodal point. Then, we define the applicationAdff'® to

a smooth functionu € C*> (R?) by

CFE — CFE
We have generated the coarse-level discretizations by comp-‘e [u] (=) = ;@A‘Z (@ y)u ).
Y

posite finite elements for the multi-grid method to check how
the number of iteration depends on the complexity of theUsing Taylor expansion ofi aboutz we obtain
geometry off(2. The approximation property for multi-grid 1

methods is strongly related to the approximation propertyAS "' [u] (z) ~ Z AGFE (1, 9) Z y D"u(z) (y — x)”

6.2 Composite finite elements for multi-grid methods

of the finite element space. The approximation property for yeo lv|<2

multi-grid methods follows from the approximation quality

of the finite element spaces and assumptions on the differ- _ 1 CFE v v

ential equations on the continuous gt on the discrete - Z v ZA" (@ y) @y — )" p D7u(x).

level (see [8, Sect. 6.3.1]). As a smoother we have employed lvl<2 ved

the symmetric Gaul3-Seidel smoother with one pre- and one, . - 1 CFE
post- smoothing steps. Due to the scaling, the diagonal enf—JSIng the coefficientse, (z) = {Zye@ Ay (@,y)

tries of the stiffness matrix are very small if the support of (,, x)v} we define the homogenized differential operator

a basis function is overlapping the domain only on a very : :
short region. The situation is very similar to the Shortley- at the nodal poink: corresponding to the scakby

Weller finite difference scheme considered in [6], [7]. The AbO™ (1) 1= Z ¢y (x) D".

detailed proof of the smoothing property of composite fi-

nite elements will be presented in a forthcoming paper. The

following table reports the performance of the multi-grid We have studied the dependence of the coefficien(s)

method (V-cycle) for the same problem as described for théon the geometry and the refinement scales. First, we have

previous section. The stopping criterion for all the following considered the Laplace operator discretized on the domain

calculations was given by the condition that tRenorm of (25 and choser: = My = (0.5,0.5)". Therefore, we expect

the residual is smaller thanQe—8. Alternatively, we have a rotational symmetric behaviour expressed by

considered the same equation on the parameter-depende&ﬁom(M )= () A

domain{2; and the domairf2; defined as follows(?; is the ¢ 0 ’

disc of radius & centred at\/, := (0.5, 0.5) with a circular ~We have sampled the function(e) for different values

hole with radiuse centred atMj, too. The domainf?; is of e. It was interesting that, for the considered range of

given by the disc of radius 0.4 abolify containing two cir- ¢ € [0.1, 3], the functione () can perfectly be fitted by a

cular holes of radius 0.09 centred(t4, 0.5) and (0.6, 0.5). guadratic polynomial as shown in Fig. 5.

The domains25 and (2; are depicted in Figs. 1 and 4. Next, we have studied the anisotropic situation of domain
£2; on different refinement levels. Again, we have chosen
x as the midpoint of the disc. It is clear that, for much
larger step sizes, compared to the holes, the homogenized

lv[<2
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A Generation of hierarchical boundary information

In this section, we will describe how the information re-
quired in the algorithmgefine, adapt and reduce mesh
can be generated efficiently. As mentioned earlier, the com-
putation of this information strongly depends on how the
boundary is prescribed. If the boundafy of the domain

is available by an explicit parametrization it is clear that
the information whether, e.g. an elemdkit € 7 intersects
the boundary or not can be assembleddifl) arithmetic
operations per element. This was realized and described in
[11]. In our paper, we will present search strategies which
requires less structured boundary information (at the cost of
increased computing time). Here and in the following, we

0 0.5 1 15 2 2.5 3

require that, for any point € ¢, the information whether
x € £2 holds can be computed @ (1) arithmetic operations.
Such a situation typically arise if the domaén is defined
via the characteristic functiog,,. The information whether
0 ‘ ‘ ‘ ‘ ‘ * a finite elementK’ €  has non-zero cut with the boundary

radius of hole ( = eps) or not is needed in procedurefine. We define the function

Fig. 5.

v(K) =

operator looks relatively isotropic. With decreasing step size

v by

boundary if KNI #0,
0 otherwise

he the situation becomes anisotropic while, for very small (see Fig. 2). Since the boundafy is not available as a
step sizes the local operator does not “see” the holes angarametrization, we have to approximate the functjoby
the situation is more isotropic again. It turns out that thea function v which is defined recursively as follows. We
computed homogenized operator can be written in the forntecall the definition of the function (K) (see (1)).

AYP™(Mo) = ¢1 (he) D + c2 (he) By

In Fig. 7 we have plotted these coefficierts, (h,) which
clearly confirm the considerations above.

boundary if K € 7, andv (K) = boundary
boundary if K € 7,1 A 3K’ € 0 (K)

Y(K) = with 4 (K’) = boundary

0 otherwise

For the computation ofy,”"we propose the following algo-
. rithm. Formally, we putparent (K) = nil for all K € T
8 Conclusions and initialize the functiony as the zero-function.

In this paper, we have presented Composite Finite Elements
for the discretization of PDEs on complicated domains. We
have presented numerical experiments which show the effi-
ciency of the approach. The asymptotic approximation prop-
erty also holds for the very coarse discretizations. We em-
phasize that the method is flexible in the sense that the re-
alization in three dimensions does not differ in principle
from the two-dimensional version. Also generalizations to
higher order approximations and iso-parametric modelling
of the boundary is straightforward by using the canonical fi-
nite element interpolation operators for the definition of the
intergrid operators.

In this paper we have considered a simple model prob-
lem with Neumann boundary conditions. If essential bound-
ary conditions are imposed the prolongation operafjrs*
have to be slightly modified such that the CFE-spaces satisfy
the boundary condition, too. It turns out that the modified
prolongation for this situations is very easy to realize and
cheap to evaluate. This modification will be presented along
with an analysis of the approximation property in a forth-
coming paper. A similar situation arises if interfaces are

for all K € 7o with diamK > tol
do check boundary(K);

procedure checkboundary(K);
begin
if diamK > tol do begin
refine K regularly and generate the set of children
o (K);
for all K’ € o (K) do begin
parent (K’) =K;
checkboundaryK)
end
end else begin
if v(K) = boundary then begin
while K # nil do begin 7 (K) := boundary;
K = parent (K)
end end end end;

We emphasize that the procedure above realizes only the

present. Also in this case the intergrid operators have to berincipal idea of the search algorithm. Some more details are
modified. concerned in the following
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Homogenization Coefficients

0.5

0.4

anisotropic diagonal coefficients c1(h),c2(h)

0.3

0.2

cl(h) -—
c2(h) -+--

[log(h)]

Remark 7 Obviously, the procedureheck boundary can
be parallelized straightforwardly since all elemers are
treated independently.

From the definition of the near-boundary grids it is clear
that the elementdg( satisfyingd (K) = boundary directly
can be incorporated in the near-boundary grid of the corre-
sponding level.

The elementsK not having the attributey (K)
boundary are only needed temporarily and can be rejected
afterwards.

In the algorithmadapt, grid points lying very close to
the boundary are projected onto the boundary.d_st XY
be an edge having the attributge) = boundary. Then, in
many cases, a good candidate for replacing eiffieor Y
is given by the minimizer

(1, w2) = argmin{|[A — BJ|, (4, B) € {X, Y}
x {en T}

This can be computed easily by a standard bisection algo-*

rithm. If the required precision is & 6 < |z — y||, then,

it is obvious that the complexity of the bisection algorithm
is of order Iog‘XfY‘. Other choices as, e.g. the othogonal
projection of eitherX or Y onto I, can be computed in a
similar fashion.

Finally, we come to the computation of the intersection
of elementss € 7, with the domainf2 required in the pro-
cedurereduce mesh In view of this procedure, we require
thatV (K) N 2 = V (K) holds. The quantity: (K N {2) is
approximated by the following algorithm. We subdividée
into sub-elementd’ of size diamK’ < ¢ with a prescribed
tolerances. We put

(K = {2 ()

As an approximation tp (K N £2) we useu”= > ., . 4 (K').
Clearly, the accuracy of: depends on the regularity of
the boundary or, alternatively, on the step sizg, of the

if vV (K') ¢ 2,
otherwise.

finest near-boundary mesh. The complexity of this algorithm

7 Fig. 6.

is of order (hgmax/é)d where d denotes the space dimen-
sion. In cases where the boundary is given explicitly by a
parametrization the quantify (X N {2) can be approximated
with significantly reduced amount of work.

AcknowledgementsThanks are due to L. Grasedyck for the implementa-
tion of the algorithms.
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