
Computing and Visualization in Science (2020) 23:2
https://doi.org/10.1007/s00791-020-00322-5

IMG 2016

Mesh generation for thin layered domains and its application to
parallel multigrid simulation of groundwater flow

Sebastian Reiter1 · Dmitry Logashenko3 · Andreas Vogel2 · Gabriel Wittum1,3

Received: 31 July 2017 / Accepted: 19 July 2018 / Published online: 20 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The generation of detailed three dimensional meshes for the simulation of groundwater flow in thin layered domains is crucial
to capture important properties of the underlying domains and to reach a satisfying accuracy. At the same time, this level of
detail poses high demands both on suitable hardware and numerical solver efficiency. Parallel multigrid methods have been
shown to exhibit near optimal weak scalability for massively parallel computations of density driven flow. A fully automated
parameterized algorithm for prism based meshing of coarse grids from height data of individual layers is presented. Special
structures like pinch outs of individual layers are preserved. The resulting grid is used as a starting point for parallel mesh and
hierarchy creation through interweaved projected refinement and redistribution. Efficiency and applicability of the proposed
approach are demonstrated for a parallel multigrid based simulation of a realistic sample problem.

Keywords Grid generation · Layered domain · Groundwater flow · Geometric multigrid method · Parallelization

1 Introduction

While highly efficient approaches to parallel multigrid meth-
ods for large parallel computers have been developed in
recent years (cf. [1,2,4,11,17,18]), the efficient application
of those approaches to realistic problem settings can still

Communicated by Babett Lemke.

B Sebastian Reiter
sreiter@gcsc.uni-frankfurt.de

Dmitry Logashenko
dmitry.logashenko@kaust.edu.sa

Andreas Vogel
a.vogel@rub.de

Gabriel Wittum
gabriel.wittum@kaust.edu.sa

1 Goethe Center for Scientific Computing (G-CSC), Goethe
University Frankfurt am Main, Kettenhofweg 139, 60325
Frankfurt, Germany

2 High Performance Computing in the Engineering Sciences,
Ruhr University Bochum, Universitätsstraße 150, 44801
Bochum, Germany

3 Computer, Electrical and Mathematical Sciences and
Engineering Division, King Abdullah University of Science
and Technology, 4700 KAUST, Al-Khawarizmi (Bldg. 1,
West), Thuwal, Jeddah 23955-6900, Kingdom of Saudi
Arabia

be challenging. Considering the large time frames in which
effects of groundwater flowmay influence, e.g., the transport
of nuclear waste, an efficient realization of each time step is
of crucial importance.

To fully resolve the effects of groundwater flow on realis-
tic three dimensional layered domains with large horizontal
extensions, meshes with huge element numbers are required.
However, due to the specific geometry of such domains,
which often feature thin layers of different materials and
jumping coefficients stacked above each other, meshing with
good element qualities is a major concern for numerical sim-
ulations.

In [17] we showed that our approach to massively par-
allel geometric multigrid in our simulation software UG4
[19] is highly scalable for up to hundred thousands of pro-
cesses. Its applicability to density driven flow equations was
shown in [12]. Again, we observed very good scalability for
all tested process numbers.

In this article, we describe a meshing and hierarchy cre-
ation technique for distributed three dimensional layered
domains with special focus on its eligibility for parallel
geometric multigrid methods. Work in this area regarding
meshing and multigrid simulation of density driven flow
in layered domains has been done in previous works (cf.
[8,12,13]). However, the generation of adaptive surface nets
and the quality of the geometric approximation in higher grid

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00791-020-00322-5&domain=pdf
http://orcid.org/0000-0001-9384-5296
http://orcid.org/0000-0002-7429-0667


2 Page 2 of 8 S. Reiter et al.

Fig. 1 Cut through a layered domain with 6 layers, illustrating the
variance in height of individual and neighbored layers (the plot is scaled
by a factor 50 in the vertical direction)

levels have not been considered in those works and we thus
focus on these aspects in the present paper.

To this end, we briefly describe the underlying mathe-
matical model and numerical methods used in Sect. 2. The
construction of a coarse grid from height values of individual
layers is described in Sect. 3. The resulting grid resolves all
important characteristics of the considered domain. Starting
from this coarse grid, an interweaved anisotropic refinement
and redistribution scheme is given in Sect. 4, through which
successively more and more elements are created and more
and more processes are used. During refinement, we thereby
position new vertices using a special projector, which is
constructed from the original height data of the individual
layers. The resulting hierarchy thus approximates the original
domain better with each additional refinement step. Finally,
we apply this algorithm to a test problemon a realistic domain
in Sect. 5.

2 Underlyingmodel and numerics

We consider density driven flow in domains with large hori-
zontal and small vertical extensions.While layersmay stretch
across 10,000km2, they are as thin as 1 m or may even
pinch out and vanish completely locally. Several such layers
with vastly differing permeabilities are stacked upon each
other and form a larger domain with a total thickness of
10–100m or more. Figure 1 shows a cut through a recon-
structed domain, illustrating how the height of individual
layers changes and how the height between neighbored lay-
ers varies. The geometry in that image is scaled along the
z-axis by a factor of 50, so that all layers are clearly visible.

2.1 Model

The underlying mathematical model for density driven flow
is comprised of two nonlinear, coupled, and time dependent
differential equations:

∂t (φ�) + ∇ · (�q) = 0

∂t (φ�ω) + ∇ · (�ωq − �D∇ω) = 0

with

q = −K

μ
(∇ p − �g)

where the unknowns ω and p are the mass fraction of salt
and the hydrodynamic pressure respectively,φ is the porosity,
� the density of the fluid phase, K the permeability, μ the
viscosity, g the gravity field, and D the diffusion–dispersion
tensor (cf. [14]). The equations describe the balance of the
fluid phase as a whole and the balance of the mass of the
brine.

2.2 Discretization

Discretization of this model is performed using a mass
preserving, node-centered finite volume method (cf. [10]).
Regarding the discretization of the underlying domain, spe-
cial care has to be taken for mesh generation due to the
presence of very thin horizontal layers.

Mesh generation with tetrahedral elements would either
lead to a vast amount of elements or to very small or very
large inner angles in elements in thin layers. Large element
numbers have a negative impact on solver efficiency and do
not play well with a geometric multigrid approach, where the
generated grid is used as the coarse grid of the hierarchy. On
the other hand, fewer elements with very high or very low
inner angels deteriorate the condition of the stiffness matrix
and may lead to convergence issues in the solver (cf. [9]).

Prism and hexahedral meshes have the benefit of allow-
ing for the meshing of thin layers with a comparatively
small number of elements, each with good inner angles
(0◦ � α � 180◦). Furthermore, they have the advantage
that special refinement techniques can be used to improve
element aspect ratios in higher levels of the mesh hierarchy
(cf. [3,8]). Those properties align nicely with the require-
ments of a geometricmultigrid solver. For the presentedmesh
and hierarchy creation approach, prisms provide both the
necessary flexibility and structuredness to build an efficient
simulation setup.

2.3 Solver

In [17] we showed that the geometric multigrid method and
its implementation in UG4 scales perfectly fine to hundred
thousands of processes if certain measures regarding the dis-
tribution of lower levels are taken. The basic approach is
to start from a coarse grid and successively generate finer
and finer levels through repeated refinement. In each refine-
ment step, we also compute an optimal distribution of the
hierarchy and, if necessary, redistribute the elements among
all processes. Using a so called process hierarchy, we make

123



Mesh generation for thin layered domains and its application to parallel multigrid simulation… Page 3 of 8 2

(a) (b) (c) (d) (e)

Fig. 2 Meshing sequence from fine raster data to coarse prism mesh. Green cells in the raster data represent no-data values. Depicted are, from
left to right: (a) Input raster stack → (b) boundary extraction → (c) simplified boundary mesh → (d) triangulated surface mesh → (e) prism mesh

sure that the computation to communication ratio is fine on
all levels [16].

The solution is finally computed on the finest level of
the generated hierarchy, using a BiCGSTABmethod precon-
ditioned by a geometric multigrid method. The latter uses
coarser levels to speed up computations by removing lower
error frequencies through a coarse grid correction.

We successively applied this method to parallel bench-
mark problems of density driven flow, too (cf. [12]).
However, the grid complexity in applications like the one
presented here requires several specific adjustments in the
meshing and redistribution phases.

3 Coarse grid generation

The role of the coarse grid is fundamental in a geometric
multigrid method. It should contain as few elements as pos-
sible while still providing the topology, i.e. connectivity of
subdomains, of the given domain and a reasonable geometric
approximation to all subdomains.

In the following, we describe our coarse grid meshing
approach to a layered domain which is specified as a set of
layer interfaces. See Fig. 2 for a graphical overview of the
meshing sequence.

The whole meshing algorithm has been realized in the
software ProMesh (cf. [15]).

3.1 Input data

For a domain consisting of L soil layers Sl , 0 ≤ l < L , the
input data to our coarse grid meshing algorithm is a set of
L+1 equidistant, regular 2d grids.Without loss of generality
we assume that all grids have the same number of rows nr ∈
N and columns nc ∈ N and that each cell has the width
and height of 1. With each cell, we associate a value hli, j ∈
R, 0 ≤ i < nr , 0 ≤ j < nc. The values hli, j of layer l, 0 ≤
l < L+1 are interpreted as absolute height values describing
the lower boundary of the soil layer Sl . The upmost field h0

is interpreted as the surface elevation. We furthermore define
an invalid value h̄l which marks an entry as a no-data entry:

hli, j = h̄l ⇒ layer Sl is non-existent at (i, j).

This value is set to a height which is far above or below the
modeled region.

Without loss of generality we assume that the south west
corner of the modeled region is located in the origin (0, 0).
Only a simple coordinate transformation is required to extend
this setting to the general case and to associate meaningful
physical units.

Figure 2a depicts a stack of such regular 2d grids, where
gray values represent the value hli, j (height) of each cell and
green represents no-data entries.

3.2 Preprocessing

We allow for the specification of aminimal height parameter
hlmin ∈ R, hlmin > 0 for each layer. The height Hl

i, j ∈ R of

layer Sl , 0 ≤ l < L at a the index pair i, j shall be determined
by

Hl
i, j := min

{
hli, j − hki, j | l < k ≤ L, hki, j 	= h̄

}
∪ {0} .

Iterating from l = L − 1, L − 2, . . . , 0, we then check
whether Hl

i, j < hlmin . If this is the case, we consider the
associated layer Sl to be non-existent at that position and we
set the corresponding entry hli, j to h̄.

Please note that the presence of no-data values means that
individual soil layers are not necessarily connected.

3.3 The grid data structure

In the following,wedescribe howwegenerate afinite element
mesh from the input data. To this end, we use the following
notion. Amesh or grid G consists of a set of vertices VG , a set
of edges EG , a set of faces FG (e.g. triangles, quadrilaterals),
and a set of volumes OG (e.g. tetrahedra, hexahedra, prisms,
pyramids): G := VG ∪ EG ∪ FG ∪ OG .

Each element e ∈ EG∪FG∪OG shall thereby be uniquely
identified by its set of corner vertices v1, . . . , vn ∈ VG . If
v ∈ VG is a corner of an element e ∈ G, we write v ∈ e.
Similarly, if e1 ∈ G is a side or a side of a side of e2 ∈ G,
we write e1 ∈ e2.

For the grid G we introduce mappings px , py, pz, pw →
R, and p : VG → R

4 such that for every v ∈ VG , p(v) :=
(px (v), py(v), pz(v), pw(v)),where (px (v), py(v), pz(v))

123



2 Page 4 of 8 S. Reiter et al.

Fig. 3 Repeated extrusion of a triangle into a stack of prisms

is the geometric position of v and pw(v) is an auxiliary value
used during meshing and for projected refinement.

3.4 Boundarymeshing

In the first meshing step we extract a set of edge paths, rep-
resenting the boundaries of each layer, from the raster data.
To this end, for a soil layer Sl , we consider cells of neighbor-
ing height values ci, j := (hi, j , hi+1, j , hi, j+1, hi+1, j+1)

for 0 ≤ i < nr − 1, 0 ≤ j < nc − 1. For each cell ci, j ,
0 ≤ i < nr − 1, 0 ≤ j < nc − 1, we perform one of the
following operations, depending on the number of no-data
entries in ci, j :

– 0 no-data entries: Check neighboring cells ci±1, j and
ci, j±1. If one of them contains 2 or more no-data entries
then add the corresponding separating edge to the grid
G. We thereby consider a cell ck.l with k < 0, k >=
nr − 2, l < 0, or l > nc − 2 as a cell with 4 no-data
entries,

– 1no-data entry: find the diagonalwhich does not contain
the no-data entry and add it to the grid G,

– 2, 3, or 4 no-data entries: ignore the cell.

When adding an edge to a grid G we first add two vertices
to the mesh, one for each corner point, and then add an edge
which connects those two vertices.We thereby use the index-
pairs of the corner points as 2d coordinates of the respective
vertices.

Once all cells of each layer have been processed, we
resolve self intersections of the resulting grid. To this end,
we merge different vertices with identical positions into one
vertex. Furthermore, if for two edges e1, e2 ∈ EG the inter-
section e1 ∩ e2 is not empty, we introduce a new vertex at
their intersection and split both e1 and e2 according to the
new vertex.

3.5 Boundary simplification

Depending on the resolution of the provided raster data, the
extracted boundary mesh can be very fine. To avoid unnec-
essary detail during coarse grid construction, we replace two
neighbored edges e1, e2 ∈ EG which share a common vertex
v ∈ VG , if the following conditions are met:

– e1 and e2 are the only edges which are connected to v.
– 	 s,i (e1, e2) < α, where 0 < α < π is a user supplied
threshold angle.

– |e1| < maxLen
2 , |e2| < maxLen

2 .

Here, 	 s,i : EG × EG → Rwith s ∈ (0, 1), i ∈ N
+, denotes

the angle between two edges on an i-times smoothed copy
of the underlying grid G. For v ∈ VG let [v, v1], . . . , [v, vn]
with v1, . . . , vn ∈ VG be the set of edges which contain v.
One smoothing step for v is then performed by setting

p(v) = (1 − s) · p(v) + s

n

∑
p(vn).

One smoothing step for the whole grid G is performed by
applying one smoothing step to all its vertices.

Note, that the smoothing does not affect the positions of
the simplified boundary representation. It is only considered
to evaluate whether nodes should be removed during simpli-
fication.

3.6 Surface triangulation

Based on the resulting edge mesh we first perform a sweep-
line triangulation (cf. [7]) followed by constrained delaunay
retriangulation on G (cf. [5]). This yields a coarse triangle
mesh with good triangle qualities. Furthermore, all edges of
the boundary representation are contained in the resulting
mesh as sides of triangles.

3.7 Extrusion

Starting from a flat triangulation we generate a prism grid by
repeatedly extruding the bottom triangles of the current grid,
by calling Extrude (G, FG, VG , 1, L) from Algorithm 1,
cf. Fig. 3. Prior to calling Extrude, we set the w-coordinate
of all vertices v ∈ VG to 0.

Extrude (G, T, V, i , imax) {
Copy vertices V−> V’;
Set i as w−coordinate to al l vertices in V’;
Copy T −> T’ , using V’ as corner−vertices ;
Connect corresponding triangles in T and T’ by prisms ;
Call Extrude (G, T’ , V’ , i+1, imax) ;

}

Algorithm 1: Extrusion algorithm for a grid G, a set of
triangles T, the set of corner vertices V of T, a counter i,
and the number of consecutive extrusions imax. All new
elements are created in the specified grid G.

Note that the x- and y-coordinate of each vertex are deter-
mined by the surface triangulation. During extrusion we

123



Mesh generation for thin layered domains and its application to parallel multigrid simulation… Page 5 of 8 2

furthermore assign aw-coordinate. The z-coordinate has not
yet been assigned. The w-coordinate has no physical mean-
ing. It is an auxiliary value which will be used to get the
corresponding physical z-coordinate using a specialmapping
as described below. The auxiliary value is furthermore used
during parallel projected refinement as detailed in Sect. 4.

3.8 Adjustment of height values

Each layer of triangles in the extruded geometry corresponds
to one of the heightfields hl , 0 ≤ l < L . During extrusion, we
associated a w-coordinate with each vertex, corresponding
to the index of the corresponding heightfield hl . A straight
forward idea to compute the corresponding z-coordinate of a
vertex v ∈ VG would be to use a lookup in the heightfield hl ,
where l = pw(v). However, as described in the Sect. Pre-
processing, the heightfields hl may contain no-data entries.

To still allow for a simple lookup, we thus create a second
set of heightfields h̃l , 0 ≤ l < L + 1, in which we fill the
no-data holes with meaningful intermediate height values.
We start by defining for each layer the absolute height of its
upper and lower interface: For 0 < l ≤ L , let

l̂ li, j := max
{
k ∈ N | k < l, hki, j 	= h̄

}

be the index of the next heightfield above layer l, where a
valid value is defined at i, j . Similarly, for 0 ≤ l ≤ L let

ľ li, j := min
{
m ∈ N | m ≥ l, hmi, j 	= h̄

}

be the index of the next heightfield at or below layer l, where
a valid value is defined at i, j .

We initialize h̃ by simply interpolating values from upper
and lower valid values:

h̃li, j :=
{
hli, j if hli, j 	= h̄,

m−l
m−k h

k
i, j + l−k

m−k h
m
i, j else,

where k = l̂ li, j andm = ľ li, j , depending on i, j . By construc-

tion it holds: h̃li, j > h̃l+1
i, j .

Since simple interpolation may introduce unwanted steep
gradients and bad angles, we smoothen newly introduced
height values. Here it is crucial to avoid unnaturally thin or
even flipped elements. To this end wemust keep the property
h̃li, j > h̃l+1

i, j . Instead of smoothing height values directly, we
thus prefer to smoothen distance ratios between a value and
its upper/lower layer. Let l, i, j be indices such that hli, j =
h̄, 0 < l < L, and h̃l−1 	= h̃l+1. First we define the distance
ratio

rli, j := h̃l−1
i, j − h̃li, j

h̃l−1
i, j − h̃l+1

i, j

.

Fig. 4 Creation of smoothed height lookup tables h̃l (2d slice). Left:
initial height values. Edges to and between no-data values are not
shown. Middle: no-data values are replaced through simple interpola-
tion between upper/lower layer. Right: smoothing applied to new height
values

In one smoothing iteration we then perform for each such
triple l, i, j the following smoothing step:

h̃li, j := h̃l−1
i, j +

(
h̃l−1
i, j − h̃l+1

i, j

)
·
[
(1 − α) · rli, j

+α ·
(
rli−1, j + rli+1, j + rli, j−1 + rli, j+1

)]
,

where α ∈ (0, 1) is a user defined smoothing constant.
Figure 4 shows an illustration of the construction of h̃.

Once the smoothed field is created, we introduce bilinear
interpolation φl on the raster values for each smoothed layer
h̃l , 0 ≤ l ≤ L :

φl : [0, nc] × [0, nr ] → R

φl(x, y) := (x� − x) · (y� − y) · h̃l�x�,�y�
+ (x − �x�) · (y� − y) · h̃lx�,�y�
+ (x� − x) · (y − �y�) · h̃l�x�,y�
+ (x − �x�) · (y − �y�) · h̃lx�,y�.

Using thismappingwe then define a 3d mappingΦ for the
whole domain by interpolating between neighboring layers:

Φ : [0, nc] × [0, nr ] × [0, L] → R

Φ(x, y, w) := β · φ�w�+1(x, y) + (1 − β) · φ�w�(x, y)

with β := w − �w� .

For each vertex v ∈ VG we then assign the z-coordinate
(the absolute height value)

pz(v) := Φ(px (v), py(v), pw(v)).

4 Parallel projected refinement

To create a distributed grid hierarchy suitable for efficient
geometric multigrid methods, we perform repeated distribu-
tion and refinement of the hierarchy similar to [16]. Themain
steps will be outlined below.

4.1 Refinement

Refinement of an element e ∈ G denotes the subdivision
of e into new elements e1, . . . , en , as depicted in Fig. 5 for

123



2 Page 6 of 8 S. Reiter et al.

Fig. 5 Refinement of a prism.Top: initial prism.Left: isotropic refine-
ment. Middle: anisotropic refinement. Right: vertical refinement

prism elements. We call e the parent element of the elements
e1, . . . , en . In the context of geometric multigrid methods,
refinement is crucial to construct a sufficiently fine grid from
the initial coarse grid. Considering hierarchy creation, refine-
ment of a gridGk yields afiner gridGk+1,which is used as the
next level in a multigrid hierarchy. Starting with the coarse
grid G0, repeated refinement thus results in a grid hierarchy
G0, G1, . . . ,GK , K ∈ N.

To improve the bad element aspect ratios present due
to the high anisotropies of the different layers, we per-
form a mixture of anisotropic and regular prism refinement
(cf. Fig. 5). The most important refinement types are

– Isotropic refinement (‘i’): A prism is subdivided into 8
smaller prisms, each similar to the original (cf. Fig. 5
left),

– Anisotropic refinement (‘a’): A prism is subdivided into
4 smaller prisms, improving aspect ratios of flat prisms
by a factor of 2 (cf. Fig. 5 middle),

– Vertical refinement (‘v’): Only vertical edges of a prism
are being refined. This cuts a prism into 2 smaller prisms,
deteriorating aspect ratios of flat prisms (cf. Fig. 5 right).

A refinement sequence can then be specified, e.g. like
this: ‘-refSeq i2a2i’, which means that first two isotropic
refinements shall be performed, followed by 2 anisotropic
refinements, followed by an arbitrary amount of isotropic
refinements.

In this article we only consider global refinement, i.e. all
elements of the upmost layer are refined at the same time.

4.2 Projection

At each refinement step new vertices are introduced. For each
new vertex we have to assign a position. We do this by first
placing each new vertex v∗ at the arithmetic mean of the cor-
ners of its parent element (regarding x-, y-, andw-coordinate)
and then interpolate the z-coordinate using:

Fig. 6 Three levels resulting from projected refinement. The geometric
approximation of individual layers improves as the grid is refined (plots
are scaled by a factor 50 in the vertical direction)

pz(v
∗) := Φ

(
px (v

∗), py(v
∗), pw(v∗)

)
.

New vertices appearing at layer interfaces are thus placed
exactly in the corresponding interface again. New vertices
appearing inside a layer are interpolated according to their
relative distance to the next upper and the next lower inter-
face as defined by the mapping Φ. By construction of Φ,
the interpolation does not lead to flipped or degenerated ele-
ments.

Three levels of a resulting hierarchy are shown in Fig. 6.
While layers in the coarsest level are not very detailed, finer
levels clearly provide more geometrical detail thanks to the
described projection approach.

The generated hierarchy is no longer nested. If a vertex
has a parent-edge, -face, or -volume, it is not necessarily
geometrically contained in the parent element. In our exper-
iments, the non-nestedness did not have a negative effect on
the convergence of the multigrid method, even with stan-
dard algebraic prolongation and restriction operations. Since
the main focus of this paper is on parallel grid generation, a
detailed mathematical analysis of this empirical behavior is
left to future works.

123



Mesh generation for thin layered domains and its application to parallel multigrid simulation… Page 7 of 8 2

4.3 Parallelization and hierarchy creation

During hierarchy creation in a simulation, the number of vol-
ume elements grows by a certain factor with each refinement
step (8 for isotropic refinement, 4 for anisotropic refine-
ment). The number of elements quickly becomes too big
to be handled by a single processor. Parallelization is thus
a necessity to handle grid hierarchies of such complexity in
3d. In [12,17] we outlined our approach to massively paral-
lel geometricmultigrid on hierarchically distributed domains
and its application to density driven flow. We use a similar
setup for the computations performed on the presented lay-
ered domains.

Typically, we start by distributing the base grid to a certain
number of processes (e.g. 16) to allow for the application of
a parallel base solver. We then perform a certain number of
projected refinements in parallel and redistribute again, this
time on a larger number of processes. To maintain a good
computation to communication ratio, we do not distribute
the lower levels to new processes. Instead, only the top-level
is redistributed. From here we perform further parallel pro-
jected refinement and eventually redistribute further.

To be able to efficiently perform parallel projected refine-
ment, we store the mapping Φ on all involved processes.
Unless this mapping is too detailed, this is a sufficiently effi-
cient approach. Several optimizations are possible, if this step
would take too much time. One could, e.g., slice the map-
ping Φ in a similar way in which the grid is partitioned,
and only send relevant parts of Φ along with grid parti-
tions.

As noted in [13], solver convergence may require that
vertical stacks of prisms are completely contained on one
process. This has to be considered as a constraint during grid
partitioning.

5 Application

As a benchmark problem we considered a large scale sim-
ulation of density driven flow based on the WIPP problem
described in [6]. We used a simplified model consisting of 6
layers with constant permeability coefficients per layer rang-
ing from 10−17 to 10−12.

Aiming for a robust core simulation setup, we focused
on parallel meshing, load balancing, and efficient solver
setup. For our benchmark simulation we chose simpli-
fied Dirichlet boundary conditions c = 0, and p =
0 on the upper surface of the geometry, and c = 1
on the bottom of the geometry. We performed a simula-
tion over a time-frame of 20,000 years, using an Implicit
Euler method. The arising non-linear equations were solved
with the Newton method. Inversion of the linear opera-
tor was performed using a BiCGSTAB solver precondi-

Fig. 7 Isosurface of the concentration of the benchmark problem for
c = 0.05 after 20,000 years. Contour lines indicate the elevation of the
isosurface

tioned by a parallel V-Cycle Geometric Multigrid Method
with 5 ILU pre- and post-smoothing steps and a parallel
ILU preconditioned BiCGSTAB base solver. The simulation
was performed using the UG4 simulation framework (cf.
[19]).

The coarse mesh for our simulation is depicted at the top
of Fig. 6. Since this mesh does not contain any inner degrees
of freedom inside the individual layers, we first performed 3
vertical refinements (‘v3’). While increasing the anisotropy
of the underlying grid, this improves the approximation of the
solution in the individual layers. The resulting top level (level
4) was then used as the base level for the geometric multigrid
solver. Starting from this base level we then performed four
isotropic and one anisotropic refinements (‘i4a1’), yielding
a total of 3 × 108 unknowns in the final top level.

The base level (level 4) was distributed to 16 processes,
level 6 to 512 processes, and level 8 to 4096 processes. We
performed the simulation with time step sizes of 50 years.
Fig. 7 shows a concentration profile of the computed distri-
bution after 20,000 years.

123



2 Page 8 of 8 S. Reiter et al.

6 Conclusions

We presented an algorithm for the construction of coarse
grids which are suited for the creation of distributed multi-
grid hierarchies with a good geometric approximation to the
underlying domain. The applicability of our algorithm was
demonstrated in a parallel simulation of density driven flow
in a complex layered domain over a time frame of 20,000
years.

As noted, other authors proposed extrusion basedmeshing
techniques for the creation of layered domains, too (cf. [8]).
New in our approach is the automatic creation of an unstruc-
tured triangular net which adheres to pinch-outs of individual
layers and which is used as a base for an extrusion pro-
cess which results in a semi structured prism mesh suitable
for anisotropic refinement. During the meshing process we
also construct a map which is used to place new vertices
during parallel multigrid hierarchy creation, resulting in a
hierarchy which resembles the original domain better with
each refinement step. This allowed for the construction of
a coarse grid with comparatively few elements while still
tightly resembling the underlying domain in higher lev-
els.

Acknowledgements This work has been supported by the German
Ministry of Economics and Technology (BMWi, 02E11476B) and by
the DFG Priority Program 1648 Software for Exascale Computing
(SPPEXA) in the project Exasolvers (WI 1037/24-2). We thank the
HLRS for the opportunity to useHazel Hen and their kind support. The
authors also gratefully acknowledge the Gauss Centre for Supercom-
puting e.V. (www.gauss-centre.eu) for funding this project by providing
computing time through the John vonNeumann Institute for Computing
(NIC) on theGCSSupercomputer JUQUEENat Jülich Supercomputing
Centre (JSC).

References

1. Baker, A., Falgout, R., Kolev, T., Yang, U.: Multigrid smoothers
for ultra-parallel computing. SIAM J. Sci. Comput. 33, 2864–2887
(2011)

2. Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discon-
tinuous galerkin discretizations of heterogeneous elliptic problems.
Numer. Linear Algebra Appl. 19(2), 367–388 (2012)

3. Bastian, P., Wittum, G.: Adaptive multigrid methods: the UG con-
cept. In: Notes on Numerical Fluid Mechanics, vol. 46, pp. 17–17
(1994)

4. Bergen, B., Gradl, T., Rude, U., Hulsemann, F.: A massively par-
allel multigrid method for finite elements. Comput. Sci. Eng. 8(6),
56–62 (2006)

5. Chew, L.P.: Constrained delaunay triangulations. Algorithmica
4(1), 97–108 (1989)

6. Corbet, T., Knupp, P.: The role of regional groundwater flow in the
hydrogeology of the Culebra Member of the Rustler Formation at
the Waste Isolation Pilot Plant (Wipp), Southeastern NewMexico.
University of North Texas Libraries, Tech. rep. (1996)

7. de Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.:
Computational Geometry: Algorithms and Applications, 3rd edn.
Springer, Santa Clara (2008)

8. Feuchter, D.: Geometrie- und gittererzeugung für anisotrope
schichtengebiete. Ph.D. thesis, Universität Heidelberg (2008)

9. Field, D.A.: Qualitative measures for initial meshes. Int. J. Numer.
Methods Eng. 47(4), 887–906 (2000)

10. Frolkovič, P., De Schepper, H.: Numerical modelling of convection
dominated transport coupled with density driven flow in porous
media. Adv Water Resour. 24(1), 63–72 (2000)

11. Gmeiner, B., Köstler, H., Stürmer, M., Rüde, U.: Parallel multigrid
on hierarchical hybrid grids: a performance study on current high
performance computing clusters. Concurr. Comput. Pract. Exp.
26(1), 217–240 (2014)

12. Heppner, I., Lampe, M., Nägel, A., Reiter, S., Rupp, M., Vogel,
A., Wittum, G.: Software framework ug4: parallel multigrid on
the hermit supercomputer. In W. E. Nagel, D. H. Kröner, & M.
M. Resch (Eds.), High performance computing in science and
engineering ’12: transactions of the High Performance Comput-
ing Center, Stuttgart (HLRS), 435–449 (2013)

13. Johannsen, K.: Numerische aspekte dichtegetriebener strömung in
porösen medien. Habilitation (2004)

14. Hassanizadeh, S.M., Leijnse, T.: On themodeling of brine transport
in porous media. Water Resour. Res. 24(3), 321–330 (1988)

15. Promesh: http://www.promesh3d.com. Accessed June 2017
16. Reiter, S.: Effiziente algorithmen und datenstrukturen für die real-

isierung von adaptiven, hierarchischen gittern aufmassiv parallelen
systemen. Ph.D. thesis, Universität Frankfurt am Main (2014)

17. Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A
massively parallel geometricmultigrid solver on hierarchically dis-
tributed grids. Comp. Vis. Sci. 16(4), 151–164 (2013)

18. Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler,
G.: Parallel geometric–algebraic multigrid on unstructured forests
of octrees. In: Proceedings of the International Conference onHigh
Performance Computing, Networking, Storage and Analysis, SC
’12, pp. 43:1–43:11. IEEE Computer Society Press, Los Alamitos,
CA (2012)

19. Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG 4: a
novel flexible software system for simulating PDE based models
on high performance computers. Comp. Vis. Sci. 16(4), 165–179
(2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://www.gauss-centre.eu
http://www.promesh3d.com

	Mesh generation for thin layered domains and its application to parallel multigrid simulation of groundwater flow
	Abstract
	1 Introduction
	2 Underlying model and numerics
	2.1 Model
	2.2 Discretization
	2.3 Solver

	3 Coarse grid generation
	3.1 Input data
	3.2 Preprocessing
	3.3 The grid data structure
	3.4 Boundary meshing
	3.5 Boundary simplification
	3.6 Surface triangulation
	3.7 Extrusion
	3.8 Adjustment of height values

	4 Parallel projected refinement
	4.1 Refinement
	4.2 Projection
	4.3 Parallelization and hierarchy creation

	5 Application
	6 Conclusions
	Acknowledgements
	References




