
Computing and Visualization in Science (2019) 20:71–84
https://doi.org/10.1007/s00791-019-00311-3

SPEC IAL ISSUE CS SYMPOSIUM 2016

Hierarchical matrix arithmetic with accumulated updates

Steffen Börm1

Received: 15 May 2017 / Accepted: 15 December 2018 / Published online: 14 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Hierarchical matrices can be used to construct efficient preconditioners for partial differential and integral equations by taking
advantage of low-rank structures in triangular factorizations and inverses of the corresponding stiffness matrices. The setup
phase of these preconditioners relies heavily on low-rank updates that are responsible for a large part of the algorithm’s
total run-time, particularly for matrices resulting from three-dimensional problems. This article presents a new algorithm that
significantly reduces the number of low-rank updates and can shorten the setup time by 50% or more.

1 Introduction

Hierarchical matrices [15,22,23] (frequently abbreviated as
H-matrices) employ the special structure of integral opera-
tors and solution operators arising in the context of elliptic
partial differential equations to approximate the correspond-
ing matrices efficiently. The central idea is to exploit the
low numerical ranks of suitably chosen submatrices to obtain
efficient factorized representations that significantly reduce
storage requirements and the computational cost of evaluat-
ing the resulting matrix approximation.

Compared to similar approximation techniques like panel
clustering [24,27], fast multipole algorithms [20,21,26], or
the Ewald fast summationmethod [10], hierarchical matrices
offer a significant advantage: it is possible to formulate algo-
rithms for carrying out (approximate) arithmetic operations
like multiplication, inversion, or factorization of hierarchi-
cal matrices that work in almost linear complexity. These
algorithms allow us to construct fairly robust and efficient
preconditioners both for partial differential equations and
integral equations.

Most of the required arithmetic operations can be reduced
to the matrix multiplication, i.e., the task of updating Z ←
Z + αXY , where X , Y , and Z are hierarchical matrices and
α is a scaling factor. Once we have an efficient algorithm for
the multiplication, algorithms for the inversion, various tri-

Communicated by Lars Grasedyck.

B Steffen Börm
boerm@math.uni-kiel.de

1 Department of Mathematics, Christian-Albrechts-Universität
zu Kiel, Kiel, Germany

angular factorizations, and even the approximation of matrix
functions like the matrix exponential can be derived easily
[1,12–14,16,19].

The H-matrix multiplication in turn can be reduced to
two basic operations: the multiplication of an H-matrix by
a thin dense matrix, equivalent to multiple parallel matrix-
vector multiplications, and low-rank updates of the form
Z ← Z + AB∗, where A and B are thin dense matrices with
only a small number of columns. Since the result Z has to be
an H-matrix again, these low-rank updates are always com-
binedwith an approximation step that aims to reduce the rank
of the result. The corresponding rank-revealing factorizations
(e.g., the singular value decomposition) are responsible for a
large part of the computational work of theH-matrix multi-
plication and, consequently, also inversion and factorization.

The present paper investigates a modification of the stan-
dard H-matrix multiplication algorithm that draws upon
inspiration from the matrix backward transformation
employed in the context of H2-matrices [4,6]: instead of
applying each low-rank update immediately to anH-matrix,
multiple updates are accumulated in an auxiliary low-rank
matrix, and this auxiliary matrix is propagated as the algo-
rithm traverses the hierarchical structure underlying the
H-matrix. Compared to the standard algorithm, this approach
reduces the work for low-rank updates from O(nk2 log2 n)

to O(nk2 log n).
Due to the fact that the H-matrix-vector multiplica-

tions appearing in the multiplication algorithm still require
O(nk2 log2 n) operations, the new approach cannot improve
the asymptotic order of the entire algorithm. It can, however,
significantly reduce the total runtime, since it reduces the
number of low-rank updates that are responsible for a large

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00791-019-00311-3&domain=pdf
http://orcid.org/0000-0003-2512-474X

72 S. Börm

part of the overall computational work. Numerical experi-
ments indicate that the new algorithm can reduce the runtime
by 50% or more, particularly for very large matrices.

The article starts with a brief recollection of the structure
of H-matrices in Sect. 2. Section 3 describes the funda-
mental algorithms for the matrix-vector multiplication and
low-rank approximation and provides us with the complex-
ity estimates required for the analysis of the new algorithm.
Section 4 introduces a new algorithm for computing the H-
matrix product using accumulated updates based on the three
basic operations “addproduct”, that adds a product to an accu-
mulator, “split”, that creates accumulators for submatrices,
and “flush”, that adds the content of an accumulator to an
H-matrix. Section 5 is devoted to the analysis of the cor-
responding computational work, in particular to the proof
of an estimate for the number of operations that shows that
the rank-revealing factorizations require only O(nk2 log n)

operations in the new algorithm compared to O(nk2 log2 n)

for the standard approach. Section 6 illustrates how accu-
mulators can be incorporated into higher-level operations
like inversion or factorization. Section 7 presents numeri-
cal experiments for boundary integral operators that indicate
that the new algorithm can significantly reduce the runtime
for theH-LR and theH-Cholesky factorization.

2 Hierarchical matrices

Let I and J be finite index sets.
In order to approximate a given matrix G ∈ R

I×J by
a hierarchical matrix, we use a partition of the correspond-
ing index set I × J . This partition is constructed based on
hierarchical decompositions of the index sets I and J .

Definition 1 (Cluster tree) LetT be a labeled tree, anddenote
the label of a node t ∈ T by t̂ . We call T a cluster tree for
the index set I if

– the root r = root(T) is labeled with r̂ = I,
– for t ∈ T with sons(t) �= ∅ we have

t̂ =
⋃

t ′∈sons(t)
t̂ ′, and

– for t ∈ T and t1, t2 ∈ sons(t) with t1 �= t2 we have
t̂1 ∩ t̂2 = ∅.

A cluster tree for I is usually denoted by TI , its nodes are
called clusters, and its set of leaves is denoted by

LI := {t ∈ TI : sons(t) = ∅}.

Let TI and TJ be cluster trees for I andJ . A pair t ∈ TI ,
s ∈ TJ corresponds to a subset t̂ × ŝ of I × J , i.e., to a
submatrix of G. We organize these subsets in a tree.

Definition 2 (Block tree) Let T be a labeled tree, and denote
the label of a node b ∈ T by b̂. We call T a block tree for
the cluster trees TI and TJ if

– for each node b ∈ T there are t ∈ TI and s ∈ TJ such
that b = (t, s),

– the root consists of the roots of TI and TJ , i.e., r =
root(T) has the form r = (root(TI), root(TJ)),

– for b = (t, s) ∈ T the label is given by b̂ = t̂ × ŝ, and
– for b = (t, s) ∈ T with sons(b) �= ∅, we have sons(b) =
sons(t) × sons(s).

A block tree for TI and TJ is usually denoted by TI×J , its
nodes are called blocks, and its set of leaves is denoted by

LI×J := {b ∈ TI×J : sons(b) = ∅}.

For b = (t, s) ∈ TI×J , we call t the row cluster and s the
column cluster.

Our definition implies that a block tree TI×J is also a
cluster tree for the index set I × J . The index sets corre-
sponding to the leaves of a block tree TI×J form a disjoint
partition

{b̂ = t̂ × ŝ : b = (t, s) ∈ LI×J }

of the index set I ×J , i.e., a matrix G ∈ R
I×J is uniquely

determined by its submatrices G|b̂ for all b ∈ LI×J .
Most algorithms for hierarchical matrices traverse the

cluster or block trees recursively. In order to be able to
derive rigorous complexity estimates for these algorithms,
we require a notation for subtrees.

Definition 3 (Subtree) For a cluster tree TI and one of its
clusters t ∈ TI , we denote the subtree of TI rooted in t by
Tt . It is a cluster tree for the index set t̂ , and we denote its set
of leaves by Lt .

For a block tree TI×J and one of its blocks b = (t, s) ∈
TI×J , we denote the subtree of TI×J rooted in b by Tb. It
is a block tree for the cluster trees Tt and Ts , and we denote
its set of leaves by Lb.

Theoretically, a hierarchical matrix for a given block tree
TI×J can be defined as a matrix such that G|b̂ has at most
rank k ∈ N0. In practice, we have to take the representation
of low-rank matrices into account: if the cardinalities #t̂ and
#ŝ are larger than k, a low-rank matrix can be efficiently
represented in factorized form

G|b̂ = AbB
∗
b with Ab ∈ R

t̂×k, Bb ∈ R
ŝ×k,

123

Hierarchical matrix arithmetic with accumulated updates 73

since this representation requires only (#t̂ + #ŝ)k units of
storage. For small matrices, however, it is usually far more
efficient to store G|b̂ as a standard two-dimensional array.

To represent the different ways submatrices are handled,
we split the set of leaves LI×J into the admissible leaves
L+
I×J that are represented in factorized form and the inad-

missible leaves L−
I×J that are represented in standard form.

Definition 4 (Hierarchical matrix) Let G ∈ R
I×J , and let

TI×J be a block tree for TI and TJ with the sets L+
I×J and

L−
I×J of admissible and inadmissible leaves. Let k ∈ N0.
We call G a hierarchical matrix (or H-matrix) of local

rank k if for each admissible leaf b = (t, s) ∈ L+
I×J there

are Ab ∈ R
t̂×k and Bb ∈ R

ŝ×k such that

G|t̂×ŝ = AbB
∗
b . (1)

Together with the nearfield matrices given by Nb := G|t̂×ŝ
for each inadmissible leaf b = (t, s) ∈ L−

I×J , the
matrix G is uniquely determined by the triple ((Ab)b∈L+

I×J
,

(Bb)b∈L+
I×J

, (Nb)b∈L−
I×J

), called its hierarchical matrix

representation.
The set of all hierarchicalmatrices for the block treeTI×J

and the local rank k is denoted byH(TI×J , k).

In typical applications, hierarchicalmatrix representations
require O(nk log n) units of storage [3,5,11,15].

3 Basic arithmetic operations

If the block tree is constructed by standard algorithms [15],
stiffness matrices corresponding to the discretization of a
partial differential operator are hierarchical matrices of local
rank zero, while integral operators can be approximated by
hierarchical matrices of low rank [2,7–9].

In order to obtain an efficient preconditioner, we approxi-
mate the inverse [15,23] or the LR or Cholesky factorization
[23, Section 7.6] of a hierarchical matrix. This task is
typically handled by using rank-truncated arithmetic oper-
ations [15,22]. For partial differential operators, domain-
decomposition clustering strategies have been demonstrated
to significantly improve the performance of hierarchical
matrix preconditioners [17,18], since they lead to a large
number of submatrices of rank zero.

We briefly recall four fundamental algorithms: multiply-
ing an H-matrix by one or multiple vectors, approximately
adding low-rank matrices, approximately merging low-rank
blockmatrices to form larger low-rankmatrices, and approx-
imately adding a low-rank matrix to an H-matrix.

Matrix-vector multiplication Let G be a hierarchical matrix,
b = (t, s) ∈ TI×J , α ∈ R, and let arbitrary matrices X ∈

procedure addeval(t, s, α, G, X, var Y);
if b = (t, s) ∈ L−

I×J then
Y ← Y + αNbX

else if b = (t, s) ∈ L+
I×J then begin

Ẑ ← αB∗
b X; Y ← Y + AbẐ

end else
for b′ = (t′, s′) ∈ sons(b) do

addeval(t′, s′, α, G, X|ŝ×K, Y |t̂×K)
end

procedure addevaltrans(t, s, α, G, Y , var X);
if b = (t, s) ∈ L−

I×J then
X ← Y + αN∗

b X

else if b = (t, s) ∈ L+
I×J then begin

Ẑ ← αA∗
bY ; X ← X + BbẐ

end else
for b′ = (t′, s′) ∈ sons(b) do

addevaltrans(t′, s′, α, G, Y |t̂×K, X|ŝ×K)
end

Fig. 1 Multiplication Y ← Y + αG|t̂×ŝ X or X ← X + αG|∗
t̂×ŝ

Y

R
ŝ×K and Y ∈ R

t̂×K be given, whereK is an arbitrary index
set. We are interested in performing the operations

Y ← Y + αG|t̂×ŝ X , X ← X + αG|∗t̂×ŝY .

If b is an inadmissible leaf, i.e., if b = (t, s) ∈ L−
I×J holds,

we have the nearfield matrix Nb = G|t̂×ŝ at our disposal and
can use the standard matrix multiplication.

If b is an admissible leaf, i.e., if b = (t, s) ∈ L+
I×J holds,

we have G|t̂×ŝ = AbB∗
b and can first compute Ẑ := αB∗

b X
and then update Y ← Y + Ab Ẑ for the first operation or use
Ẑ := αA∗

bY and X ← X + Bb Ẑ for the second operation.
If b is not a leaf, we consider all its sons b′ = (t ′, s′) ∈

sons(b) and perform the updates for the matrices G|t̂ ′×ŝ′ and
the submatrices X |ŝ′×K and Y |t̂ ′×K recursively. Both algo-
rithms are summarized in Fig. 1.

Truncation Let b = (t, s) ∈ TI×J , and let R ∈ R
t̂×ŝ be a

matrix of rank at most � ≤ min{#t̂, #ŝ}. Assume that R is
given in factorized form

R = AB∗, A ∈ R
t̂×�, B ∈ R

ŝ×�,

and let k ∈ [0 : �]. Our goal is to find the best rank-k
approximation of R. We can take advantage of the factor-
ized representation to efficiently obtain a thin singular value
decomposition of R: let

B = QBRB

be a thin QR factorization of B with an orthogonal matrix
QB ∈ R

ŝ×� and an upper triangular matrix RB ∈ R
�×�. We

introduce the matrix

123

74 S. Börm

procedure rkadd(α, R1, var R2);
{ R1 = AB∗, R2 = CD∗ }
Find thin QR factorization QBRB = B D

)
;

Â ← αA C
)
R∗

B ;
Find thin singular value decomposition UΣV̂ ∗ = Â;
Choose new rank k;
Σ̃ ← Σ(1 : k, :);
C ← U(:, 1 : k); D ← QBV̂ Σ̃∗

end

Fig. 2 Truncated addition R2 ← trunc(R2 + αR1)

Â := AR∗
B ∈ R

t̂×�

and compute its thin singular value decomposition

Â = UΣ V̂ ∗

with orthogonal matrices U ∈ R
t̂×� and V̂ ∈ R

�×� and

Σ =
⎛

⎜⎝
σ1

. . .

σ�

⎞

⎟⎠ , σ1 ≥ σ2 ≥ · · · ≥ σ� ≥ 0.

A thin SVD of the original matrix R is given by

R = AB∗ = AR∗
BQ

∗
B = ÂQ∗

B

= UΣ V̂ ∗Q∗
B = UΣ(QBV̂)∗ = UΣV ∗

withV := QBV̂ . Thebest rank-k approximationwith respect
to the spectral and the Frobenius norm is obtained by replac-
ing the smallest singular values σk+1, . . . , σ� in Σ by zero.

Truncated addition Let b = (t, s) ∈ TI×J , and let R1, R2 ∈
R
t̂×ŝ be matrices of ranks at most k1, k2 ≤ min{#t̂, #ŝ},

respectively. Assume that these matrices are given in factor-
ized form

R1 = A1B
∗
1 , A1 ∈ R

t̂×k1 , B1 ∈ R
ŝ×k1 ,

R2 = A2B
∗
2 , A2 ∈ R

t̂×k2 , B2 ∈ R
ŝ×k2 ,

and let � := k1 + k2 and k ∈ [0 : �]. Our goal is to find the
best rank-k approximation of the sum R := R1 + R2. Due to

R = R1 + R2 = A1B
∗
1 + A2B

∗
2 = (

A1 A2
) (

B1 B2
)∗

,

this task reduces to computing the best rank-k approximation
of a rank-� matrix in factorized representation, and we have
already seen thatwe can use a thin SVD to obtain the solution.
The resulting algorithm is summarized in Fig. 2.

Low-rank updateDuring the course of the standardH-matrix
multiplication algorithm, we frequently have to add a low-
rank matrix R = AB∗ with A ∈ R

t̂×K, B ∈ R
ŝ×K and

procedure rkupdate(t, s, α, R, var G);
{ R = AB∗ }
if b = (t, s) ∈ L−

I×J then
Nb ← Nb + AB∗

else if b = (t, s) ∈ L+
I×J then

{ G|t̂×ŝ = R′ }
rkadd(α, R, R′)

else
for b′ = (t′, s′) ∈ sons(b) do

rkupdate(t′, s′, α, R|t̂′×s′ , G)
end

Fig. 3 Truncated update G|t̂×ŝ ← blocktrunc(G|t̂×ŝ + R)

(t, s) ∈ TI×J to an H-submatrix G|t̂×ŝ . For any subsets
t̂ ′ ⊆ t̂ and ŝ′ ⊆ ŝ, we have

R|t̂ ′×ŝ′ = A|t̂ ′×KB|∗ŝ′×K,

so any submatrix of the low-rankmatrix R is again a low-rank
matrix, and a factorized representation of R gives rise to a
factorized representation of the submatrix without additional
arithmetic operations. This leads to the simple recursive
algorithm summarized in Fig. 3 for approximately adding
a low-rank matrix to an H-submatrix.

Splitting and merging In order to be able to handle general
block trees, it is convenient to be able to split a low-rank
matrix into submatrices andmerge low-rank submatrices into
a larger low-rank submatrix.

Splitting a low-rank matrix is straightforward: if b =
(t, s) ∈ L+

I×J is an admissible leaf, we haveG|t̂×ŝ = AbB∗
b

and G|t̂ ′×ŝ′ = Ab|t̂ ′×k Bb|∗ŝ′×k for all t ′ ∈ sons(t) and
s′ ∈ sons(s), i.e., we immediately find factorized low-rank
representations for submatrices.

Merging submatrices directly would typically lead to an
increased rank, so we once again apply truncation: if we
have R1 = A1B∗

1 and R2 = A2B∗
2 with A1, A2 ∈ R

t̂×k ,
B1 ∈ R

ŝ1×k and B2 ∈ R
ŝ2×k , we can again use thin QR

factorizations

B1 = Q1R1, B2 = Q2R2

with R1, R2 ∈ R
k×k to find

(
R1 R2

) = (
A1B∗

1 A2B∗
2

) = (
A1R∗

1Q
∗
1 A2R∗

2Q
∗
2

)

= (
A1R∗

1 A2R∗
2

)
︸ ︷︷ ︸

=: Â

(
Q∗

1
Q∗

2

)

︸ ︷︷ ︸
=:Q̂

.

The matrix Â has only 2k columns, so we can compute its
singular value decomposition efficiently, andmultiplying the
resulting right singular vectors by Q̂ yields the singular value

123

Hierarchical matrix arithmetic with accumulated updates 75

procedure rowmerge(R1, . . . , Rp, var R);
{ Rj = AjB∗

j , R = AB∗ }
for j = 1 to p do

Find thin QR factorization Bj = QB,jRB,j ;
Â = A1R∗

B,1 · · · ApR∗
B,p

)
;

Find thin singular value decomposition UΣV̂ ∗ = Â;
Choose new rank k;
Σ̃ ← Σ(1 : k, :);

A ← U(:, 1 : k); B ←

⎛
⎜⎝

QB,1

. . .
QB,p

⎞
⎟⎠ V̂ Σ̃∗

end

procedure rkmerge((Rij)i∈[1:p],j∈[1:q], var R);
for j = 1 to q do

rowmerge(R∗
1j , . . . , R∗

pj , Rj);
rowmerge(R∗

1 , . . . , R∗
q , R)

end

Fig. 4 Merging low-rank matrices

decomposition of the block matrix. We can proceed as in the
algorithm “rkadd” to obtain a low-rank approximation.

Applying this procedure to adjoint matrices (simply using
BA∗ instead of AB∗), we can also merge block columns.
Merging first columns and then rows lead to the algorithm
“rkmerge” summarized in Fig. 4.

Complexity Now let us consider the complexity of the basic
algorithms introduced so far.Wemake the following standard
assumptions:

– finding and applying a Householder projection in R
n

takes not more than Cqrn operations, where Cqr is an
absolute constant. This implies that the thin QR fac-
torization of a matrix X ∈ R

n×m can be computed
in Cqrnmmin{n,m} operations and that applying the
factor Q to a matrix Y ∈ R

n×� takes not more than
Cqrn�min{n,m} operations.

– the thin singular value decomposition of a matrix X ∈
R
n×m can be computed (up to machine accuracy) in

not more than Csvnmmin{n,m} operations, where Csv

is again an absolute constant.
– the block tree is admissible, i.e., for all inadmissible
leaves b = (t, s) ∈ L−

I×J , the row cluster t or the col-
umn cluster s are leaves, so we have

(t, s) ∈ L−
I×J ⇒ t ∈ LI ∨ s ∈ LJ (2a)

for all b = (t, s) ∈ TI×J .
– the block tree is sparse [15], i.e., there is a constantCsp ∈

R>0 such that

#{s ∈ TJ : (t, s) ∈ TI×J } ≤ Csp (2b)

for all t ∈ TI and

#{t ∈ TI : (t, s) ∈ TI×J } ≤ Csp (2c)

for all s ∈ TJ .
– there is an upper bound Ccn for the number of a cluster’s
sons, i.e.,

sons(t) ≤ Ccn, # sons(s) ≤ Ccn (2d)

for all t ∈ TI and s ∈ TJ .
– all ranks are bounded by the constant k ∈ N, i.e., in

addition to (1), we also have

#t̂ ≤ k, #ŝ ≤ k (2e)

for all leaves t ∈ LI , s ∈ LJ .

We also introduce the short notation

pI := max{level(t) : t ∈ TI},
pJ := max{level(s) : s ∈ TJ },

pI×J := max{level(b) : b ∈ TI×J }.

for the depths of the trees involved in our algorithms.
The combination of (2a) and (2e) ensures that the ranks of

all submatrices G|t̂×ŝ corresponding to leaves b = (t, s) ∈
LI×J of the block tree are bounded by k.

We will apply the algorithms only to index setsK satisfy-
ing #K ≤ k, and we use this inequality to keep the following
estimates simple.

We first consider the algorithm “addeval”. If b = (t, s) ∈
L−
I×J , we multiply Nb directly by X . This takes not more

than (#t̂)(2#ŝ − 1)(#K) operations, and adding the result to
Y takes (#t̂)(#K) operations, for a total of 2(#t̂)(#ŝ)(#K)

operations. Scaling by α can be applied either to X or to
the result, leading to additional min{#t̂, #ŝ}(#K) operations.
Due to (2a), we have t ∈ LI or s ∈ LJ , and due to (2e), we
find #t̂ ≤ k or #ŝ ≤ k. This yields the simple bound

2k(#t̂ + #ŝ)(#K) ≤ 2k2(#t̂ + #ŝ)

for the number of operations.
If b = (t, s) ∈ L+

I×J , computing Ẑ takes k(2#ŝ−1)(#K)

operations, and scaling the result by α takes k(#K) opera-
tions. Adding the product Ab Ẑ to Y then takes 2(#t̂)k(#K)

operations, for a total of

2k(#t̂ + #ŝ)(#K) ≤ 2k(#t̂ + #ŝ)(#K) ≤ 2k2(#t̂ + #ŝ)

123

76 S. Börm

operations. Due to the recursive structure of the algorithm,
we find that

Wev(t, s) :=
{
2k2(#t̂ + #ŝ) if sons(t, s) = ∅,∑

(t ′,s′)∈sons(b) Wev(t ′, s′) otherwise

for all b = (t, s) ∈ TI×J . is a bound for the total number of
operations. Due to symmetry, we obtain a similar result for
the algorithm “addevaltrans”.

A straightforward induction yields

Wev(t, s) ≤ 2k2

⎛

⎝
∑

(t ′,s′)∈Tb
#t̂ ′ +

∑

(t ′,s′)∈Tb
#ŝ′

⎞

⎠ (3)

for all b = (t, s) ∈ TI×J . Since the definition of the block
tree implies level(t), level(s) ≤ level(b) for all blocks b =
(t, s) ∈ TI×J , we can use (2b) and the fact that clusters on
the same level are disjoint to find

∑

b=(t,s)∈TI×J

#t̂ =
∑

t∈TI
level(t)≤pI×J

∑

s∈TJ
(t,s)∈TI×J

#t̂

≤ Csp

∑

t∈TI
level(t)≤pI×J

#t̂

= Csp

pI×J∑

�=0

∑

t∈TI
level(t)=�

#t̂

= Csp

pI×J∑

�=0

#
⋃

t∈TI
level(t)=�

t̂

≤ Csp(pI×J + 1)#I. (4a)

Repeating the same argument with (2c) yields

∑

b=(t,s)∈TI×J

#ŝ ≤ Csp(pI×J + 1)#J . (4b)

Applying these estimates to the subtree Tb instead of TI×J
gives us the final estimate

Wev(t, s) ≤ 2Cspk
2(pI×J + 1)(#t̂ + #ŝ) (5)

for all b = (t, s) ∈ TI×J . Now let us take a look at the trun-
cated addition algorithm “rkadd”. Let k1, k2 ∈ N0 denote
the number of columns of R1 and R2. We will only apply
the algorithm with k1, k2 ≤ k, and we use this property to
keep the estimates simple. By our assumption, the thin QR
factorization requires not more than Cqr(#ŝ)(k1 + k2)2 ≤
4Cqrk2#ŝ operations. Setting up Â takes (#t̂)k1 ≤ k#t̂ oper-
ations to scale A and not more than 2(#t̂)(k1 + k2)2 ≤

8k2#t̂ operations to multiply by R∗
B . By our assumption, the

thin singular value decomposition requires not more than
Csv(#t̂)(k1+k2)2 ≤ 4Csvk2#t̂ operations. The new rank k is
bounded by k1 + k2 ≤ 2k, so scaling V̂ takes not more than
(k1 + k2)2 ≤ 4k2 operations and applying QB to V̂ takes not
more than Cqr(#ŝ)(k1 + k2)2 ≤ 4Cqrk2#ŝ. The total number
of operations is bounded by

4Cqrk
2#ŝ + k#t̂ + 8k2#t̂ + 4Csvk

2#t̂ + 4k2

+ 4Cqrk
2#ŝ ≤ Cadk

2(#t̂ + #ŝ)

with Cad := max{8Cqr, 4Csv + 9}.
The algorithm “rkmerge” can be handled in the same way

to show that not more than

q∑

j=1

(
2Cqrk

2#t̂ + Csv(Csnk)
2#ŝ

)
+ 2Cqrk

2#ŝ + Csv(Csnk)
2#t̂

operations are required to merge low-rank submatrices of
G|t̂×ŝ ,where the constant is givenbyCmg := max{2CsnCqr+
C2
snCsv,C3

snCsv + 2Cqr}.
The algorithm “rkupdate” applies “rkadd” in admissi-

ble leaves and directly multiplies A and B∗ in inadmissible
leaves. In the latter case, the row cluster t ∈ TI or the column
cluster s ∈ TJ has to be a leaf of the cluster tree due to (2a)
and we can bound the number of operations by

2(#t̂)(#ŝ)(#K) ≤ 2k(#t̂ + #ŝ)k ≤ Cadk
2(#t̂ + #ŝ).

As in the case of “addeval”, a straightforward inductionyields
that the total number of operations is bounded by

Wup(t, s) :=
{
Cadk2(#t̂ + #ŝ) if sons(t, s) = ∅,∑

(t ′,s′)∈sons(t,s) Wup(t ′, s′) otherwise

for all b = (t, s) ∈ TI×J . We can proceed as before to find

Wup(t, s) ≤ CadCspk
2(pI×J + 1)(#t̂ + #ŝ) (6)

for all b = (t, s) ∈ TI×J .

4 Matrix multiplication with accumulated
updates

Let us now consider the multiplication of two H-matrices.
This operation is central to the entire field ofH-matrix arith-
metics, since it allows us to approximate the inverse, the LR
or Cholesky factorization, and even matrix functions.

Following the lead of the well-known BLAS package, we
write the matrix multiplication as an update

Z ← blocktrunc(Z + αXY),

123

Hierarchical matrix arithmetic with accumulated updates 77

where X ,Y , Z areH-matrices for blocktrees TI×J , TJ×K,
and TI×K corresponding to cluster trees TI , TJ , and TK,
respectively, α ∈ R is a scaling factor, and “blocktrunc”
denotes a suitable blockwise truncation. Given that H-
matrices are defined recursively, it is straightforward to define
the matrix multiplication recursively as well, so we consider
local updates

Z |t̂×r̂ ← blocktrunc(Z |t̂×r̂ + αX |t̂×ŝY |ŝ×r̂)

with (t, s) ∈ TI×J and (s, r) ∈ TJ×K. The key to an
efficient approximate H-matrix multiplication is to take
advantage of the low-rank properties of the factors X |t̂×ŝ
and Y |ŝ×r̂ .

If (s, r) ∈ L−
J×K, our assumption (2a) yields that s ∈ LJ

or r ∈ LK holds. In the first case, we have #ŝ ≤ k due to
(2e) and obtain a factorized low-rank representation

X |t̂×ŝY |ŝ×r̂ = (X |t̂×ŝ I)N(s,r) = Â B̂∗

with Â := X |t̂×ŝ I and B̂ := N(s,r). In the second case, we
have #r̂ ≤ k due to (2e) and can simply use

X |t̂×ŝY |ŝ×r̂ = (X |t̂×ŝ Ns,r)I = Â B̂∗

with Â := X |t̂×ŝ Ns,r and B̂ := I ∈ R
r̂×r̂ . In both cases,

Â can be computed using the “addeval” algorithm, and the
low-rank representation Â B̂∗ of the product can be added to
Z |t̂×r̂ using the “rkupdate” algorithm.

If (s, r) ∈ L+
J×K, we have

Y |ŝ×r̂ = A(s,r)B
∗
(s,r)

and find

X |t̂×ŝY |ŝ×r̂ = X |t̂×ŝ A(s,r)B
∗
(s,r) = Â B̂∗

with Â := X |t̂×ŝ A(s,r) and B̂ := B(s,r). Once again, the
matrix Â can be computed using “addeval”.

If (t, s) ∈ LI×J holds, we can follow a similar
approach to obtain low-rank representations for the product
X |t̂×ŝY |ŝ×r̂ , replacing “addeval” by “addevaltrans”.

If (t, s) /∈ LI×J and (s, r) /∈ LJ×K, the definition of
the block tree implies that t , s, and r cannot be leaves of the
corresponding cluster trees. In this case, we split the product
into

Z |t̂ ′×r̂ ′ ← blocktrunc(Z |t̂ ′×r̂ ′ + αX |t̂ ′×ŝ′Y |ŝ′×r̂ ′)

for all t ′ ∈ sons(t), s′ ∈ sons(s), r ′ ∈ sons(r) and handle
these updates by recursion.

If (t, r) ∈ LI×K or even (t, r) /∈ TI×K, the blocks (t ′, r ′)
required by the recursion are not contained in the block tree

TI×K. In this case, we create these sub-blocks temporarily,
carry out the recursion, and use the algorithm “rkmerge” to
merge the results into a new low-rank matrix if necessary.

The standard version of the multiplication algorithm con-
structs the low-rank matrices Â B̂∗ and directly adds them to
the corresponding submatrix of Z using “rkupdate”. This
approach can involve a significant number of operations:
entire subtrees of TI×K have to be traversed, and each of
the admissible leaves requires us to compute a QR factoriza-
tion and a singular value decomposition.

Accumulated updates. In order to reduce the computational
work, we can use a variation of the algorithm that is inspired
by the matrix backward transformation forH2-matrices [4]:
instead of directly adding the low-rank matrices to the H-
matrix, we accumulate them in auxiliary low-rank matrices
R̂t,r associated with all blocks (t, r) ∈ TI×K. After all
products have been treated, these low-rank matrices can be
“flushed” to the leaves of the final result: startingwith the root
of TI×K, for each block (t, r) ∈ TI×K\LI×K, the matri-
ces R̂t,r are split into submatrices and added to R̂t ′,r ′ for all
t ′ ∈ sons(t) and r ′ ∈ sons(r).

This approach ensures that each block (t, r) ∈ TI×K is
propagated only once to its sons and that each leaf (t, r) ∈
LI×K is only updated once, so the number of low-rank
updates can be significantly reduced.

Storing the matrices R̂t,r for all blocks (t, r) ∈ TI×K
would significantly increase the storage requirements of
the algorithm. Fortunately, we can avoid this disadvantage
by rearranging the arithmetic operations: for each (t, r) ∈
TI×K, we define an accumulator consisting of the matrix
R̂t,r and a set Pt,r of triples (α, s, X ,Y) ∈ R × TJ ×
H(T(t,s), k) × H(T(s,r), k) of pending products αXY . A
product is considered pending if (t, s) ∈ TI×J \LI×J and
(s, r) ∈ TJ×K\LJ×K, i.e., if the product cannot be imme-
diately reduced to low-rank form but has to be treated in the
sons of (t, r).

Apart from constructors and destructors, we define three
operations for accumulators:

– the addproduct operation adds a product αXY with α ∈
R, X ∈ H(T(t,s), k), Y ∈ H(T(s,r), k) to an accumulator
for (t, r) ∈ TI×K. If (t, s) or (s, r) is a leaf, the product
is evaluated and added to R̂t,r . Otherwise, it is added to
the set Pt,r or pending products.

– the split operation takes an accumulator for (t, r) ∈
TI × TK and creates accumulators for the sons (t ′, r ′) ∈
sons(t) × sons(r) that inherit the already assembled
matrix R̂t,r |t̂ ′×r̂ ′ . If (α, s, X ,Y) ∈ Pt,r satisfies (t ′, s′) ∈
LI×J or (s′, r ′) ∈ LJ×K for s′ ∈ sons(s), the product
is evaluated and its low-rank representation is added to
R̂t ′,r ′ . Otherwise (α, s′, X |t̂ ′×ŝ′ ,Y |ŝ′×r̂ ′) is added to the
set Pt ′,r ′ of pending products for the son.

123

78 S. Börm

– the flush operation adds all products contained in an accu-
mulator to an H-matrix.

Instead of adding the product of H-matrices to another H-
matrix, we create an accumulator and use the “addproduct”
operation to turn handling the product over to it. If we only
want to compute the product,we can use the “flush” operation
directly. If we want to perform more complicated operations
like inverting a matrix, we can use the “split” operation to
switch to submatrices and defer flushing the accumulator
until the results are actually needed.

An efficient implementation of the “flush” operation can
use “split” to shift the responsibility for the accumulated
products to the sons and then “flush” the sons’ accumulators
recursively. If the sons’ accumulators are deleted afterwards,
the algorithm only has to store accumulators for siblings
along one branch of the block tree at a time instead of for
the entire block tree, and the storage requirements can be
significantly reduced.

The “flush” operation can be formulated using the “split”
operation, that in turn can be formulated using the “addprod-
uct” operation. The “addproduct” operation can be realized
as described before: if (t, s) or (s, r) are leaves, a factorized
low-rank representation of the product can be obtained using
the “addeval” and “addevaltrans” algorithms. If both (t, s)
and (s, r) are not leaves, the product has to be added to the
list of pending products. The resulting algorithm is given in
Fig. 5.

Using the “addproduct” algorithm, splitting an accumula-
tor to create accumulators for son blocks is straightforward:
if R̂t,r = AB∗, we have R̂t,r |t̂ ′×r̂ ′ = A|t̂ ′×k B|r̂ ′×k and can
initialize the matrices R̂t ′,r ′ for the sons t ′ ∈ sons(t) and r ′ ∈
sons(r) accordingly. The pending products (α, s, X ,Y) ∈
Pt,r canbehandledusing “addproduct”: since (t, s) and (s, r)
are not leaves, Definition 2 implies sons(s) �= ∅, so we can
simply add the products αX |t̂ ′×ŝ′Y |ŝ′×r̂ ′ for all s′ ∈ sons(s)
to either R̂t ′,r ′ or Pt ′,r ′ using “addproduct”. The procedure is
given in Fig. 6.

The “flush” operation can nowbe realized using the “rkup-
date” algorithm if there are no more pending products, i.e.,
if only the low-rank matrix R̂t,r contains information that
needs to be processed, and using the “split” algorithm oth-
erwise to move the contents of the accumulator to the sons
of the current block so that they can be handled by recur-
sive calls to “flush”. If there are pending products but (t, r)
has no sons, we split Z into temporary matrices Z̃t ′,r ′ for all
t ′ ∈ sons(t) and r ′ ∈ sons(r) and proceed as before. If (t, r)
is an inadmissible leaf or the descendant of an inadmissible
leaf, Z and the matrices Z̃t ′,r ′ are given in standard represen-
tation, so we can copy the submatrices Z̃t ′,r ′ directly back
into Z . Otherwise Z is a low-rank matrix and we have to use
the “rkmerge” algorithm to combine the low-rank matrices
Z̃t ′,r ′ into the result. The algorithm is summarized in Fig. 7.

procedure addproduct(α, s, X, Y , var R̂t,r, Pt,r);
if (t, s) ∈ L−

I×J then begin
if #t̂ ≤ #ŝ then begin

Â ← I ∈ R
t̂×t̂; B̂ ← 0 ∈ R

r̂×t̂;
addevaltrans(s, r, 1, Y , N∗

X,(t,s), B̂)
end else begin

Â ← NX,(t,s); B̂ ← 0 ∈ R
r̂×ŝ;

addevaltrans(s, r, 1, Y , I, B̂)
end;
rkadd(α, ÂB̂∗, R̂t,r)

end else if (s, r) ∈ L−
J ×K then begin

if #r̂ ≤ #ŝ then begin
B̂ ← I ∈ R

r̂×r̂; Â ← 0 ∈ R
t̂×r̂;

addeval(t, s, α, X, NY,(s,r), Â)
end else begin

B̂ ← N∗
Y,(s,r); Â ← 0 ∈ R

t̂×ŝ;
addeval(t, s, 1, X, I, Â)

end;
rkadd(α, ÂB̂∗, R̂t,r)

end else if (t, s) ∈ L+
I×J then begin

Â ← AX,(t,s); B̂ ← 0 ∈ R
r̂×k;

addevaltrans(s, r, 1, Y , BX,(t,s), B̂);
rkadd(α, ÂB̂∗, R̂t,r)

end else if (s, r) ∈ L+
J ×K then begin

B̂ ← BY,(s,r); Â ← 0 ∈ R
t̂×k;

addeval(t, s, 1, X, AY,(s,r), Â);
rkadd(α, ÂB̂∗, R̂t,r)

end else
Pt,r ← Pt,r ∪ {(α, s, X, Y)}

end

Fig. 5 Adding a product to an accumulator (R̂t,r , Pt,r)

procedure split(R̂t,r, Pt,r, var (R̂t′,r′ , Pt′,r′)t′,r′);
for t′ ∈ sons(t), r′ ∈ sons(r) do begin

R̂t′,r′ ← R̂t,r|t̂′×r̂′ ;
Pt′,r′ ← ∅;
for (α, s, X, Y) ∈ Pt,r do

for s′ ∈ sons(s) do
addproduct(α, s′, X|t̂′×ŝ′ , Y |ŝ′×r̂′ , R̂t′,r′ , Pt′,r′)

end

Fig. 6 Splitting an accumulator into accumulators for son blocks
(t ′, r ′) ∈ sons(t) × sons(r)

5 Complexity analysis

Ifwe use the algorithms “addproduct” and “flush” to compute
the approximated update

Z |t̂×r̂ ← blocktrunc(Z |t̂×r̂ + αX |t̂×ŝY |ŝ×r̂),

most of the work takes place in the “addproduct” algorithm.
In fact, if we eliminate the first case in the “flush” algorithm
(cf. Fig. 7), we obtain an algorithm that performs all of its
work in “addproduct”.

For this reason, it makes sense to investigate how often
“addproduct” is called during the “flush” algorithm and for
which triplets (t, s, r) these calls occur. Since “flush” is a

123

Hierarchical matrix arithmetic with accumulated updates 79

procedure flush(var R̂t,r, Pt,r, Z);
if Pt,r = ∅ do

rkupdate(t, r, 1, R̂t,r, Z)
else if sons(t, r) �= ∅ do begin

split(R̂t,r, Pt,r, (R̂t′,r′ , Pt′,r′)t′,r′);
for t′ ∈ sons(t), r′ ∈ sons(r) do

flush(R̂t′,r′ , Pt′,r′ , Z|t̂′×ŝ′);
Delete temporary accumulators (R̂t′,r′ , Pt′,r′)

else begin
Create temporary matrices Z̃t′,r′ ← Z|t̂′×r̂′

for all t′ ∈ sons(t), r′ ∈ sons(r)
split(R̂t,r, Pt,r, (R̂t′,r′ , Pt′,r′)t′,r′);
for t′ ∈ sons(t), r′ ∈ sons(r) do

flush(R̂t′,r′ , Pt′,r′ , Z̃t′,r′);
Delete temporary accumulators (R̂t′,r′ , Pt′,r′)
if Z is in standard representation then

Z|t̂′×r̂′ ← Z̃t′,r′ for all t′ ∈ sons(t), r′ ∈ sons(r)
else

rkmerge((Z̃t′,r′)t′,r′ , Z);
Delete temporary matrices Z̃t′,r′

end
Rt,r 0; Pt,r

Fig. 7 Flush an accumulator into an H-matrix Z

recursive algorithm, it makes sense to describe its behaviour
by a “call tree” that contains a node for each call to “addprod-
uct”. Since “addproduct” is only called for a triplet (t, s, r)
if (t, s) and (s, r) are not leaves of TI×J and TJ×K, respec-
tively, we arrive at the following structure.

Definition 5 (Product tree) Let TI×J and TJ×K be block
trees for cluster trees TI and TJ , and TJ and TK, respec-
tively.

Let T be a labeled tree, and denote the label of a node
c ∈ T by ĉ. We call T a product tree for the block trees
TI×J and TJ×K if

– for each note c ∈ T there are t ∈ TI , s ∈ TJ and r ∈ TK
such that c = (t, s, r),

– the root r = root(T) of the product tree has the form
r = (root(TI), root(TJ), root(TK)),

– for c = (t, s, r) ∈ T the label is given by ĉ = t̂ × ŝ × r̂ ,
and

– we have

sons(c)

=
{ ∅ if (t, s) ∈ LI×J or (s, r) ∈ LJ×K,

sons(t)×sons(s)×sons(r) otherwise

for all c = (t, s, r) ∈ T .

A product tree for TI×J and TJ×K is usually denoted by
TI×J×K, its nodes are called products.

Let TI×J×K be a product tree for the block trees TI×J
and TJ×K.

A simple induction yields

(t, s, r) ∈ TI×J×K
⇐⇒ (t, s) ∈ TI×J ∧ (s, r) ∈ TJ×K (7)

for all t ∈ TI , s ∈ TJ , r ∈ TK due to our Definition 2 of
block trees.

We can also see that TI×J×K is a special cluster tree for
the index set I × J × K.

If we call the procedure “addproduct” with the root triplet
root(TI×J×K) and use “flush”, the algorithm “addproduct”
will be applied to all triplets (t, s, r) ∈ TI×J×K. If (t, s) or
(s, r) is a leaf, the algorithmuses “addeval” or “addevaltrans”
to obtain a factorized low-rank representation of the product
X |t̂×ŝY |ŝ×r̂ and “rkadd” to add it to the accumulator. The
first part takes either Wev(t, s) or Wev(s, r) operations, the
second part takes not more than Cadk2(#t̂ + #r̂) operations,
for a total of

Wev(t, s) + Wev(s, r) + Cadk
2(#t̂ + #r̂)

operations. If (t, r) /∈ TI×K\LI×K holds for (t, s, r) ∈
TI×J×K, we also have to merge submatrices, and this takes
not more than Cmgk2(#t̂ + #r̂) operations.

Theorem 1 (Complexity) The new algorithm for the H-
matrix-multiplication with accumulated updates (i.e., using
“addproduct” for the root of the product tree TI×J×K, fol-
lowed by “flush”) takes not more than

CmmC
2
spk

2 max{pI×J + 1, pJ×K + 1, pI×K + 1}2
(#I + #J + #K) operations,

where Cmm := 3Cad + Cmg + 2.

Proof Except for the final calls to “rkupdate”, the number of
operations for “flush” can be bounded by

∑

(t,s,r)∈TI×J×K

Wev(t, s) + Wev(s, r)

+ (Cad + Cmg)k
2(#t̂ + #r̂).

Since (t, s, r) ∈ TI×J×K implies (t, s) ∈ TI×J , we can
use (3) and (2b) to bound the first term by

∑

(t,s,r)∈TI×J×K

Wev(t, s)

≤ 2k2
∑

(t,s,r)∈TI×J×K

∑

(t ′,s′)∈T(t,s)

#t̂ ′ + #ŝ′

= 2k2
∑

(t,s)∈TI×J

∑

r∈TK
(s,r)∈TJ×K

∑

(t ′,s′)∈T(t,s)

#t̂ ′ + #ŝ′

123

80 S. Börm

≤ 2Cspk
2

∑

(t,s)∈TI×J

∑

(t ′,s′)∈T(t,s)

#t̂ ′ + #ŝ′

= 2Cspk
2

∑

(t ′,s′)∈TI×J

∑

(t,s)TI×J
(t ′,s′)∈T(t,s)

#t̂ ′ + #ŝ′.

Since a block tree is a special cluster tree, the labels of all
blocks on a given level are disjoint. This implies that any
given block (t ′, s′) ∈ TI×J can have atmost one predecessor
(t, s) ∈ TI×J with (t ′, s′) ∈ T(t,s) on each level. Since the
number of levels is bounded by pI×J + 1, we find

∑

(t,s,r)∈TI×J×K

Wev(t, s)

≤ 2Cspk
2(pI×J + 1)

∑

(t ′,s′)∈TI×J

#t̂ ′′ + #ŝ′

and can use (4a) and (4b) to conclude

∑

(t,s,r)∈TI×J×K

Wev(t, s)

≤ 2C2
spk

2(pI×J + 1)2(#I + #J). (8)

For the second sum, we can follow the exact same approach,
replacing (2b) by (2c), to find the estimate

∑

(t,s,r)∈TI×J×K

Wev(s, r)

≤ 2k2
∑

(s,r)∈TJ×K

∑

t∈TI
(t,s)∈TI×J

∑

(s′,r ′)∈T(s,r)

#ŝ′ + #r̂ ′

≤ 2Cspk
2(pJ×K + 1)

∑

(s′,r ′)∈TJ×K

#ŝ′ + #r̂ ′

≤ 2C2
spk

2(pJ×K + 1)2(#J + #K). (9)

For the third sum, we can again use (2b) and (2c), respec-
tively, to get

∑

(t,s,r)∈TI×J×K

#t̂

=
∑

t∈TI

∑

s∈TJ
(t,s)∈TI×J

∑

r∈TK
(s,r)∈TJ×K

#t̂

≤ C2
sp

∑

t∈TI
level(t)≤pI×J

#t̂,

∑

(t,s,r)∈TI×J×K

#r̂

=
∑

r∈TK

∑

s∈TJ
(s,r)∈TJ×K

∑

t∈TI
(t,s)∈TI×J

#ŝ

≤ C2
sp

∑

r∈TK
level(r)≤pJ×K

#r̂ .

Since the clusters on the same level of a cluster tree are dis-
joint, we have

∑

t∈TI
level(t)≤pI×J

#t̂ =
pI×J∑

�=0

∑

t∈TI
level(t)=�

#t̂

≤
pI×J∑

�=0

#I = (pI×J + 1)#I,

∑

r∈TK
level(r)≤pJ×K

#r̂ =
pJ×K∑

�=0

∑

r∈TK
level(r)=�

#r̂

≤
pJ×K∑

�=0

#K = (pJ×K + 1)#K

and conclude that the third sum is bounded by

C2
sp(Cad + Cmg)k

2 (
(pI×J + 1)#I + (pJ×K + 1)#K

)
.

(10)

Now we have to consider the calls to “rkupdate” in the third
line of the “flush” algorithm. If (t, r) ∈ TI×K, the function
“rkadd” is called for all leaves (t ′, r ′) ∈ LI×K descended
from (t, r), and this takes not more than Cadk2(#t̂ ′ + #r̂ ′)
operations. Using (4a) once again, we obtain the upper bound

∑

(t ′,r ′)∈TI×K

Cadk
2(#t̂ ′+#r̂ ′) ≤ CadCspk

2(pI×K+1)(#I+#K)

for the first case and

Cad

∑

(t,s,r)∈TI×J×K

#t̂ + r̂

≤ CadCsp

⎛

⎝
∑

(t,s)∈TI×J

#t̂ +
∑

(s,r)∈TJ×K

#r̂

⎞

⎠

≤ CadC
2
sp max{pI×J + 1, pJ×K + 1}(#I + #K)

for the second. Combining both estimates yields

2CadC
2
sp max{pI×J +1, pJ×K +1, pI×K +1}(#I +#K),

(11)

and adding (8), (9), and (10) while using Cad ≥ 1 yields the
final result. ��

123

Hierarchical matrix arithmetic with accumulated updates 81

Remark 1 Without accumulated updates, the call to “rkadd”
in the “addproduct” algorithm would have to be replaced by
a call to “rkupdate”.

Since “rkupdate” has to traverse the entire subtree rooted
in (t, r), avoiding it in favor of accumulated updates can
significantly reduce the overall work.

Remark 2 (Parallelization) Since the “flush” operations for
different sons of the same block are independent, the new
multiplication algorithm with accumulated updates could be
fairly attractive for parallel implementations of H-matrix
arithmetic algorithms: in a shared-memory system, updates
to disjoint submatrices can be carried out concurrently with-
out the need for locking. In a distributed-memory system, we
can construct lists of submatrices that have to be transmitted
to other nodes during the course of the “addproduct” algo-
rithm and reduce communication to the necessary minimum.

6 Inversion and factorization

In most applications, the H-matrix multiplication is used to
construct a preconditioner for a linear system, i.e., an approx-
imation of the inverse of anH-matrix.

Whenusing accumulatedupdates, the corresponding algo-
rithms have to be slightly modified. As a simple example, we
consider the inversion [15]. More efficient algorithms like
the H-LR or the H-Cholesky factorization can be treated in
a similar way.

For the purposes of our example, we consider anH-matrix
G ∈ H(TI×I , k) and assume that it and all of its principal
submatrices are invertible and that diagonal blocks (t, t) ∈
TI×I with t ∈ TI are not admissible.

To keep the presentation simple, we also assume that the
cluster treeTI is a binary tree, i.e., that we have # sons(t) = 2
for all non-leaf clusters t ∈ TI\LI .

We are interested in approximating the inverse of a sub-
matrix Ĝ := G|t̂×t̂ for t ∈ TI . If t is a leaf cluster, the
block (t, t) has to be an inadmissible leaf of TI×I , so Ĝ is
stored as a dense matrix in standard representation and we
can compute its inverse directly by standard linear algebra.

If t is not a leaf cluster, we have sons(t) = {t1, t2} for
t1, t2 ∈ TI and (t, t) ∈ TI×I\LI×I . We split Ĝ into

Ĝ11 := G|t̂1×t̂1, Ĝ12 := G|t̂1×t̂2 ,

Ĝ21 := G|t̂2×t̂1 , Ĝ22 := G|t̂2×t̂2

and get

Ĝ =
(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
.

Due to our assumptions, Ĝ, Ĝ11 and Ĝ22 are invertible.

The standard algorithm for inverting an H-matrix can be
derived by a block LR factorization: we have

Ĝ =
(

I
Ĝ21Ĝ

−1
11 I

) (
Ĝ11 Ĝ12

Ĝ22 − Ĝ21Ĝ
−1
11 Ĝ12

)

=
(

I
Ĝ21Ĝ

−1
11 I

) (
Ĝ11 Ĝ12

S

)

with the Schur complement S = Ĝ22 − Ĝ21Ĝ
−1
11 Ĝ12 that is

invertible since Ĝ is invertible. Inverting the block triangular
matrices yields

Ĝ−1 =
(
Ĝ−1

11 −Ĝ−1
11 Ĝ12S−1

S−1

) (
I

−Ĝ21Ĝ
−1
11 I

)

=
(
Ĝ−1

11 + Ĝ−1
11 Ĝ12S−1Ĝ21Ĝ

−1
11 −Ĝ−1

11 Ĝ12S−1

−S−1Ĝ21Ĝ
−1
11 S−1

)
.

We can see that only matrix multiplications and the inversion
of the submatrices Ĝ11 and S are required, and the inversions
can be handled by recursion.

The entire computation can be split into six steps:

1. Invert Ĝ11.
2. Compute H12 := Ĝ−1

11 Ĝ12 and H21 := Ĝ21Ĝ
−1
11 .

3. Compute S := Ĝ22 − H21Ĝ12.
4. Invert S.
5. Compute H ′

12 := −H12S−1 and H ′
21 := −S−1H21.

6. Compute H ′
11 := Ĝ−1

11 − H12H ′
21.

After these steps, the inverse is given by

Ĝ−1 =
(
H ′
11 H ′

12
H ′
21 S−1

)
,

anddue to the algorithm’s structure,we candirectly overwrite
Ĝ22 first by S and then by S−1, Ĝ12 by H ′

12, Ĝ21 by H ′
21,

and Ĝ11 first by Ĝ
−1
11 and then by H ′

11. We require additional
storage for the auxiliary matrices H12 and H21.

In order to take advantage of accumulated updates, we
represent all updates applied so far to the matrix Ĝ by an
accumulator. In the course of the inversion, the accumulator
is split into accumulators for the submatrices Ĝ11, Ĝ12, Ĝ21,
and Ĝ22.

The first step is a simple recursive call. The second step
consists of using “flush” for the submatrices Ĝ12 and Ĝ21,
creating empty accumulators for the auxiliary matrices H21

and H12 and using “addproduct” and “flush” to compute the
required products. In the third step, we simply use “addprod-
uct” without “flush”, since the recursive call in the fourth
step is able to handle accumulators. In the fifth step, we use
“addproduct” and “flush” again to compute H ′

12 and H
′
21. The

123

82 S. Börm

procedure invert(t, R̂t,t, Pt,t, var G, H);
if sons(t) = ∅ then

G|t̂×t̂ ← G|−1
t̂×t̂

else begin
split(R̂t,t, Pt,t, (R̂t′,s′ , Pt′,s′)t′,s′∈sons(t));
invert(t1, R̂t1,t1 , Pt1,t1 , G, H);
flush(R̂t1,t2 , Pt1,t2 , Ĝ12);
flush(R̂t2,t1 , Pt2,t1 , Ĝ21);
H12 ← 0; H21 ← 0;
addproduct(1, t1, Ĝ11, Ĝ12, R̂t1,t2 , Pt1,t2);
flush(R̂t1,t2 , Pt1,t2 , H12);
addproduct(1, t1, Ĝ21, Ĝ11, R̂t2,t1 , Pt2,t1);
flush(R̂t2,t1 , Pt2,t1 , H21);
addproduct(−1, t1, H21, Ĝ12, R̂t2,t2 , Pt2,t2);
invert(t2, R̂t2,t2 , Pt2,t2 , G, H);
Ĝ12 ← 0; Ĝ21 ← 0;
addproduct(−1, t2, H12, Ĝ22, R̂t1,t2 , Pt1,t2);
flush(R̂t1,t2 , Pt1,t2 , Ĝ12);
addproduct(−1, t2, Ĝ22, H21, R̂t2,t1 , Pt2,t1);
flush(R̂t2,t1 , Pt2,t1 , Ĝ21);
addproduct(−1, t2, H12, Ĝ21, R̂t2,t2 , Pt2,t2);
flush(Rt2,t2 , Pt2,t2 , G11)

end

Fig. 8 Invert an H-matrix G using accumulated updates

sixth step computes H ′
11 in the same way by using “addprod-

uct” and “flush”. The algorithm is summarized in Fig. 8.
It is possible to prove that the computationalwork required

to invert an H-matrix by the standard algorithm without
accumulated updates is bounded by the computational work
required to multiply the matrix by itself.

If we use accumulated updates, the situation changes:
since “flush” is applied multiple times to the submatrices
in the inversion procedure, but only once to each subma-
trix in the multiplication procedure, we cannot bound the
computational work of the inversion by the work for the mul-
tiplication with accumulated updates. Fortunately, numerical
experiments indicate that accumulating the updates still sig-
nificantly reduces the run-time of the inversion. The same
holds for the H-LR and the H-Cholesky factorizations
[23,25, Section 7.6].

7 Numerical experiments

According to the theoretical estimates, we cannot expect the
new algorithm to lead to an improved order of complexity,
since evaluating the products of all relevant submatrices still
requiresO(nk2 p2) operations. But since the computationally
intensive update andmerge operations require onlyO(nk2 p)
operations with accumulated updates, we can hope that the
new algorithm performs better in practice.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 10000 100000

T
im

e/
n

Dimension n

Accumulated
Direct

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 10000 100000

T
im

e/
n

Dimension n

Accumulated
Direct

Fig. 9 Runtime per degree of freedom for theH-matrix multiplication,
single layer VV above, double layer KK below

The following experiments were carried out using the
H2Lib1 package. The standard arithmetic operations are
contained in its module harith, while the operations
with accumulated updates are in harith2. Both share the
same functions for matrix-vector multiplications, truncated
updates, and merging.

We consider twoH-matrices: the matrix V is constructed
by discretizing the single layer potential operator on a
polygonal approximation of the unit sphere using piecewise
constant basis functions. The mesh is constructed by refining
a double pyramid regularly and projecting the resulting ver-
tices to the unit sphere. TheH-matrix approximation results
from applying the hybrid cross approximation (HCA) tech-
nique [9] with an interpolation order of m = 4 and a cross
approximation tolerance of 10−5, followed by a simple trun-
cation with a tolerance of 10−4.

The second matrix K is constructed by discretizing the
double layer potential operator (plus 1/2 times the identity)
using the same procedure as for the matrix V .

In a first experiment, we measure the runtime of the
matrix multiplication algorithms with a truncation tolerance
of 10−4. Figure 9 shows the runtime divided by the matrix
dimension n using a logarithmic scale for the n axis. Both
algorithms reach a relative accuracy well below 10−4 with

1 Open source, available at http://www.h2lib.org.

123

http://www.h2lib.org

Hierarchical matrix arithmetic with accumulated updates 83

 0

 0.05

 0.1

 0.15

 0.2

 10000 100000

T
im

e/
n

Dimension n

Accumulated
Direct

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 10000 100000

T
im

e/
n

Dimension n

Accumulated
Direct

Fig. 10 Runtime per degree of freedom for the H-matrix inversion,
single layer V−1 above, double layer K−1 below

respect to the spectral norm, and we can see that the ver-
sion with accumulated updates has a significant advantage
over the standard direct approach, particularly for largematri-
ces. Although accumulating the updates requires additional
truncation steps, the measured total error is not significantly
larger. Since the new algorithm stores only one low-rank
matrix for each ancestor of the current block, the temporary
storage requirements are negligible.

In the next experiment, we consider the H-matrix inver-
sion, again using a truncation tolerance of 10−4. Since the
inverse is frequently used as a preconditioner, we estimate
the spectral norm ‖I − G̃−1G‖2 using a power iteration. For
the single layer matrix V , this “preconditioner error” starts
at 6 × 10−4 for the smallest matrix and grows to 10−2 for
the largest, as is to be expected due to the increasing con-
dition number. For the double layer matrix K , the error lies
between 2 × 10−2 and 1.1 × 10−1. For n = 73,728, the
error obtained by using accumulated updates is almost four
times larger than the one for the classical algorithm, while
for n = 524,288 both differ by only 13%. We can see in
Fig. 10 that accumulated updates again reduce the runtime,
but the effect is only very minor for the single layer matrix
and far more pronounced for the double layer matrix.

In a final experiment, we investigate H-matrix factor-
izations. Since V is symmetric and positive definite, we

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 10000 100000

T
im

e/
n

Dimension n

Accumulated
Direct

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 10000 100000

T
im

e/
n

Dimension n

Accumulated
Direct

Fig. 11 Runtime per degree of freedom for theH-matrix factorization,
single layer LL∗ = V above, double layer LR = K below

approximate its Cholesky factorization V ≈ L̃ L̃∗, while we
use the standard LR factorization K ≈ L̃ R̃ for the matrix K .
The estimated preconditioner error ‖I − (L̃ L̃∗)−1V ‖2 for
the single layer matrix of dimension n = 524,288 is close to
2.2 × 10−3 for the algorithm with accumulated updates and
close to 9.5 × 10−4 for the standard algorithm. For the dou-
ble layer matrix of the same dimension, the estimated error
‖I−(L̃ R̃)−1K‖2 is close to 5.6×10−1 for the new algorithm
and close to 3.8×10−1 for the standard algorithm. Figure 11
shows that accumulated updates significantly reduce the run-
time for both factorizations.

In summary, accumulated updates reduce the runtime of
the H-matrix multiplication and factorization by a factor
between two and three in our experiments while the error
is only moderately increased. The same speed-up can be
observed for the inversion of the double layer matrix, while
the improvement for the single layer matrix is significantly
smaller.

References

1. Baur, U.: Low rank solution of data-sparse Sylvester equations.
Numer. Linear Algebra Appl. 15, 837–851 (2008)

2. Bebendorf, M.: Approximation of boundary element matrices.
Numer. Math. 86(4), 565–589 (2000)

123

84 S. Börm

3. Bebendorf, M., Hackbusch, W.: Existence of H-matrix approx-
imants to the inverse FE-matrix of elliptic operators with L∞-
coefficients. Numer. Math. 95, 1–28 (2003)

4. Börm, S.: H2-matrix arithmetics in linear complexity. Computing
77(1), 1–28 (2006)

5. Börm, S.: Approximation of solution operators of elliptic par-
tial differential equations by H- and H2-matrices. Numer. Math.
115(2), 165–193 (2010)

6. Börm, S.: Efficient Numerical Methods for Non-local Operators:
H2-Matrix Compression, Algorithms and Analysis. Volume 14 of
EMS Tracts in Mathematics. EMS, Berlin (2010)

7. Börm, S., Christophersen, S.: Approximation of integral opera-
tors by Green quadrature and nested cross approximation. Numer.
Math. 133(3), 409–442 (2016)

8. Börm, S., Grasedyck, L.: Low-rank approximation of integral oper-
ators by interpolation. Computing 72, 325–332 (2004)

9. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral
operators. Numer. Math. 101, 221–249 (2005)

10. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Git-
terpotentiale. Ann. Phys. 369(3), 253–287 (1920)

11. Faustmann, M., Melenk, J.M., Praetorius, D.: H-matrix approx-
imability of the inverse of FEM matrices. Numer. Math. 131(4),
615–642 (2015)

12. Gavrilyuk, I., Hackbusch,W.,Khoromskij, B.N.:H-matrix approx-
imation for the operator exponential with applications. Numer.
Math. 92, 83–111 (2002)

13. Gavrilyuk, I., Hackbusch, W., Khoromskij, B.N.: Data-sparse
approximation to operator-valued functions of elliptic operator.
Math. Comput. 73, 1107–1138 (2004)

14. Grasedyck, L.: Existence of a low-rank orH-matrix approximant to
the solution of a Sylvester equation. Numer. Linear Algebra Appl.
11, 371–389 (2004)

15. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of
H-matrices. Computing 70, 295–334 (2003)

16. Grasedyck, L.,Hackbusch,W.,Khoromskij, B.N.: Solution of large
scale algebraic matrix Riccati equations by use of hierarchical
matrices. Computing 70, 121–165 (2003)

17. Grasedyck, L., Kriemann, R., LeBorne, S.: Parallel black box H-
LU preconditioning for elliptic boundary value problems. Comput.
Vis. Sci. 11, 273–291 (2008)

18. Grasedyck, L., Kriemann, R., LeBorne, S.: Domain decomposi-
tion basedH-LU preconditioning. Numer. Math. 112(4), 565–600
(2009)

19. Grasedyck, L., LeBorne, S.: H-matrix preconditioners in
convection-dominated problems. SIAM J. Math. Anal. 27(4),
1172–1183 (2006)

20. Greengard, L., Rokhlin, V.: A fast algorithm for particle simula-
tions. J. Comput. Phys. 73, 325–348 (1987)

21. Greengard, L., Rokhlin, V.: On the numerical solution of two-point
boundary value problems. Commun. Pure Appl. Math. 44(4), 419–
452 (1991)

22. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices
part I: introduction to H-matrices. Computing 62(2), 89–108
(1999)

23. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis.
Springer, Berlin (2015)

24. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in
the boundary element method by panel clustering. Numer. Math.
54(4), 463–491 (1989)

25. Lintner, M.: The eigenvalue problem for the 2d Laplacian in H-
matrix arithmetic and application to the heat and wave equation.
Computing 72, 293–323 (2004)

26. Rokhlin, V.: Rapid solution of integral equations of classical poten-
tial theory. J. Comput. Phys. 60, 187–207 (1985)

27. Sauter, S.A.: Variable order panel clustering. Computing 64, 223–
261 (2000)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Hierarchical matrix arithmetic with accumulated updates
	Abstract
	1 Introduction
	2 Hierarchical matrices
	3 Basic arithmetic operations
	4 Matrix multiplication with accumulated updates
	5 Complexity analysis
	6 Inversion and factorization
	7 Numerical experiments
	References

