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Abstract
In this paper we present two strategies to enable “parallelization across the method” for spectral deferred corrections (SDC).
Using standard low-order time-steppingmethods in an iterative fashion, SDC can be seen as preconditioned Picard iteration for
the collocation problem. Typically, a serial Gauß–Seidel-like preconditioner is used, computing updates for each collocation
node one by one. The goal of this paper is to show how this process can be parallelized, so that all collocation nodes are
updated simultaneously. The first strategy aims at finding parallel preconditioners for the Picard iteration and we test three
choices using four different test problems. For the second strategy we diagonalize the quadrature matrix of the collocation
problem directly. In order to integrate non-linear problems we employ simplified and inexact Newton methods. Here, we
estimate the speed of convergence depending on the time-step size and verify our results using a non-linear diffusion problem.

Keywords Spectral deferred corrections · Parallel-in-time integration · Preconditioning · Simplified Newton

1 Introduction

Implicit integration methods based on collocation are an
attractive approach to solve initial value problems numer-
ically. Depending on the choice of the collocation or
quadrature nodes, they feature near-ideal or even ideal (for
Gauß–Legendre nodes) convergence orders and typically
have very advantageous stability properties. However, solv-
ing the dense and fully coupled collocation problem directly
is prohibitively expensive in most cases: For M collocation
nodes and an N -dimensional system of ordinary differen-
tial equations (ODEs), a system of size MN ×MN has to be
solved. Thus, an iterative strategy is favorable, where instead
of the full system onlyM smaller systems of size N×N need
to be solved for each iteration.

Such an approach is given by the so-called “spectral
deferred correctionmethods” (SDC), introduced in [5]. After
casting the initial value problem into its Picard form, a pro-
visional solution to the integral problem is computed using a
standard time-stepping method, typically the explicit or the
implicit Euler scheme. Then, this provisional solution is cor-
rected using a sequence of error integral equations, which are
also solved using one of the standard methods. This way, a
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higher-order time-stepping method can be obtained simply
by using low-order methods repeatedly. Xia et al. showed
in [29] that each iteration or “sweep” of SDC can raise the
order by one up to the order of the underlying collocation
formula. The iterative structure of SDC has been proven
to provide many opportunities for algorithmic and mathe-
matical improvements: convergence can be accelerated by
GMRES [10], IMEX splitting with high orders of accuracy
is possible [18,20] and work can be shifted to coarser, less
expensive levels to improve the efficiency of SDC [22]. In
the last decade, SDC has been applied e.g. to gas dynam-
ics and incompressible or reactive flows [1,16,19] as well as
to fast-wave slow-wave problems [20] or particle dynamics
[28].

One of the key features of such an iterative approach for
time-stepping, though, is that these approaches can be used
to enable efficient parallel-in-time integration. Using SDC,
the “parallel full approximations scheme in space and time”
(PFASST) by Emmett and Minion [6] allows to integrate
multiple time-steps simultaneously by using SDC sweeps
on a space-time hierarchy. This “parallelization across the
steps” approach [3] targets large-scale parallelization on top
of saturated spatial parallelization of partial differential equa-
tions (PDEs), where parallelization in the temporal domain
acts as a multiplier for standard parallelization techniques
in space. In contrast, “parallelization across the method”
approaches [3] try to parallelize the integration of each time-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00791-018-0298-x&domain=pdf


76 R. Speck

step individually. While this typically results in small-scale
parallelization in the time-domain, parallel efficiency and
applicability of thesemethods are oftenmore favorable.Most
notable, the “revisionist integral deferred correctionmethod”
(RIDC) by Christlieb et al. [4] makes use of integral deferred
corrections (which are indeed closely related toSDC) in order
to compute multiple iterations in a pipelined way. Also, in
[12,25,26] parallel Runge-Kutta methods were investigated
and we refer to [2] for more examples.

In this paper, we present two approaches to parallelize
SDC across the method, allowing to compute the update
for all collocation nodes simultaneously. First, we make use
of parallel preconditioners by rewriting SDC as precondi-
tioned Picard iteration, following the ideas of [10,20,27].
We explore ideas appearing in the context of Runge-Kutta
methods [25,26] and investigate three different choices, all
of which enable parallelization across the nodes. Second, we
diagonalize the quadrature matrix of the collocation prob-
lem and show how this idea can be extended to non-linear
problems using simplified and inexact Newton methods
[13]. We estimate the speed of convergence depending
on the time-step size and verify our results using a non-
linear diffusion problem. This second approach is closely
related to the diagonalization-based parallelization strategy
presented independently in [8], which uses this technique
to enable larger-scale parallelization across the steps. We
note that while methods like PFASST target distributed-
memory parallelization, both approaches presented here are
best implemented using shared-memory parallelization.

2 Spectral deferred corrections

For ease of notationwe consider a scalar initial value problem

ut = f (u), u(0) = u0

with u(t), u0, f (u) ∈ R. For an interval [t0, t1], we rewrite
this in Picard formulation as

u(t) = u0 +
∫ t

t0
f (u(s))ds, t ∈ [t0, t1],

Introducing M quadrature nodes τ1, . . . , τM with tl ≤ τ1 <

· · · < τM = tl+1, we can approximate the integrals from tl to
these nodes τm using spectral quadrature like Gauß–Radau
or Gauß–Lobatto quadrature, such that

um = u0 +
M∑
j=1

qm, j f (u j ), m = 1, . . . , M,

where um ≈ u(τm),�t = t1 − t0 and qm, j represent the
quadrature weights for the interval [t0, τm] with
M∑
j=1

qm, j f (u j ) ≈
∫ τm

t0
f (u(s))ds.

We can now combine these M equations into one system of
linear or non-linear equations with

(I − �tQF) (u) = u0 (1)

where u = (u1, . . . , uM )T ≈ (u(τ1), . . . , u(τM ))T ∈
R

M , u0 = (u0, . . . , u0)T ∈ R
M ,Q = (qi j )i, j ∈ R

M×M

is the matrix gathering the quadrature weights and the vec-
tor function F is given by F(u) = ( f (u1), . . . , f (uM ))T ∈
R

M . This system of equations is called the “collocation prob-
lem” and it is equivalent to a fully implicit Runge-Kutta
method, where the matrix Q contains the entries of the cor-
responding Butcher tableau. We note that for f (u) ∈ R

N ,
we need to replace Q by Q ⊗ IN .

This system of equations is dense and a direct solution is
not advisable, in particular if the right-hand side of theODE is
non-linear. Using SDC, this problem can be solved iteratively
and we follow [10,20,27] to present SDC as preconditioned
Picard iteration for the collocation problem (1). Standard
discretized Picard iteration is given by

uk+1 = uk + (u0 − (I − �tQF)) (uk)

for k = 0, . . . K . This is simply an unmodified, non-linear
Richardson iteration for (1) and for very small�t , this indeed
converges to the solution of (1). In order to increase range
and speed of convergence, we now precondition this itera-
tion. The standard approach to preconditioning is to define
an operator P which is easy to invert but also close to the
operator of the system. For SDC, we now choose a sim-
pler quadrature rule for the preconditioner. In particular, the
resulting matrix Q� gathering the weights of this rule is a
lower triangular matrix, such that solving the system can be
easily done by forward substitution. We write

(I − �tQ�F) (uk+1) = u0 + �t(Q − Q�)F(uk) (2)

and the operator I − �tQ�F is then called the SDC pre-
conditioner. The matrixQ� is typically given by the implicit
Euler method which corresponds to the right-hand side rule
in terms of integration with

QIE
� = 1

�t

⎛
⎜⎜⎜⎝

�τ1
�τ1 �τ2

...
...

�τ1 �τ2 . . . �τM

⎞
⎟⎟⎟⎠ ,
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where �τm = τm − τm−1 for m = 2, . . . , M and �τ1 =
τ1 − t0 or, using the LU decomposition of QT [27], by

QLU
� = UT for QT = LU.

This choice, sometimes also called the LU trick, is very well
suited for stiff problems andhas become thede-facto standard
choice for Q�.

Yet, common to these and most other choices is the fact
that Q� is a lower triangular matrix, so that solving (2) can
be done only in a serial, Gauß–Seidel-like way: first solve for
uk+1
1 using the initial value u0, then for u

k+1
2 using uk+1

1 and
so on. In order to introduce parallelism across the quadra-
ture nodes, we investigate two strategies in the following:
(A) choose a parallel preconditioner and (B) diagonalize the
quadrature matrix.

3 Parallel preconditioning

The first idea to parallelize SDC over the quadrature nodes
is quite obvious: instead of following a Gauß–Seidel-like
approach, we try to find suitable matrices Q� which only
have entries on the the diagonal, i.e. which allow to follow a
Jacobian-like approach. To this end, we identify three candi-
dates:

1. Take the diagonal of Q, i.e.

QQpar
� = diag(q11, . . . , qmm, . . . , qMM ), (3)

2. Use Euler steps from t0 to τm , i.e.

QIEpar
� = diag(τ1 − t0, . . . , τm − t0, . . . , τM − t0), (4)

3. Minimize the spectral radius of I − Q−1
� Q, i.e.

QMIN
� = diag(q̂) (5)

with

q̂ = argminq∈RM ρ(I − diag(q)Q)

While the first two approaches are obvious candidates and
straightforward to compute, the third one is more involved.
For the linear test problem ut = λu, SDC has an iteration
matrix K with

K = λ�tQ� (I − λ�tQ�)−1
(
Q−1

� Q − I
)

,

see e.g. [20].While the first factors all depend on the “space”-
problemparameterλ the last factor does not and can therefore
be modified independently of the spatial problem at hand.

Fig. 1 Spectral radius of I2 −Q−1
� Q for a diagonal matrixQ� ∈ R

2×2

consisting of different components 1 (x-axis) and 2 (y-axis). The X
indicates the result of the Nelder–Mead optimization. Note that both
axes are scaled differently. Upper: Full domain, lower: zoom into a
region of interest.

It also corresponds (up to the sign) to the stiff limit of the
iteration matrix, i.e. for |λ�t | → ∞ we have K → I −
Q−1

� Q, see [20]. We choose to minimize the spectral radius,
because the hope is that in this case strong damping of the
stiff iteration error components is achieved, see [26] for more
details on this matter.

However, to the best of our knowledge there exists no
analytic expression for the eigenvalues ofQ or diag(q)Q, so
that the computation of this minimizer has to be done numer-
ically. We use the Nelder–Mead algorithm as implemented
by SciPy v.0.18.1 [14] in the “optimize” package.

To get a first impression of this approach, we consider
M = 2 Gauß–Radau nodes and investigate the values of
ρ(I−diag(q)Q) for different q = (q1, q2)T . In Fig. 1 we let
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component 1 (i.e. q1) vary between 0 and 8 and component
2 (i.e. q2) between 0 and 13. Further experiments not shown
here revealed that outside of this region the spectral radius
is greater than 1. Figure 1a shows that there are two regions
of interest shown in light colors, where a minimum can be
expected. For Fig. 1b, we zoom into the lower region, where
the localminimumvalue computed by theNelder–Meadopti-
mization with starting value q0 = (1, 1)T is located. Note
that for e.g. q0 = (1, 2)T the upper local minimum is found,
which is about 2.5 times smaller than the one from the lower
region (2.6 · 10−5 vs. 6.5 · 10−5). Already for 2 nodes we
can see that the regions of small spectral radii as well as the
location of the minima are far from trivial.

Now,what is the best choice forQ�? “Best” in our context
means that for this choice the corresponding SDC iteration
converges about as fast as the standard choicesQIE

� andQLU
�

for the problemat hand.Clearly, this is highly problemdepen-
dent, but even worse, the same argument which prevented us
from finding the minimizer of the spectral radius analytically
apply also to finding the best diagonal matrixQ�, since there
is no closed form of the eigenvalues or the norm of anymatrix
related to Q. Thus, we choose four test problems, two lin-
ear and two non-linear, to quantify the impact of the three
different Q�:

Problem A Heat equation with ν > 0:

ut = ν�u on [0, 1] × [0, T ],
u(0, t) = 0, u(1, t) = 0,

u(x, 0) = sin(2πx)

Problem B Advection equation with c > 0:

ut = c∇u on [0, 1] × [0, T ],
u(0, t) = u(1, t),

u(x, 0) = sin(2πx)

Problem C Van der Pol oscillator with μ > 0:

ut = v, vt = μ(1 − u2)v − u on [0, T ],
u(0) = 2, v(0) = 0

Problem D Non-linear diffusion of Kolmogorov–
Petrovskii–Piskunov type [7] with λ0 > 0:

ut = �u + λ20u(1 − uν) on R × [0, T ],
u(x, 0) =

(
1 + (2ν/2 − 1)e−(ν/2)δx

)− 2
ν

(6)

and constants δ > 0 and ν ∈ N (ν = 1 is used here, δ can be
found in [7]).

For all runs we choose M = 3 Gauß–Radau nodes, T =
�t = 0.1 and a residual tolerance of 10−8. For Problems A
and D we choose finite differences with N = 63 degrees of
freedom and for B N = 64, again using finite differences.

In Fig. 2a–d we show the number of iterations for five
different choices of Q�: the implicit Euler and the LU trick
as references as well as the three diagonal matrices defined
in (3),(4) and (5). For each problem, we vary the parameter
given in the description above to change the characteristics
or stiffness of the problem. The first thing to notice is that in
almost all cases QLU

� is the best choice, in particular if for a
problem the convergence of SDC is required to be roughly
the same across all parameter values. For non-stiff problem,
i.e. for small values of the parameters, however, the diagonal
matrices work equally well. Especially QMIN

� is capable of
yielding convergence as fast or sometimes even faster than
QLU

� , if the parameter is small enough. The other choices,

namely QIEpar
� and QQpar

� perform reasonably well for small
parameters, too, but they lead to drastically increased num-
bers of iterations for larger parameters. In this regime, the LU
trick shows its strength and, not surprisinlgy, this is precisely
the way it was designed [27]. Only for the two non-linear
problems and most notably for Problem D we see thatQMIN

�

is a favorable choice. We finally note that results look very
similar and in parts even slighty better for M = 5 nodes.

The numerical comparison of the five different candidates
for Q�, two leading to serial and three to parallel SDC
iterations, shows no clear result. The minimization-based
approach QMIN

� seems to be a reliable and sometimes even
favorable choice, but only for the scenarios tested here. Due
to the intricate structure of Q there is no adequate mathe-
matical theory to guide the selection of theQ� matrix. Even
for a particular choice, estimating convergence speed with
reasonable sharp bounds is not straightforward. However,
this section shows that in many cases parallel SDC itera-
tions are indeed possible and can be implemented without
any overhead. Note that this strategy is only reasonable to
use for shared-memory parallelization: in each iteration, the
system (2) is solved in parallel, but in order to compute the
right-hand side, each compute unit (core, thread etc.) needs
to have data from all M quadrature nodes. If the collocation
problem is large, e.g. due to a large amount of degrees-of-
freedom N in space, each unit has to receive the full vector
uk , consisting of MN variables. If distributed-memory par-
allelization were used here, communication costs would be
prohibitively high.

4 Diagonalization of Q

While choosing a parallel preconditioner is a simple but
rather heuristical idea, the second approach we describe here
is more intricate. In order to introduce parallelism across the
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Fig. 2 Number of iterations for five different choices ofQ� for the four
test problems a–d and varying parameters. The serial Gauß–Seidel-type
matrices for the implicit Euler and the LU trick are shown as reference

nodes we now look at the diagonalization of the quadrature
matrix Q. To this end, we write

Q = V�V−1

where � = diag(λ1(Q), . . . , λM (Q))T is a diagonal matrix
with eigenvalues λi (Q) ∈ C of Q on the diagonal and V
contains the eigenvectors of Q. For non-symmetric quadra-
ture rules such as Gauß–Radau, this diagonalization of Q is
possible, since all eigenvalues are distinct.

If f is linear, i.e. if f (u) = au, then this leads to a parallel
direct solver of the collocation problem (1). We have

(I − �tQF) (u) = (I − a�tQ) u

= V (I − a�t�)V−1u
(7)

so that (1) can be solved in three simple steps:

1. Replace u0 by ũ0 = V−1u0 (serial)
2. Solve (I − a�t�) ũ = ũ0 (parallel in M)
3. Replace ũ by u = Vũ (serial)

Since � is a diagonal matrix, step 2 can be done in paral-
lel for all M quadrature nodes at once. Steps 1 and 3, in
contrast, require global communication: While V and V−1

can be precomputed, the multiplications with these dense
matrices require all-to-all exchanges of M-times the spa-
tial data. Thus, for problems with many degrees-of-freedom
in space (i.e. for N large), this results in significant com-
munication costs. We therefore consider this strategy only
suitable for shared-memory parallelization as well, which
plays nicely with the rather small number M of quadra-
ture nodes used in typical applications. The overhead of
this approach then merely consists of the two multiplica-
tions with V and V−1, which is negligible compared to
evaluations of right-hand sides and solutions of implicit sys-
tems.

Yet, themore severe restriction comes from the linearity of
the right-hand side f . If f is non-linear, we cannot follow (7)
to solve the collocation problem in parallel. This is due to the
coupling of the non-linear F(u) with the matrix Q, which
does not allow the V to be extracted. The obvious way to
proceed is to linearize the problem using Newton’s method.
We define

G(u) = u − �tQF(u) − u0

so that solving (1) is equivalent to finding a root of G(u). For
Newton iterations, we need the Jacobian JG of G, which is
given by

JG(u) = I − �tQJ F(u)
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80 R. Speck

with

J F(u) = diag
(
f ′(u1), . . . , f ′(uM )

) ∈ R
M×N . (8)

Then, the Newton iteration is given by

JG(uk)ek = −G(uk),

uk+1 = uk + ek .
(9)

The matrix JG(uk) looks very much like the original oper-
ator of the collocation problem (1) for a linear function.
However, the matrix J F(uk) which appears in this prob-
lem still does not decouple from the matrixQ, since for each
quadrature node a different entry is given. Again, V cannot
be extracted and we need another step to obtain parallelism
via diagonalization.

We note that for k = 0 we have

J F(u0) = diag
(
f ′(u01), . . . , f ′(u0M )

)

= diag
(
f ′(u00), . . . , f ′(u00)

)
= f ′(u0)IM

if the iteration is started with u0 as initial guess. This directly
leads to a simplified Newton method with

JG(u0)ek = −G(uk),

uk+1 = uk + ek .
(10)

where

JG(u0) = I − f ′(u0)�tQ (11)

and here we indeed can use diagonalization of Q for paral-
lelization across M nodes. For each iteration k with a given
iterate uk , the algorithm consists of these four steps:

1. Replace rk = −G(uk) by r̃k = −V−1G(uk) (serial)
2. Solve

(
I − f ′(u0)�t�

)
ẽk = r̃k (parallel in M)

3. Replace ẽk by ek = Vẽk (serial)
4. Set uk+1 = uk + ek (parallel in M)

We note that using simplified Newton methods for fully-
implicit Runge-Kutta schemes like (1) is a standard way of
solving these systems, see e.g. Section IV.8 in [9].

The price for using diagonalization of Q for paralleliza-
tion is therefore the re-introduction of an iterative process
as well as the need for the Jacobian of the right-hand side.
The latter, at least, has to be computed only once per time-
step. While for linear problems we obtain a parallel direct
solver, a simplified Newton approach is required to obtain
the same level of parallelism for non-linear problems. The
question now is, howmuch the approximation of the Jacobian

JG(uk) by JG(u0) affects the convergence of the method
and how this compares to standard SDC iterations. In contrast
to the previous section, we are now able to investigate this
not only numerically but also on an analytic level. It is well
known that for suitable right-hand sides and initial guesses
the standard, unmodifiedNewtonmethod converges quadrat-
ically while the simplified Newton method only shows linear
convergence, see e.g. [11,15]. Yet, we are also interested in
the constants and their dependence on the time-step size �t .
More precisely, we can show the following result.

Theorem 1 Let f ′ be Lipschitz continuous with constant γ f

and u0, uk ∈ B(�t) = {u ∈ R
M : ‖u − u∗‖ ≤ c1�t} for

the exact solution u∗ of the collocation problem (1) and the
current iterate uk . Furthermore, assume that JG(u∗) is non-
singular. Then the simplified Newton iteration (10) converges
with

‖ek+1‖∞ ≤ c�t2‖ek‖∞

if �t is small enough.

Proof It is tempting to simply follow Theorem 5.4.2 in [15]
for this proof: this states that the “chord” or simplified New-
ton method converges linearly to the exact solution u∗, if the
standard assumptions are satisfied (see 4.3 in [15]), namely
if u∗ is a solution of G(u) = 0, JG is Lipschitz continuous
and JG(u∗) is non-singular. We first note that these stan-
dard assumptions are satisfied by the conditions we require
here. In particular, JG is Lipschitz continuous with constant
�tγ f ‖Q‖∞, because

‖JG(u) − JG(v)‖∞ ≤ �t‖Q‖∞‖J F(u) − J F(v)‖∞
≤ �tγ f ‖Q‖∞‖u − v‖∞.

(12)

For the last inequality we note that

‖J F(u) − J F(v)‖∞

= max
m=1,...,M

∣∣∣∣ ∂ f

∂um
(um) − ∂ f

∂um
(vm)

∣∣∣∣
≤ γ f max

m=1,...,M
|um − vm | = γ f ‖u − v‖∞.

However, using the estimate given in this theorem with the
constants we have here would provide an estimate which is
only linear in �t and therefore too pessimistic. To overcome
this, we look at the more technical Theorem 5.4.1 in [15],
stating that for inaccurately computed G and JG the iteration
error ek+1 can be estimated by a linear combination of the
previous error ek , the error in the Jacobian JG as well as
the error in the function G. Here, the error in the Jacobian is
simply the difference between JG(uk) and JG(u0) and we
have with (12)
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Parallelizing spectral deferred corrections across the method 81

∥∥∥JG(u0) − JG(uk)
∥∥∥∞ ≤ �tγ f ‖Q‖∞‖u0 − uk‖∞

≤ c1�t2,
(13)

since uk and u0 are both in B(�t). The function G is evalu-
ated exactly, so that the error in G is just zero. Then, looking
at the proof of Theorem 5.4.1, the last estimate reads in our
notation

‖ek+1‖∞ ≤ γ f �t
∥∥∥ek

∥∥∥2∞ + 16P
∥∥∥ek

∥∥∥∞ + 0. (14)

for

P =
∥∥∥JG(u∗)−1

∥∥∥2∞
∥∥JG(u∗)

∥∥∞ ·∥∥∥JG(u0) − JG(uk)
∥∥∥∞ .

For �t small enough and by assumption, we can bound both∥∥JG(u∗)−1
∥∥2∞ and ‖JG(u∗)‖∞ by some constant c2. Also,

we note that

∥∥∥ek
∥∥∥2∞ ≤ �t

∥∥∥ek
∥∥∥∞ .

Then, putting all the results together inequality (14) yields

‖ek+1‖∞ ≤ γ f �t2
∥∥∥ek

∥∥∥∞ + 16c1c2�t2
∥∥∥ek

∥∥∥∞
= c�t2

∥∥∥ek
∥∥∥∞

which concludes the proof. �
This shows that the simplified Newton iteration converges

linearly with a contraction factor of the order of O(�t2).
An objection one might raise is that the eigenvalues of

Q and thus the entries of � are complex, making imple-
mentations slightly more cumbersome. To avoid this, we can
“borrow” the preconditioning idea from SDC, i.e. instead of
using the simplified Newton method with Eq. (11), we use

J�
G(u0) = I − f ′(u0)�tQ�

so that the simplified Newton method becomes an inexact
simplified Newton method:

J�
G(u0)ek = −G(uk),

uk+1 = uk + ek .
(15)

Then, by diagonalizing Q� instead of Q, we can parallelize
each of these iterations across the nodes, too. Note that the
diagonal part of Q� only has real entries, since all eigenval-
ues of the diagonal matrixQ� are real (and distinct), at least
for typical choices of Q�.

Theorem 2 Let f ′ be Lipschitz continuous with constant γ f

and u0, uk ∈ B(�t) = {u ∈ R
M : ‖u − u∗‖ ≤ c1�t}

for the exact solution u∗ of the collocation problem (1). Fur-
thermore, assume that JG(u∗) and J�

G(u0) are non-singular.
Then the inexact simplified Newton iteration (15) converges
with

‖ek+1‖∞ ≤ c�t‖ek‖∞

if �t is small enough.

Proof Weuse again thefinal estimate of the proof ofTheorem
5.4.1 in [15], which for

P̃ =
∥∥∥JG(u∗)−1

∥∥∥2∞
∥∥JG(u∗)

∥∥∞
∥∥∥J�

G(u0) − JG(uk)
∥∥∥∞

now reads

‖ek+1‖∞ ≤ γ f �t
∥∥∥ek

∥∥∥2∞ + 16P̃
∥∥∥ek

∥∥∥∞ + 0,

i.e. we simply replaced JG(u0) by J�
G(u0) in (14). Then,

we have
∥∥∥J�

G(u0) − JG(uk)
∥∥∥∞ ≤

∥∥∥J�
G(u0) − JG(u0)

∥∥∥∞
+

∥∥∥JG(u0) − JG(uk)
∥∥∥∞

and we note that the second term is the same we had in (13).
For the first term it is
∥∥∥J�

G(u0) − JG(u0)
∥∥∥∞ ≤ �t | f ′(u0)| ‖Q − Q�‖∞

so that
∥∥∥J�

G(u0) − JG(uk)
∥∥∥∞ ≤ �t | f ′(u0)| ‖Q − Q�‖∞

+ c1�t2,

see (13). Therefore, we obtain

‖ek+1‖∞ ≤γ f �t2
∥∥∥ek

∥∥∥∞ + 16c1c2�t2
∥∥∥ek

∥∥∥∞
+ 16c2c3�t ‖Q − Q�‖∞

∥∥∥ek
∥∥∥∞

so that in summary

‖ek+1‖∞ ≤ c�t
∥∥∥ek

∥∥∥∞

which concludes the proof. �
Aside from constants, this is the same rate as the classical

SDC convergence rate [20,24]. However, we can see in the
last estimate of this proof that with the introduction ofQ� the
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Fig. 3 Convergence rates of SDC, simplified Newton and inexact New-
ton for the non-linear diffusion problemD.Difference between the error
at iteration 2 and 3 for the last time-step is shown

order of convergence in �t becomes linear only because of
the factor ‖Q − Q�‖∞ which turns out to be small in many
cases.

We test both theorems using the the non-linear diffusion
equation, see Problem D in the previous section. For partic-
ular choices of δ and λ0 this problem has an exact solution
which we can use to evaluate the error. Note that instead
of having boundaries at ±∞ we use the exact solution at
the boundaries on a fixed interval [a, b] = [− 5, 5]. We use
M = 5 Gauß–Radau nodes with the LU trick of [27] as pre-
conditioner Q�, T = 0.1 with 2, . . . , 16 time-steps, finite
differences with N = 8191 degrees-of-freedom in space and
ν = 1, λ0 = 5 and δ given by the relation in [7]. For SDC,
the implicit systems at each node are solved using a stan-
dard (spatial) Newton method with tolerance 10−12 while
the linear systems for the Newton-like approaches are solved
directly. In order to compute the rate of error reduction, we
compute the ratio between the error on all quadrature nodes
before and after iteration 2 at the last time-step. For SDC,
the simplified Newton method as well as the inexact New-
ton method, these ratios are shown in Fig. 3 for different
time-step sizes �t .

We can nicely observe how SDC converges linearly with
�t , while the simplified Newton method shows a quadratic
dependency on the time step size. The inexact Newton
method converges slightly faster than linear in �t , but is
still far away from a quadratic dependency. It has the largest
ratio of all three methods, suggesting that the constants are
higher than for the othermethods.We note that in this casewe
have ‖Q − Q�‖∞ ≈ 0.265.We also observe that the simpli-
fied Newton method does not only have better convergence
rates but also has the smallest ratios of all methods for all
�t . Thus, if complex arithmetic is not a problem (or circum-
vented in other ways) and if the Jacobian of the right-hand
side is available, this approach seems to be preferable.

5 Conclusion and outlook

In this paper we have introduced, discussed and analyzed two
different approaches for parallelizing iterations of implicit
spectral deferred corrections across the quadrature nodes.
While parallel-in-time algorithms like PFASST allow to
computemultiple time-steps simultaneously and target large-
scale parallelism in time, the ideas presented here focus on the
small-scale parallelization of a single time-step. In the sense
of [3], these ideas therefore realize “parallelization across the
method” for SDC.

The first approach allows simultaneous evaluation of SDC
updates on all quadrature nodes by using a diagonal precon-
ditioning matrix Q� instead of standard Gauß–Seidel-like
choices. With Q� being diagonal, all M “stages” of SDC,
i.e. updates for the solution at each quadrature node, can
be computed using M processes. This includes solving an
implicit system at the nodes as well as evaluation of the right-
hand side of the initial value problem, all of which can now
be done in parallel. We chose three different diagonal matri-
ces and analyzed their impact on the convergence of SDC
using four different test problems. While for non-stiff cases
all candidates performed rather well, only the third alterna-
tive using a minimization approach was able to work about
as good as the standard SDC preconditioners for stiff prob-
lems, too. Yet, so far no conclusive theory exists to estimate
the impact of the choice of Q� in the convergence of SDC,
let alone for the derivation of optimal (serial or parallel) pre-
conditioners. For this approach, generic and rather obvious
choices of Q� were considered and it can be expected that
better candidates might exists, in particular if the problem at
hand is taken into account.

The second approach uses diagonalization of the quadra-
ture matrix Q to achieve parallelism across the nodes. For
linear problems and suitable choices of quadrature rules,
this yields a direct parallel solver of the collocation prob-
lem. For non-linear problem, though, this is not applicable
and linearization via Newton’s method is needed. The result-
ing linear systems for each Newton iteration looks similar
to a linear collocation problem, but only when the full Jaco-
bian is frozen at the first node the diagonalization technique
is applicable. This simplified Newton method shows quite
remarkable convergence properties when compared to stan-
dard SDC. Yet, complex arithmetic is needed due to the
complex eigenvalues of Q. If this is an issue, the simpli-
fied Newton method can be further extended to an inexact
simplified Newton method by diagonalizing Q� instead of
Q. For these two methods, simplified and inexact simplified
Newton, we were able to prove linear convergence and show
that the constants depend quadratically in the first and lin-
early in the second case on �t . This makes the convergence
of the inexact method about as fast as standard SDC, which
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we could also observe numerically using a non-linear test
problem.

Both approaches are rather easy to implement and the
code used for generating the numerical results of this paper
can be found online within the pySDC framework [21]. We
firmly believe that there are more ways to achieve paral-
lelism within SDC, either across the nodes or even across the
iterations. One possibility is to applymethods for paralleliza-
tion across the step like Parareal [17] for the preconditioner
itself. When choosing the implicit Euler for Q�, each itera-
tion of SDC is just a sequence of implicit Euler steps with
a modified right-hand side. Thus, if a method is able to
parallelize M implicit Euler steps, we could use it within
SDC as parallel preconditioner. If this method is an itera-
tive method itself, then with SDC being the outer iteration
ideas like inexact SDC [23] could further speed up the
algorithm.
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