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Abstract
Direct Numerical Simulation of turbulent flows is a computationally demanding problem that requires efficient parallel
algorithms. We investigate the applicability of the time-parallel Parareal algorithm to an instructional case study related
to the simulation of the decay of homogeneous isotropic turbulence in three dimensions. We combine a Parareal variant
based on explicit time integrators and spatial coarsening with the space-parallelHybridNavier–Stokes solver. We analyse the
performance of this space–time parallel solver with respect to speedup and quality of the solution. The results are compared
with reference data obtained with a classical explicit integration, using an error analysis which relies on the energetic content
of the solution. We show that a single Parareal iteration is able to reproduce with high fidelity the main statistical quantities
characterizing the turbulent flow field.

Keywords Direct numerical simulation · Explicit time integrator · High-order method in space · Navier–Stokes equations ·
Parareal · Space–time parallelism

1 Introduction

The numerical solution of time dependent partial differential
equations is of interest in many applications in Compu-
tational Science and Engineering. The recent advent of
computing platforms with more, but not faster, proces-
sors currently requires the design of new parallel algo-
rithms that must be able to exploit more concurrency to
provide a fast time-to-solution. In this respect, parallel-in-
time and space–time methods are considered as promis-
ing candidates [10]. Indeed, such methods enable the
exploitation of possibly substantially more computational
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resources than purely space-parallel methods with sequential
time stepping.

A popular parallel-in-time method based on a decompo-
sition of the space–time domain in time is the Parareal
algorithm introduced by Lions, Maday and Turinici [28].
Parareal relies on the availability of a cheap coarse time
integrator that provides guesses of the solution at several
instants. Given these starting values, a fine time integrator is
applied concurrently. The results are then used to propagate
a correction to the guesses by using the coarse integrator
serially over the time slices. As shown in [18], Parareal
can be derived as both a multigrid method in time or as a
multiple shooting method along the time axis; see [16] for
further comments and details on the classification of time
parallel methods. Due to its non-intrusiveness, Parareal is
one of the most widely used time-parallel algorithms. Suc-
cessful applications have been considered in Computational
FluidDynamics (CFD) [6,14], neutron transport [30], plasma
physics [39] and skin permeation [23] to name a few. While
a relative efficiency has been obtained on diffusive prob-
lems [14,23], the applicability of Parareal to hyperbolic or
advection-dominated problems is still an open issue; see [35]
for a recent analysis and [3,41] for early attempts. Although
modifications of Parareal for hyperbolic problems have
been proposed [9,12,13,15,37], these enhancements gener-
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ally imply a significant overhead that leads to a degradation
of the parallel efficiency. Hence this seems to prevent the use
of Parareal for a certain class of important problems in
Computational Fluid Dynamics.

In this manuscript we investigate this critical issue by
applying Parareal to the direct numerical simulation of
complex turbulent compressible flows in three dimensions.
We specifically focus on the simulation of the decay of homo-
geneous isotropic turbulence, a canonical test case known as
the simplest configuration which incorporates fundamental
and relevant turbulence mechanisms [31]. As identified in
[45], regarding parallel-in-time integration, interesting fea-
tures of turbulent flows are their chaotic nature and their
strongly unsteady behavior, which typically requires explicit
integration methods [7]. This test case incorporates these
issues at a very moderate cost, making this model prob-
lem an interesting instructional candidate for time-parallel
algorithms. To the best of our knowledge, the performance
of Parareal on such a test case has not yet been studied.
In the following, we concentrate on Parareal with spa-
tial coarsening [14] and explicit time integrators. We employ
the Hybrid Navier–Stokes solver for the spatial discretiza-
tion, forwhich excellent parallel scaling properties have been
obtained [4]. With this setting, we aim at investigating if this
application could benefit from time parallelization. For such
a purpose, we perform a numerical study on the role of vari-
ous parameters on the convergence of Pararealwith spatial
coarsening. This extensive numerical study is the main con-
tribution of the manuscript.

The manuscript is organized as follows. In Sect. 2 we
briefly present the Parareal time-parallel time integra-
tion method. In Sect. 3 we describe the set of governing
time-dependent partial differential equations and explain the
relevance of the canonical test case concerning the direct
numerical simulation of turbulent flows. Then we present
detailed numerical experiments to understand the conver-
gence of Parareal in Sect. 4. Finally, as a conclusion, we
draw first lessons in Sect. 5.

2 Time parallelization using Parareal

We briefly introduce Parareal [28], a popular method for
the time parallel solution of nonlinear initial value problems.
Then we describe a variant based on spatial coarsening first
proposed in [14]. Finally, we include a theoretical model for
the expected speedup and parallel efficiency of both algo-
rithms.

2.1 General setting

Parareal aims at solving the initial value problem of the
form

dU

dt
= f (U (t), t), U (0) = U0, t ∈ [0, T ], (1)

with f : Rp × R
+ → R

p, U (t) ∈ R
p, U0 ∈ R

p, p being
the total number of degrees of freedom and T a positive real
value.Here, the problem (1) arises from the spatial discretiza-
tion of a nonlinear system of partial differential equations
(PDEs) through the “method-of-lines” [40]. We decompose
the global time interval [0, T ] into N uniform time slices
[tn−1, tn], n = 1, . . . , N , where N is the number of pro-
cesses to be considered for the time parallelization only. In
the following, we denote by Un the approximation of U at
time tn , i.e.,Un ≈ U (tn). Let F δt

tn−1→tn
(Un−1) denote the result

of approximately integrating (1) on the time slice [tn−1, tn]
from a given starting valueUn−1 using a fine time integrator
F with time increment δt . Similarly, we introduce a second
time integrator G (referred to as the coarse propagator, with
time increment Δt ), which has to be much cheaper thanF in
terms of computational time, with possible reduced accuracy.
Finally, for ease of exposition, we assume in this analysis
that an integer number of both δt and Δt covers a time slice
exactly.

The prediction step of Parareal consists of computing a
first guess of the starting values U 0

n at the beginning of each
time slice by

U 0
n = GΔt

tn−1→tn
(U 0

n−1), U 0
0 = U0, (2)

with n = 1, . . . , N . A correction iteration is then applied
concurrently on each time slice:

Uk
n = F δt

tn−1→tn
(Uk−1

n−1 )+ GΔt

tn−1→tn
(Uk

n−1)− GΔt

tn−1→tn
(Uk−1

n−1 ), (3)

where Uk
n denotes the approximation of U at time tn at the

k-th iteration of Parareal (k = 1, . . . , K , n = 1, . . . , N ).
While the application of F can be performed independently
for each time slice Parareal remains limited by the sequen-
tial nature of the coarse integration (3). Hence, Parareal
will bring a reduction of the total computational time with
respect to a direct time-serial integration, only if the applica-
tion of G is cheap enough and if the total number of iterations
K of Parareal is small.We recall that Parareal converges
after N iterations to the approximation of the exact solution
[17].

2.2 Variant of Parareal based on explicit time
integrators and on spatial coarsening

The Parareal parallel in time shooting method [18] is gen-
erally used in combinationwith implicit time integrators; see,
e.g., [8,12,23,42] for applications related to time-dependent
PDEs. In this context procedure, the coarse integrator G is
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obtained by simply choosingΔt > δt . However, this strategy
is usually not applicable when explicit time integrators are
favored, since the time step is notably bounded by numerical
stability conditions (such as the Courant–Friedrichs–Levy
(CFL) condition).

As a cure, Ruprecht and Krause [37] have considered a
coarse propagator G with lower accuracies in both time and
space. Using fewer degrees of freedom at the coarse level
is also possible as proposed in [14] for the numerical solu-
tion of the two-dimensional incompressible Navier–Stokes
equations. This has been later investigated in [12] for the
Detached Eddy Simulation of the three-dimensional incom-
pressible Navier–Stokes equations and for the simulation of
two-dimensional plasma turbulence [39], respectively. In this
setting, we denote by ̂G the corresponding propagator on the
coarse spatial grid (which now involves p̂ degrees of freedom
with p̂ < p), whileR and I represent the spatial restriction
and interpolation operators, respectively. The prediction step
of Parareal with spatial coarsening is now

U 0
n = I ̂GΔt

tn−1→tn
(R(U 0

n−1)), U 0
0 = U0, (4)

with n = 1, . . . , N . Similarly, the correction iteration of the
Parareal algorithm with spatial coarsening then becomes

Uk
n = F δt

tn−1→tn
(Uk−1

n−1 ) +
I( ̂GΔt

tn−1→tn
(R(Uk

n−1)) − ̂GΔt

tn−1→tn
(R(Uk−1

n−1 ))), (5)

with k = 1, . . . , ̂K and n = 1, . . . , N . As noted in [36],
the convergence of Parareal with spatial coarsening will
not only depend on the fine and coarse time propagators but
also on the restriction and interpolation operators. Hence, we
expect (5) to obtain a different convergence rate than (3). In
this manuscript, we mostly focus on the variant of Para-
real based on (4) and (5) with explicit time integration for
both the fine and coarse propagators. We next address the
expected performance of such a variant.

2.3 Expected parallel performance of Parareal

In our setting, parallel-in-time integration is considered as a
possibility for additional fine grain parallelism on top of an
existing coarse grain spatial decomposition. In a preliminary
phase,wehave decided to simulate the parallelization in time,
whereas the parallelization in space is truly implemented on a
distributed memory passing system using the Message Pass-
ing Interface (MPI) [19]. This allows us to predict at a very
moderate cost if the time parallelization can be relevant in
our study. Hence, modelling the expected performance of
Parareal is of utmost importance. We first analyse the par-
allel speedup, defined as the ratio of the sequential to the

parallel execution time for a given number of processes. As
pointed out in [1,2,5,34], the Parareal algorithm is flexi-
ble enough to accommodate various implementations based
on different programming paradigms. In the modeling, we
consider a distributed memory implementation to handle the
parallelization in time. We refer the reader to [34] for a dis-
cussion and analysis of other strategies. We consider a total
of Nproc processes for the space–time parallelism with N
processes being devoted to the parallelization in time. In this
setting, each time slice associated to a spatial subdomain is
assigned to a process.

We first consider the standard Parareal algorithm and
denote by CF the cost of integrating over a given time slice
using F δt

tn−1→tn
and by CG the corresponding cost when using

GΔt

tn−1→tn
. Since explicit time-integration schemes are usedwith

uniform time steps, we expect bothCF andCG to be propor-
tional to the time slice length. HenceCF is equal to TFNδt ,F ,
where TF and Nδt ,F are the computational time related to the
application of the fine integrator over one time step and the
number of time steps done for one time slice, respectively. A
similar expression can be found for CG (i.e.,CG = TGNΔt ,G
with similar notation).

As advocated in [34],we concentrate on an efficient imple-
mentation of Parareal discussed in both [29, Sec. 5] and [2,
Sect. 4] making use of pipelining, i.e., reducing the costs of
the coarse propagation in each correction iteration (3) from
NCG to CG . The estimate of the theoretical speedup of the
pipelined Parareal using K iterations is then given by [29]

S(N ) = NCF
NCG + K (CF + CG)

= 1
(

1 + K

N

)

CG
CF

+ K

N

.

(6)

The projected parallel speedup (6) has been derived by
neglecting the time spent communicating between each time
slice, later referred to as communication in time. For an
increased accuracy of the performance model, we have
decided to include this cost in the analysis and to propose a
modification of pipelined Parareal, which slightly reduces
the cost induced by the communications in time. Figure 1a
sketches the execution diagram of pipelined Parareal.
Since the prediction step (2) is sequential, N−1 communica-
tions between time slices are required during this phase (see
the thin rectangles on the left of Fig. 1a). To avoid this offset,
we have considered an implementation shown in Fig. 1b,
in which the solution of the prediction step is computed
concurrently on each time slice. This removes unnecessary
communications between time slices in the prediction step
at the cost of redundancy in the computation. Let Ct

T denote
the cost to communicate a single global (fine) solution from
a time slice to the next. Hence, the total cost spent in com-
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(a)

(b)

Fig. 1 Execution diagram of Pararealwith pipelining (top) and with
improved pipelining (bottom). Three iterations of Parareal (K = 3)
on four time slices (N = 4) are considered. The end of each Parareal
iteration is indicated by a dotted line. Time-slices are numbered from 0
to 3, each line corresponds to one process of Parareal

munications in time for K iterations of Parareal is then
given by

CT ,K = Ct
T

K
∑

k=1

(N − k) = Ct
T
K (2N − K − 1)

2
. (7)

Furthermore, the speedup of our implementation of pipelined
Parareal can be obtained as

ST (N ) = 1
(

1 + K

N

)

CG
CF

+ K

N
+ CT ,K

N CF

. (8)

Let denote by C
̂G the cost of integrating over a given time

slice using ̂GΔt

tn−1→tn
. A straightforward adaptation of (8) to the

case of pipelined Pararealwith spatial coarsening using ̂K
iterations yields the following projected speedup

̂ST (N ) = 1
(

1 + ̂K

N

)

C
̂G + C

̂R + C
̂I

CF
+ ̂K

N
+ CT ,̂K

N CF

, (9)

where C
̂R (C

̂I) represents the cost of application of the
restriction (interpolation) operator to a vector of appropri-
ate dimension, respectively. Neglecting the communications
in time is thus only reasonable if

CT ,̂K

N CF
�

(

1 + ̂K

N

)

C
̂G + C

̂R + C
̂I

CF
+ ̂K

N
, (10)

a condition later discussed in Sect. 4.7.
Finally, we deduce the space–time parallel speedup
SS,T (Nproc) as

SS,T (Nproc) = SS(Ns) ̂ST (N ), (11)

where SS(Ns) is the speedup brought by the parallelization
in space of the fine solver F on Ns processes, i.e.,

SS(Ns) = T s
F ,serial

T s
F ,Ns

. (12)

Hence, we deduce that the space–time parallelization is only
viable if

SS,T (Nproc) > SS(Nproc), (13)

a condition later analysed in Sec. 4.2.
We will rely on the expected speedup of the space–time

parallel method SS,T (Nproc) and on the parallel efficiency1

to predict the parallel performance of our model in Sec. 4.2.
We next describe our case study and give details on both the
fine and coarse solvers.

3 Description of the turbulent flow problem
and the CFD solver

We are interested in the simulation of complex turbulent
flows and focus on a canonical but relevant test case, well
known from the CFD community. The decay of homoge-
neous isotropic turbulence (HIT) has been studied by many
authors from moderate [33,44] to very large scale problems
[22]. This case may be seen as the simplest configura-
tion which incorporates fundamental and relevant turbulence
mechanisms [31]. In the context of Direct Numerical Sim-
ulation (DNS), the problem size is essentially driven by the
range of length scales to resolve, which sets the required
grid resolution. Specifically, increasing the Reynolds num-
ber leads to a wider spectrum of length scales to resolve,
but also improves the relevance of the simulation regarding
high Reynolds, industrial configurations. In this setup, syn-
thetically generated turbulence decays under the action of
dissipation mechanisms. A description of the flow field dur-
ing the simulation is given in Fig. 2 in terms of turbulent
kinetic energy, which highlights the evolution of energy-
carrying turbulent eddies and the strong nonlinearity of
turbulent flows.

Regarding parallel in time integration algorithms, inter-
esting features of turbulent flows are (i) their chaotic nature
(ii) their strongly unsteady behavior, which typically requires
explicit integration [7]. Interestingly, the decay of HIT incor-
porates these issues at a moderate cost, making this model
problem a challenging candidate for time-parallel algo-
rithms.

1 We define the parallel efficiency as the ratio of the parallel speedup
over the number of processes involved.
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Fig. 2 Plane cuts of local turbulent kinetic energy ke,loc/ke,0 for
Reλ,0 = 322 (ke,loc = u.u

2 )

3.1 Governing equations

The compressible Navier–Stokes equations read:

∂ρ

∂t
+ ∇.(ρu) = 0, (14)

∂ρu
∂t

+ ∇.(ρuu + pδ) = ∇.τ , (15)

∂ρeT
∂t

+ ∇.(u(ρeT + p)) = ∇.(u.τ − q), (16)

where ρ is the density, u = (u, v, w) the velocity vector, p
the pressure, δ the unity tensor, eT = e+ u.u

2 the total energy,
e the specific internal energy, τ the viscous stress tensor and
q the heat flux. e, p and ρ are linked by the equation of state,
obtained for a calorically perfect gas:

p = (γ − 1)ρe, (17)

with γ the specific heat coefficient ratio, whereas τ and q are
modeled via classical Stokes’ hypothesis:

τ = 2μS − 2

3
μ(∇.u)δ, (18)

q = −kc∇T , (19)

with S = (∇u + (∇u)T
)

/2 the strain-rate tensor, μ the
dynamic viscosity, kc the thermal conductivity, the tempera-
ture T = (γ − 1)e/R and R the gas constant. Temperature
dependency for μ is accounted for through a power-law
assumption:

μ/μre f = (

T /Tre f
)3/4

, (20)

and the ratio between μ and kc is set constant through a
constant Prandtl number, which closes the set of equations.

3.2 Decay of homogeneous isotropic turbulence

The decay of homogeneous isotropic turbulence is studied
using a uniform grid on a 3D periodical box of size L . Note
that all the flow quantities discussed in this section are time
dependent unless otherwise specified. In particular the 0 sub-
script refers to the initial state at t = 0. Because the problem
is homogeneous, the statistical evolution of HIT decay can be
reduced to a temporal evolution using the following spatial
averaging:

〈 f 〉 = 1

L3

∫∫∫

V
f (x, y, z) dxdydz. (21)

Initial conditions may be obtained by setting the flow fields
(ρ0, u0, T0), and parameters R, γ , Pr , μre f and Tre f . These
fields are constructed through a random process that builds a
synthetic turbulent flow field following a prescribed energy
spectrum, mostly concentrated at large scales. The detailed
methodology associated with the construction of the initial
turbulent field is described in Sect. 3.5 and Ap. A of [21],
respectively. This procedure sets the flow conditions, essen-
tially characterized by two non-dimensional, time evolving
quantities which drive the turbulence evolution: the Taylor
scale Reynolds number,2

Reλ = 〈ρ〉u′λ
〈μ〉 , (22)

and the turbulent Mach number:

Mt = √
3
u′

〈c〉 , (23)

where u′ = √
(〈uu〉 + 〈vv〉 + 〈ww〉)/3, and c = √

γ RT is
the speed of sound. λ is the (transverse) Taylor micro-scale,
and provides a length scale associated with intermediary-
sized eddies of the flow field.3 Reλ sets the width of the
turbulent kinetic energy spectrum, and Mt indicates the
influence of compressibility effects, that may trigger discon-
tinuities (e.g., shocklets) in the solution for high Mt . The
turbulent kinetic energy ke and the dissipation ε, are defined
as follows:

2 Since there is no mean flow in this configuration, we cannot use the
classical definition of the Reynolds number.We rather use Reλ(see e.g.,
[11,44]), which characterizes the ratio of turbulent eddy viscosity, over
the fluid viscosity. This Reynolds number, at least one order of magni-
tude lower than the classical one, has therefore no relevance regarding
laminar to turbulent transition, but instead informs about the range of
length scales present in an already turbulent flow (see e.g., [31] for a
complete description).
3 For isotropic turbulence λ is conveniently expressed as λ =
u′√15〈μ〉/(〈ρ〉ε) (see, e.g., [31, Sec. 6.3, p.199]).

123



36 T. Lunet et al.

Fig. 3 Time-evolution of ke/ke,0 and ε/ke,0, with T = (λ/u′)t=0,
NL = 80, Reλ0 = 46

ke = 3

2
u′2, ε = 〈μ

ρ
S.S〉. (24)

Because the footprint of ke and ε is mostly located at large
and small scales, respectively, these two quantities are inter-
esting indicators to track the turbulence behavior during the
HIT simulation. We can derive a transport equation for ke
which reduces, using the 3D homogeneous hypothesis and
thus isotropy, to:

dke
dt

= −ε. (25)

It has been observed [31] that, after a short transient phase,
both values exhibit a power-law decay, as shown in Fig. 3.

Physically, it illustrates the energy cascade of the turbu-
lence: energy from the large scale eddies is continuously
transferred to the small scale eddies until the latter dissipate
through molecular viscosity. The Kolmogorov length scale
characterizes the smallest, dissipative scales:

η =
( 〈μ〉3

〈ρ〉3ε
)1/4

, (26)

which sets the smallest grid cell size to achieve direct
numerical simulation. Smallest length scales must be accu-
rately resolved on the spatial grid. Considering the largest
wavenumber that can be represented on a given spatial uni-
form Cartesian mesh of size N 3

L (see [31, Chap. 9]):

κmax(NL) = πNL

L
, (27)

we can derive a condition consistent with the correct resolu-
tion of eddies of size η:

∀t, η κmax(NL) ≥ α, (28)

where α is a coefficient dependent of the solver and specifi-
cally the space discretization scheme.

3.3 Massively parallel Navier Stokes solver HybridHybridHybrid

We use the compressible structured solver Hybrid, devel-
oped inC++ by [24],which aims at studying fundamental tur-
bulence problems, such as shock-turbulence interaction [25].
In the absence of discontinuities, the code uses a centered
6th-order finite difference scheme, while time-integration
is performed thanks to a 4th-order explicit Runge–Kutta
method (RK4). Full details on space and time discretiza-
tions are given in [21]. The Hybrid solver uses MPI-based
parallelism which relies on space decomposition. It shows
very good weak scaling results when using up to 2 million
cores [4]. The adopted numerical methodology developed
in Hybrid (structured mesh, explicit space–time discretiza-
tion) also exhibits excellent strong scaling properties, if the
number of cells Nmin

cpc of the spatial subdomain associated
with one MPI process (and thus a single CPU core) exceeds
a few hundreds. The exact value of Nmin

cpc to maintain paral-
lel efficiency is necessarily architecture dependent, and sets
the lower bound of the operating limit for a sole and efficient
space parallelization. Given itsmoderate efficiency, time par-
allelization should be used to extend the number of usable
core for efficient computations, thus keeping Ncpc > Nmin

cpc .
Once the simulation is properly initialized, an appropriate

choice of the time step needs to be considered to minimize
the computational cost of a direct numerical simulation.
Although implicit time stepping is usually not rewarding
because of the limited accuracy observed at large time steps
[7], smallest physical time scales are still significantly larger
than the maximum time step δtCFL authorized by stabil-
ity considerations. Hence, cost efficient simulations must be
carried out with δt ≈ δtCFL . For this specific solver, we
have estimated the CFL number as 1.79. This value indeed
corresponds to the limit of linear stability of the 6th-order
centered finite difference scheme associated with the RK4
time-integration method.

3.4 Transfer operators for Parareal with spatial
coarsening

We detail next the transfer operators used in the variant of
Parareal based on spatial coarsening as briefly introduced
in Sect. 2.2. Since the space discretization in Hybrid is
based on high-order finite difference schemes on a Carte-
sian structured mesh, geometric coarsening in space (known

123
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as vertex-centered coarsening in multigrid [43]) is adopted
to construct the coarse level of the two-grid hierarchy. In this
setting, the fine mesh is coarsened by simply considering
every other node in the three spatial directions, thus leading
to a cell size ratio of 2 in each direction between the coarse
and the fine mesh.

As restriction operator ̂R, we have considered both the
injection and the three-dimensional full-weighting operator
[43, Sect. 2.9]. Due to this coarsening in space, the time step
on the coarse grid is simply set as

Δt = 2δt ,

to keep the same CFL condition on both fine and coarse
grids. ConcerninĝI, we have selected various interpolations
(trilinear [43, Sec. 2.9], tricubic [26], 7th-order or Fourier
transformation based [38]). The 7th-order interpolation is
based on tensor products of one-dimensional operator, which
makes it simultaneously computationally cheap and imple-
mentation friendly. The influence of both restriction and
interpolation operators on the convergence of Parareal
with spatial coarsening as well as their costs will be numer-
ically investigated in Sects. 4.4 and 4.7, respectively.

3.5 Direct Numerical Simulationmethodology

In the following subsection, we develop the methodology
to perform the HIT Direct Numerical Simulation, with the
objective to propose a systematic and reproducible frame-
work for these simulations. The Navier–Stokes equations
(14), (15) and (16) are solved following a direct numeri-
cal simulation framework. Thus, the grid requirements need
to be adjusted with the minimum length scale η, which sets
the ratio between the largest scales (i.e., the box size L) and
the smallest scales. Recent DNS of HIT with spectral space
discretization used α = 1 [22]. Taking into account that
Hybrid uses high-order centered space discretization meth-
ods, we choose amore restrictiveα = 1.5 criterion in (28) for
the simulation with F , consistent with modified wave num-
bers expression for 6th-order schemes in space (e.g., [27]
). This resolution criterion needs to be satisfied at all times
during the decay of turbulence. As the flow field undergoes a
transient during which it evolves from synthetic to physical
turbulence, with a characteristic “eddy turnover” time scale
ke/ε, we specifically enforce this criterion after a transient
tφ , i.e., using η = η(tφ) in (28).

In order to propose an estimation of tφ , we first extract the
spectral density of energy E(κ) of the turbulent flow field.
It represents the energy content associated with the norm κ

of the related wave vectors, and is interpreted as so called
turbulent eddies of corresponding length scale in the study
of turbulent flows. Hence,

Fig. 4 Energy spectra during the decay of HIT, with T = (λ/u′)t=0,
NL = 80, Reλ0 = 46

ke =
∑

κ

E(κ). (29)

Details on the computation of E(κ) for HIT are provided in
“Appendix A”.

A representation of energy spectra is given in Fig. 4 at
various snapshots of the HIT decay. The spectrum of the
synthetic initial solution has an energy peak located at the
large scales, consistent with the initialization process. After
some time, the turbulent energy cascade takes place, which
results in ke being spread over every length scales of the flow
field.

We estimate the end of this transient tφ as the time for
which the spectral density of energy starts decaying at all
scales:

tφ = min {t > 0 | ∀κ, δE(κ) < 0} , (30)

where δE(κ) is the growth rate of E(κ). This criterion is
useful in finding a systematic condition to determine themax-
imum Reλ0 that can be simulated using a mesh of given size
N 3
L . We choose to define it as the maximum value of Reλ0

that satisfies condition (28) at tφ , that is:

Reλ0,max = max
{

Reλ0 | ∀t > tφ, η κmax(NL) ≥ α
}

. (31)

A trial and error procedure is therefore required to obtain the
desired resolved state at time tφ and results in awell identified
initial state, fully characterized by Reλ0 .

To complete the methodology, an error metric is defined
to estimate the accuracy of the parallel time integration. As
a basis in the application of Parareal to turbulent flows
we analyse the physical relevance of the solution rather than
the strict convergence of the algorithm. Because the com-
plex flow dynamics of a turbulent flow is characterized in
a statistical sense by a transfer from the large to the small
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scales, the quality of the solution is evaluated through the
spectral density of energy. It may reveal undesired effects
such as nonphysical dissipation or dispersion promoted by
the numerical scheme. The accuracy of the solution is mea-
sured using an error metric developed in Sect. 4.3, which
relies on the energy content of the flow field and character-
izes the ability of Parareal to capture the flow dynamics.

4 Numerical results

This section provides a detailed numerical study of the
different factors influencing the parallel performance of
Pararealwith spatial coarsening,when considering our test
case in Computational FluidDynamics. In Sect. 4.2, we com-
pare the pure spatial and space–time parallelizations in terms
of speedup and efficiency. This allows us to determine sit-
uations for which space–time parallelization is meaningful.
Then, in this setting, we examine the numerical quality of the
solutions provided by Parareal in Sect. 4.3. In Sects. 4.4,
4.5 and 4.6 we investigate the influence of several parame-
ters on the quality of the solution. Finally, in Sect. 4.7, we
continue investigating the parallel efficiency of Parareal
with spatial coarsening, by including in the analysis the costs
of the transfer operators and of the time communications.

4.1 Methodology

The numerical simulations were performed on the EOS
supercomputer at CALMIP, Toulouse, France. This platform
is equipped with 612 compute nodes, each node hosting two
10 core Intel Ivy Bridge chips (that run at 2.8 GHz), and
64 GB of system memory. Each socket was equipped with
25 MB of cache memory. EOS nodes are connected by a
nonblocking fat tree network, with a network bandwidth of
6.89 Gbytes/s for sending and receiving data. The code was
compiled using the Intel 14.0.2.144 compiler, with Intel MPI
4.1.3.049 library.

As pointed out in Sect. 2.3, the parallel performance of
Parareal is simulated. More precisely, the computations
related to all time slices in Parareal are performed sequen-
tially in time, whereas the applications of both F and G
through the Hybrid code are parallel in space. To estimate
the cost to communicate a single global solution Ct

T in
Parareal, we have adopted the following simple strategy.
First, we recreate exactly the same spatial decomposition
on Nproc/N processes as in Hybrid. Secondly, we perform
standard MPI communications of all the relevant physical
fields from one time slice to the next over the N processes
and measure the corresponding wall-clock times on the EOS
supercomputer. This procedure is then repeated 20 times to
provide a meaningful estimation, Ct

T being then obtained
as the maximum wall-clock time. We refer the reader to the

C++ source code4 for further details. A similar methodology
is applied to obtain estimates of CF and CĜ .

In the following sections, unless stated otherwise, we
consider the direct numerical simulation of the decay of
homogenous isotropic turbulence at Reλ = 46 on a Carte-
sian mesh of size 803 (i.e., NL = 80). We have estimated the
initial CFL number as 1.79 for each simulation. Due to the
energy decay, the CFL number is found to slightly decrease
as time increases.

4.2 Preliminary analysis of the Parareal parallel
performance

We address the question of the parallel performance of
Parareal based on spatial coarsening.An important point is
to determine whether space–time parallelization can bemore
appropriate than plain spatial parallelization in our applica-
tion. To this end, we operate the solver with Ncpc < Nmin

cpc
to deliberately reach the limit of the spatial decomposition.
GivenF and ̂G introduced in Sect. 3.3, we consider the influ-
ence of both N and ̂K (number of time slices and number of
iterations, respectively) on the speedup of Parareal with
spatial coarsening. For ease of exposition, we first neglect the
costs related to both the transfer operators (C

̂R and C
̂I) and

the communications in time (CT ,̂K ) in (9). A refined analysis
will be proposed later in Sec. 4.7.

The strong scalability of F and ̂G is shown in Fig. 5(top).
The fine solver F exhibits good scalability properties for a
number of processes up to 160. Nevertheless, for a larger
number of processes, the performance starts to saturate. Not
surprisingly, we also observe a rather quick deterioration of
the parallel performance of the coarse solver ̂G. It is important
to remark at this stage that this earlier decrease in perfor-
mance of the coarse solver will bound the cost ratio CF/C

̂G
at a lower value than the expected one5 (which is equal to 16,
assuming a perfect strong scaling and excluding communi-
cation costs).

Given a number of processes in space fixed to
Nproc/N = 160, we consider the additional parallelization
in time with 2, 4, 8 and 16 time slices, respectively. The sim-
ulated speedups and parallel efficiencies obtained after one
or two iterations of Parareal with spatial coarsening are
then provided in the Fig. 5. The inherent limits of Para-
real are indicated in Fig. 5 (bottom). They are obtained by
considering an infinite cost ratio CF/C

̂G . Performing a sin-
gle iteration of Parareal with spatial coarsening does lead
to an increased speedup and parallel efficiency with respect
to the pure spatial parallelization, whatever the number of

4 available at https://gitlab.com/tlunet/parallel-in-time.
5 This value of the theoretical ratio of coarse-to-fine execution is
explained by the coarsening in space by a factor of 2 in each direc-
tion and by the choice of the coarse time step detailed in Sect. 3.4.
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Fig. 5 Simulated speedup (top) and parallel efficiency (bottom) of
Hybrid (fine and coarse solvers), and of Pararealwith spatial coars-
ening after (̂K = 1, 2) iterations

time slices. This is a rather satisfactory result. However, for
two or more iterations of Parareal with spatial coarsen-
ing, the success is limited. Indeed, for Nproc = 320 or
Nproc = 640, the speedup of the space–time parallel algo-
rithm is found to be lower than the speedup obtained with
exclusive space parallelization. Not surprisingly, the paral-
lel efficiency is maximized if the number of PARAREAL
iterations is limited. Interestingly, the gap of parallel effi-
ciency between ̂K = 1 and ̂K = 2 reduces as the number of
time slices N is increased. This trend is explained because
the reduced efficiency of the coarse solver is balanced by a
larger number of fine solver computations as ̂K increases.
However, because the considered efficiency levels are rather
low, we mainly favor the application of a single iteration of
Parareal with spatial coarsening in the rest of this study.6

6 We refer the reader to only Sec. 4.3 for numerical experiments using
two iterations (̂K = 2) of Parareal with spatial coarsening.

Table 1 Relative gain of the space–time parallelization σ�
S,T after one

iteration of Parareal with spatial coarsening (neglecting the costs of
communication in time and transfer operators)

Nproc 160 320 640 1280

Nproc/N = 80 − 18% −3.9% +10% + 49%

Nproc/N = 160 + 0.82% + 24% +82%

Nproc/N = 320 − 1.1% + 54%

Nproc denotes the total number of processes with Nproc/N processes
being assigned to the parallelization in space only. The numbers of time
slices considered here are 2, 4, 8 and 16, respectively

We now investigate the influence of the Nproc/N param-
eter on the performance of the combined space–time paral-
lelization in our application. Hence, we introduce the relative
gain of the space–time parallelization as

σS,T = SS,T (Nproc) − SS(Nproc)

SS(Nproc)
. (32)

A positive value of σS,T thus indicates that the space–time
parallelization is worth considering. We denote by σ�

S,T the
relative gain of the space–time parallelization when neglect-
ing the costs of communication in time and transfer operators.
Although σ�

S,T is an ideal value, it is worth noting that
σS,T ≈ σ�

S,T for a sufficiently long time slice, i.e., if CT ,K ,
C

̂R and C
̂I are negligible compared to CF and CĜ .

Table 1 collects the values of σ�
S,T versus Nproc/N , when

a single iteration of Parareal with spatial coarsening is
performed. For a fixed number of processes devoted to the
spatial parallelization, increasing the number of time slices
(N ) does improve σ�

S,T as expected. This behavior is indeed
in agreement with Fig. 5(top). Table 1 also reveals that the
parallelization in space and in time isworth consideringwhen
the total number of processes is large. In this situation, we
rather favor the case of a low number of time slices (see the
bold values in Table 1), since the convergence of Parareal
is reached in at most N iterations. Hence, in what follows,
we choose N = 4 and study the quality of the solution of the
first iterations of Parareal on a large number of processors
(Nproc = 640 or Nproc = 1280). This is next investigated in
Sect. 4.3.

4.3 Energy spectra after successive iterations of
Parareal with spatial coarsening

We here analyze the flow solution obtained after successive
iterations of Pararealwith spatial coarsening. In particular,
we focus on the energy spectrum of the resulting turbulent
flow. As described above, we use trilinear interpolation and
injection as transfer operators, and N

Δt ,Ĝ = 20. The sim-
ulation of the HIT decay is solved between physical times
tφ = 1.4T and tend = 4.4T , which corresponds to the
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Fig. 6 Energy spectra after ̂K iterations of Parareal with spatial
coarsening at tend (N = 4, N

Δt ,Ĝ = 20, trilinear interpolation and
injection as transfer operators)

relevant part of the energy decay (see Fig. 3). The energy
spectrum is represented on Fig. 6 for Ĝ (coarse integrator
without interpolation),F (fine integrator, reference solution)
and the first iterations of Parareal with spatial coarsening,
respectively.

Because of the insufficient spatial resolution for Ĝ, an
over-estimation of the energy on the small scales around
κ = 0.5κmax . This is a classical observation of unresolved
direct simulation that results from a partial cut off of the
physical dissipation mechanisms operating at the smallest
scales. The effects of the interpolation are directly high-
lighted in the case ̂K = 0 for which the middle range scales
are significantly diffused, while a peak of energy is observed
for the smallest scales. The first iteration (̂K = 1) results
in a dampening of this high frequency peak, along with a
significant improvement of the middle range scales. Interest-
ingly the second iteration (̂K = 2) does not bring significant
improvements, reinforcing the idea of using a single iteration
of Parareal with spatial coarsening.

To better quantify the quality of the solution, we extract
the relative error of the energy spectrum erel , defined as:

erel(κ) = Ẽ(κ) − EF (κ)

EF (κ)
(33)

where Ẽ(κ) corresponds to the spectrum of an approximate
solution, (Ĝ or Parareal iteration) and EF (κ) the spectrum
of the reference solution computed with F solely. While
a negative value for erel(κ) indicates energy damping, a
positive value indicates energy amplification. We add quan-
tification on the spectrum error by looking at the relative error
on quantities integrated over all length scales, the energy:

eke = k̃e − ke,F
ke,F

, (34)

Fig. 7 Influence of the restriction operator on the relative energy error
after one iteration of Parareal with spatial coarsening (N = 4,
N

Δt ,Ĝ = 20, trilinear interpolation)

and the dissipation:

eε = ε̃ − εF
εF

. (35)

These two scalars are representative of statistical errors at
two levels: eke characterizes the large length scales, while
eε is more a measure of the behaviour at small length scales.
The three error indicators erel , eke and eε will be combined to
investigate the influence of several parameters on the qual-
ity of the solution: the transfer operators in Sect. 4.4, the
Reynolds number in Sect. 4.5 and the time slice length in
Sect. 4.6.

4.4 Influence of the transfer operators

The influence of the restriction operator on the relative energy
error is shown in Fig. 7. In agreement with the develop-
ments above, we consider the solution after one iteration of
Parareal to provide a possible comparison. Whatever the
restriction operators, the absolute value of the relative energy
error is found to grow in the small scale regime.Moreover, the
curves related to the injection and the full-weighting opera-
tors look very similar. Hence, we rather consider the injection
as restriction operator in the rest of the manuscript, to mini-
mize C

̂R.
The influence of the interpolation operator on the relative

energy error is shown in Fig. 8. The corresponding relative
error indicators on the turbulent kinetic energy and on the
dissipation respectively are given in Table 2. Figure 8 reveals
that high-order interpolation operatorsmust be rather favored
tominimize the relative error in energy.This is also confirmed
in Table 2. Hence, in the following, we consider the 7th-order
interpolation operator as a standard choice.
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Fig. 8 Influence of the interpolation operator on the relative energy
error after one iteration of Parareal with spatial coarsening (N = 4,
N

Δt ,Ĝ = 20, injection as restriction operator)

Table 2 Influence of the interpolation operator on the relative errors
on ke and ε after one iteration of Parareal with spatial coarsening
(N = 4, N

Δt ,Ĝ = 20, injection as restriction operator)

Interpolation eke (%) eε (%)

Trilinear −6.6 −17

Tricubic −1.5 −5.5

7th-order −0.85 −2.8

Fourier −0.79 −2.1

Ĝ alone −0.83 −2.7

4.5 Influence of the Reynolds number

We consider the simulation of the decay of homogeneous
isotropic turbulence on two finer grids (1603 and 3203,
respectively) associated with larger
Reynolds numbers to analyse the influence of the Reynolds
number on the quality of the solution. From a physical stand-
point, the major effect on the simulation is a widening of the
range of length scales carried by the turbulent flow.

The influence of the Reynolds number Reλ on the rela-
tive error on the energy is shown in Fig. 9. The three curves
exhibit a very similar behavior at all scales for each con-
sidered Reynolds number. The corresponding relative errors
on the turbulent kinetic energy and on the dissipation are
given in Table 3. The low values of both relative errors indi-
cate that performing only one iteration of Parareal is also
meaningful when the Reynolds number is increased. This
relative independence to the Reynolds number is attributed
to the nature of the coarse integrator. The spatial coarsening
challenges the ability of Parareal to handle correctly the
dissipative scales of the turbulent flow. The grid size being
designed to specifically handle the smallest length scales, this

Fig. 9 Influence of the Reynolds number Reλ on the relative energy
error erel after one iteration of Parareal with spatial coarsening
(N = 4, N

Δt ,Ĝ = 20, injection and 7th-order interpolation as transfer
operators)

Table 3 Influence of the Reynolds number Reλ on the relative error
on ke and ε after one iteration of Parareal with spatial coarsening
(N = 4, N

Δt ,Ĝ = 20, injection and 7th-order interpolation as transfer
operators)

NL Reλ0 tφ/T tend/T Reλφ ReλE eke (%) eε (%)

80 46 1.4 4.4 26 16 −0.85 −2.8

160 124 2.7 4.1 41 30 −0.68 −2.0

320 322 3.4 4.1 55 46 −0.60 −1.5

Reλφ (ReλE ) is the Reynolds number at the beginning (end) of the
parallel in time simulation

constraint does not evolve significantly relatively to the cell
size, hence with an increase of the Reynolds number. These
encouraging results will be the subject of a forthcoming
study. It suggests similar behavior of Parareal in large scale
simulations characterized with significantly higher Reynolds
numbers (e.g., [22]).

4.6 Influence of the time slice length

The increase of the Reynolds number previously developed
is also useful to test the influence of the time slice size in the
simulation, as investigated in [12, Sec.4], [14, Sec 5.2] and
[32, Sec 4.5]. This is indeed a critical parameter regarding the
parallel efficiency of the algorithm as mentioned in Sect. 2.3.
Indeed, for small Reynolds numbers, the required number of
time steps is reduced. Using large time slices is therefore not
relevant as the final stage of the simulation falls into a low
global energy level, which may be correctly handled by the
coarse integrator itself. For large Reynolds numbers instead,
a much larger number of time steps is required and Para-
real can be applied with large time slices, while keeping a
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Fig. 10 Influence of N
Δt ,Ĝ on the relative error on the energy spec-

trum after one iteration of Parareal with spatial coarsening (N = 4,
injection and 7th-order interpolation as transfer operators)

global energy level out of reach (regarding direct simulation
constraints) for the coarse propagator.

We thus investigate the influence of N
Δt ,Ĝ on the

energy relative error after one iteration of Parareal
with spatial coarsening. Since changing this parameter will
also modify the physical time tend , we have decided to restart
the time parallel algorithm after its first iteration to com-
plete the full simulation with tend matching the other choices
of N

Δt ,Ĝ . We consider a simulation at Reynolds number
Reλ0 = 322 with several values of N

Δt ,Ĝ ∈ {10, 20, 40},
which implies restarting Parareal with spatial coarsening
3, 1 and 0 times, respectively. Hybrid was ran using the
same CFL constraint and a number of time slices of N = 4,
leading to tend = 4.8T .

The main effects of the variation of N
Δt ,Ĝ on erel are

represented in Fig. 10. We observe a reduction of the damp-
ening error at the small scales. We attribute this effect
to the dissipation of the small scales initially affected by
injection/interpolation steps. Increasing N

Δt ,Ĝ does not sig-
nificantly deteriorate eε , which remains almost independent
of N

Δt ,Ĝ , although we observe a slight dampening appear-
ing for the middle range, more energetic length scales (κ ≈
0.4κmax ). On the other hand, the latter amplification has an
expected detrimental effect on the level of eke which increases
with N

Δt ,Ĝ . Results are summarized in Table 4, together with
the results obtainedwith the coarse integrator operated solely
as a reference. Note that the apparently small error observed
with the coarse integrator benefits from an error compensa-
tion with the adopted metric.

4.7 Refined analysis of the speedup of Parareal

Finally, based on (9),we include the costs of both the commu-
nications in time (Ct

τ ) and the transfer operators (CI andCR)

Table 4 Influence of NΔt ,̂G on
the relative errors on ke and ε

after one iteration of Parareal
with spatial coarsening
(Reλ0 = 322, injection and
7th-order interpolation as
transfer operators)

N
Δt ,Ĝ ek (%) eε (%)

10 −0.24 −3.3

20 −0.36 −2.7

40 −0.49 −3.4

Ĝ alone −0.63 −4.2

Table 5 Influence of CT ,1 and CI on the relative gain of the space–
time parallelization σS,T after one iteration of Parareal with spatial
coarsening (̂K = 1)

Nproc Case σS,T (%) σ�
S,T (%)

640 (a) 19 24

(b) 18 24

1280 (a) 47 54

(b) 46 54

Case (a) includes only CT ,1, whereas case (b) considers both CT ,1
and CI in relation (32) (N = 4, N

Δt ,Ĝ = 20, injection and 7th-order
interpolation as transfer operators)

in the analysis of the speedup. We consider the configuration
at Reλ0 = 46 (NL = 80) with the 7th-order interpolation
and the injection as transfer operators.

The cost related to the restriction operator can be neglected
since no floating operations are involved, i.e., CR = 0. Fur-
thermore, we can relate the cost of the interpolation to the
cost of performing one single time-step of the coarse solver.
Indeed the one-dimensional formulas for either the 7th-order
interpolation or the 6th-order finite difference discretization
in Hybrid involve a similar complexity (15 and 11 floating
point operations are required, respectively). A more precise
estimation of the complete computational complexity7 then
leads to

CI ≤ 15

39
× 15

11

CĜ
N

Δt ,Ĝ
. (36)

In the following, we consider the upper bound in (36)
as an accurate estimation of CI . The relative gain of the
space–time parallelization σS,T (see (32)) is then given in
Table 5.

Table 5 reveals that the effective relative gains σS,T are
relatively close to the ideal values σ�

S,T discussed in Sect.
4.2. The effective gain can be indeed significant (especially
when considering a large number of processors), which is

7 In Hybrid the computation of the right-hand side of the Navier–
Stokes equations involves 39 gradient evaluations (3 for (14), 18 for
(15), 6 for (16), 9 for (18) and 3 for (19), respectively). Since the RK4
time integration method requires 4 evaluations of right-hand sides, the
total amount of gradient evaluations for one time step of the coarse
solver is then 156. Finally, 60 stencil evaluations per coarse point are
required for the interpolation of the 5 different fields.
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a satisfactory behavior. Finally, comparing cases (a) and (b)
in Table 5 reveals that the influence of CI is found to be
marginal.

5 Conclusions

This manuscript investigates the applicability of Parareal
with spatial coarsening to a relevant test case in Computa-
tional Fluid Dynamics related to the simulation of the decay
of homogeneous isotropic turbulence. The time parallel sim-
ulation of such flows does actually lead to an instructional
test case, since their main interesting features are both their
chaotic nature and their strongly unsteady behavior. In a
first phase, we have decided to simulate the parallelization
in time, whereas the parallelization in space is truly imple-
mented on a distributed memory passing system. Explicit
Runge–Kutta time integration methods and high-order finite
difference schemes are used for the temporal and spatial dis-
cretizations of the Navier–Stokes equations.

A methodology related to the computation of the energy
spectrumhas beenproposed to assess the numerical quality of
the iterative solution provided by the time parallel algorithm.
Based on this analysis, we have found that the solution after
a single iteration of Parareal with spatial coarsening was
physically relevant, provided that a high-order interpolation
operator in space is employed. In this setting, the extensive
numerical experiments clearly illustrate the possible bene-
fits of using parallelization in time. This rather encouraging
result from a physical point of view needs of course to be
confirmed by a detailed convergence study. This is indeed an
important research direction that we are currently consider-
ing.

We are deeply convinced that this test case can serve as a
relevant benchmark for time parallel methods. Hence, to pro-
pose a reproducible framework, we have carefully described
the complete methodology and plan to make the simulation
code freely available to the community, if a significative inter-
est appears. Indeed, an instructive next step would be then to
assess the performance of current or emerging time parallel
algorithms on this configuration.
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A. Computation of the energy spectrum

We briefly describe the computation of the energy spectrum.
More details can be found in the literature (see, e.g., [20,
Ap. B]). We denote by û(κx , κy, κz) the Discrete Fourier
Transform (DFT) of u(x, y, z), using 1 (1/N 3

L ) to normalize
the direct (inverse) DFT, respectively. We define κx , κy and
κz the discrete one-dimensional wavenumbers as:

κ[.] =
{

n
2π

L
with n ∈ Z | − NL

2
+ 1 ≤ n ≤ NL

2

}

, (37)

and the associated vector norm:

κ = ‖κ‖ =
√

κ2
x + κ2

y + κ2
z . (38)

The 3D Fourier space is discretized into three-dimensional
shells of thickness dκ (usually 2πdκ

L = 1). To deduce the
energy corresponding to the wavenumber κi , a bin count is
then performed using an integer number of shells:

E(κi ) = 1

2N 6
L

∑

κ∈[κi− dκ
2 ,κi+ dκ

2 [
|û(κx , κy, κz)|2. (39)
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