
Comput Visual Sci (2019) 20:51–57
https://doi.org/10.1007/s00791-017-0280-z

A two level solver for h− p adaptive finite element equations

Randolph E. Bank1

Received: 4 April 2017 / Accepted: 15 May 2017 / Published online: 25 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Higher order finite elements present certain chal-
lenges for multilevel methods. Such matrices have more
nonzero elements and special block structure. In the case
of h−p adaptive methods, the block structure is more com-
plicated. In this work we present a simple two level solver
for such systems, that exploits these special properties. The
convergence rate is (empirically) multigrid-like, at least up
to piecewise polynomials of degree nine. Numerical illus-
trations demonstrate its robustness on a wide variety of
problems, including convection–diffusion and Helmholtz
equations.

Keywords Two level solver · h−p adaptivity · Hierarchical
basis

Mathematics Subject Classification 65M55 · 65F10

1 Introduction

As the use of h−p adaptive methods become more
widespread, the development of efficient solvers for the
resulting linear systems becomes more important. Such
matrices typically havemanymore nonzeroes than the sparse
matrices for low order finite element spaces. These nonze-
roes generally can be organized in dense blocks of varying

The work of R. E. Bank was supported by the National Science
Foundation under contract DMS-1318480.

B Randolph E. Bank
rbank@ucsd.edu

1 Department of Mathematics, University of California,
San Diego, La Jolla, CA 92093-0112, USA

sizes. These properties should be taken into account when
developing multi level solvers.

In this work, we present a simple two level solver for such
matrices. The main components are a smoother and a coarse
grid correction. Because of the density of the matrices, we
restrict attention to very simple block smoothers, in this case
block symmetric Gauss–Seidel. The development of more
sophisticated and potentiallymore effective smoothers is hin-
dered by the density of the matrices. Allowing even a modest
degree of fill-in is likely to result in smoothers very close the
sparseGaussian elimination in complexity. In that situation, it
is likely that the direct method would become more efficient.

Our coarse grid correction is inspired by the block data
structure we use to store the system matrix, and has a hier-
archical basis flavor. The coarse grid space always contains
the space of piecewise linear finite elements, and if all ele-
ments have degree p ≥ 2, it will contain the complete
space of piecewise quadratic finite elements. For the case
of two dimensional triangular finite elements and scalar par-
tial differential equations, the dimension of the coarse grid
correction space is bounded by approximately 6V , where V
is the number of vertices in the mesh. In more general set-
tings, one should expect the coarse grid space to be bounded
in a similar fashion, and thus to become quite small in com-
parison to the fine grid space as p increases.

This two level method exhibits interesting behavior on
adaptive h−p meshes. Initially, all of the elements have
degree p = 1, and the coarse grid correction space and
the fine space are identical. This remains true as long as all
elements have degree p ≤ 2. Typically, these spaces have
relatively small dimension, and a simple two level hierarchi-
cal basis method can easily solve problems on the coarse grid
correction space. In this setting, the smoother is mainly an
added benefit. Later, when p becomes larger for many of the
elements, the coarse grid space becomes smaller in compari-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00791-017-0280-z&domain=pdf

52 R. E. Bank

son with the fine grid, and the smoother plays an increasingly
prominent role.

The method empirically exhibits convergence rates that
are independent of the mesh size h, and sometimes even
improves as h becomes smaller. On the other hand, because
the dimension of the coarse grid correction space is bounded
independent of p, it does not have an asymptotic conver-
gence rate bounded independent of p, and we expect that the
convergence rate will eventually decrease with increasing p
and fixed h. On the other hand, there are often good reasons
to bound p in practical situations. These could include the
availability of quadrature formulas (this limits p ≤ 9 in the
PLTMG software package), or the complexity growth in p
of common finite element procedures, e.g, matrix and right
hand side assembly, that will fail to scale as O(n), n the fine
space dimension, unless p is bounded. For this reason, we
are not overly concerned about its convergence behavior as
p → ∞. As we illustrate in Sect. 4, the method performs
quite well in the range p ≤ 9.

The rest of this paper is organized as follows. In Sect. 2,
we describe the point and block sparse matrix data structures
that we use, and that motivated our choice of coarse grid cor-
rection subspace. In Sect. 3, we define our two level solver for
the case of the standard family of two dimensional triangular
finite element spaces, and scalar elliptic partial differential
equations. In Sect. 4, we present some numerical results for
a variety of elliptic equations.

2 Sparse matrix data structures

Let A be an n × n matrix with elements Aij, and a symmet-
ric sparsity structure; that is, both Aij and Aji are treated as
nonzero elements (i.e. stored and processed) if |Aij|+|Aji| >

0. All diagonal entries Aii are treated as nonzero regardless
of their numerical values.

Our point data structure is a modified and generalized
version of the data structure introduced in the (symmetric)
Yale Sparse Matrix Package [4,5]. In our data structure, the
nonzero entries of A are stored in a linear array a, and
accessed through an integer array ja. In the real array a,
we store the diagonal first, followed by the strict upper tri-
angle stored row-wise. If AT �= A, this is followed by the
strict lower triangle stored column-wise. In the correspond-
ing integer array ja, pointers to the column indices and the
nonzeroes in each row of the strict upper triangle of A are
stored in the first n+1 places, while the remaining storage in
ja contains the respective column indices themselves. Since
A is structurally symmetric, the column indices for the upper
triangle are identical to the row indices for the lower triangle,
and hence need not be duplicated in storage.

Let ηi be the number of nonzeros in the strict upper tri-
angular part of row i , and set η = ∑n

i=1 ηi . The array ja is

of length n + 1 + η and the array a is of length n + 1 + η if
AT = A. If AT �= A, then the array a is of length n+1+2η.
The entries of ja(i), 1 ≤ i ≤ n + 1, are pointers defined as
follows:

ja(1) = n + 2

ja(i + 1) = ja(i) + ηi , 1 ≤ i ≤ n

The locations ja(i) to ja(i + 1) − 1 contain the ηi column
indices corresponding to the row i in the strictly upper trian-
gular matrix.

In a similar manner, the array a is defined as follows:

a(i) = Aii, 1 ≤ i ≤ n

a(n + 1) is arbitrary

a(k) = Ai j , 1 ≤ i ≤ n,

j = ja(k), ja(i) ≤ k ≤ ja(i + 1) − 1

If AT �= A, then

a(k + η) = A ji , 1 ≤ i ≤ n,

j = ja(k), ja(i) ≤ k ≤ ja(i + 1) − 1

As an example, let

A =

⎛

⎜
⎜
⎜
⎜
⎝

A11 A12 A13 0 0
A21 A22 0 A24 0
A31 0 A33 A34 A35

0 A42 A43 A44 0
0 0 A53 0 A55

⎞

⎟
⎟
⎟
⎟
⎠

Then

1 2 3 4 5 6

ja 7 9 10 12 12 12
a A11 A22 A33 A44 A55

Diagonal

7 8 9 10 11

ja 2 3 4 4 5
a A12 A13 A24 A34 A35

Upper triangle

12 13 14 15 16

ja
a A21 A31 A42 A43 A53

Lower triangle

123

A two level solver for h−p adaptive finite element equations 53

To illustrate the use of this data structure, the following
algorithm computes y = Ax or y = AT x . If A = AT , the
parameters lshift = ushift = 0. If AT �= A and we wish
to compute y = Ax, then ushift = 0 and lshift = η =
ja(n + 1) − ja(1). If AT �= A and we wish to compute
y = AT x , then ushift = η and lshift = 0.

for i = 1, n

y(i) ← a(i) × x(i)

end for

for i = 1, n

for k = ja(i), ja(i + 1) − 1

j = ja(k)

y(i) ← y(i) + a(k + ushift) × x(j)

y(j) ← y(j) + a(k + lshift) × x(i)

end for

end for

A similar data structure can be used to store an LDU or
UTDU factorization, arising from either Gaussian elimina-
tion or an incomplete factorization. In this case, only the
strictly lower (upper) triangular part of L (U) needs to be
stored as the diagonal is an identity matrix.

Now suppose matrix A is a block m × m matrix, with
block i having dimension ni and

m∑

i=1

ni = n.

We assume the block structure is structurally symmetric, and
that each block Ai j is a dense ni ×n j matrix, and is stored as
a linear array within the data structure a. Our block ja data
structure is analogous to the point ja data structure described
above, but now the column indices refer to blocks rather than
individual matrix elements. Because entries in array a will
no longer correspond in a simple fashion to those in ja, we
need two additional integer data structures. First, the array b
of size m that stores the sizes of individual blocks

b(i) = ni , 1 ≤ i ≤ m.

Weneed a second array jp of pointers that indicate the starting
point for various matrix blocks in the array a. Array jp is the
same size as ja. For 1 ≤ i ≤ m, jp(i) points to the beginning
of the i th diagonal block, and jp(i + 1) − 1 points to the end
of that block. For ja(1) ≤ i ≤ ja(m+1)−1, jp(i −1) points
to the beginning of the corresponding off-diagonal block in
the upper triangle and jp(i) − 1 points to its end.

In the array a, each diagonal block is stored diagonal
entries first, followed by upper triangular entries stored row-
wise. If AT �= A, this is followed by the lower triangular

entries stored column-wise. Off diagonal blocks in the upper
triangle are stored row-wise. If AT �= A, the upper triangle is
followed by the lower triangular blocks stored column-wise
analogous to the point data structure described above.

3 Two level solver

We consider scalar elliptic partial differential equations of
the form

−∇ · (αu) + β · u + γ u = f

in Ω ⊂ R
2 with

u = 0

on ∂Ω . Our h−p adaptive algorithm is based on conforming
triangularLagrangefinite elements of degrees 1–9.The upper
bound of 9 was imposed by the family of quadrature rules
implemented in the PLTMG package [2].

There is a natural block structure associated with such an
h−p adaptive mesh. Suppose the triangular mesh has V ver-
tices. Each vertex is associated with a nodal basis function,
each giving rise of a block of size ni = 1 in the stiffness
matrix A. If a triangle edge is associated with a polynomial
of degree p > 1, then there are p − 1 nodal basis func-
tions (bump functions) associated with interior nodes on that
edge; the two endpoint basis functions are counted as ver-
tex functions. These p − 1 basis functions give rise to a
block of size ni = p − 1 in A. Finally, if the element itself
is of degree p > 2 there will be (p − 1)(p − 2)/2 nodal
basis functions (bubble functions) associated with the strict
interior of that triangle. These give rise to a block of size
ni = (p − 1)(p − 2)/2 in A.

For a mesh consisting uniformly of elements of degree p,
the order of the stiffnessmatrix A is approximately n ≈ p2V .
However, the block dimension of thematrix is approximately
m ≈ 6V independently of p. Although vertex, bump, and
bubble functions typically have different numbers of non
zeroes per row, on average, A has (p2+6p+7)/2 non zeroes
per row, indicating that A becomes significantly more dense
with increasing p. If p ≤ 2, all of the blocks have ni = 1
and the block data structure is unnecessary and the point data
structure is more efficient. The block data structure begins
to pay dividends as p increases. The combined storage for
all of the integer data structures will become smaller than
the single ja array used in the point data structure. Perhaps
more important, the ratio of overhead operations (indirect
addressing) to floating point operations used in assembling
and solving the linear system is increasingly reduced with
increasing p as the blocks become larger.

123

54 R. E. Bank

Our two level solver consists of a smoother and a coarse
grid correction. The smoother is block symmetric Gauss–
Seidel, using the block structure of the matrix A. For each
of the diagonal blocks we use (dense) Gaussian elimination
to compute an LDU factorization (orUTDU factorization if
AT = A).

The coarse grid correction is motivated by interpreting
the block ja data structure for the matrix A as a point ja
data structure for the coarse grid correction matrix H . In
particular, we compute a hierarchical basis for the coarse
grid correction space as follows:

– For each vertex v in the mesh, we associate a contin-
uous piecewise linear nodal basis (pyramid) function.
This implies that the coarse grid correction space always
contains the usual space of continuous piecewise linear
polynomials.

– For each interior edge e associated with piecewise poly-
nomials of degree p ≥ 2, we add a single quadratic bump
function associated with the midpoint of edge e.

– For each element t associated with piecewise polynomi-
als of degree p ≥ 3, we add a single cubic bubble p
function associated with the barycenter of element t .

With these definitions, the block ja data structure can also
be used as the point ja data structure for H , with the block
column indices for A interpreted as point column indices
for H . Additionally, the coarse grid correction space has a
maximum dimension of approximately 6V , achieved when
all elements in the mesh have degree p ≥ 3. The average
number of non zeroes per row in H in this maximal situation
is 23/2. The basis associated with the coarse grid correction
has a natural hierarchical structure, allowing standard hierar-
chical basis solvers to be employed for solving linear systems
associated with the coarse grid correction. Often the matrix
H is sufficiently small relative to A that LDU orUTDU fac-
torizations are feasible and attractive. The prolongation and
restriction operators are just the usual Galerkin (change of
basis) operators.

In terms of convergence, many of the standard two level
proofs apply when the mesh is quasiuniform [1,6,7]. How-
ever, it should be clear that the rate of convergence cannot
be independent of p as p → ∞. On the other hand, as a
practical matter p should be bounded. In PLTMG, p ≤ 9 is
required due to the suite of quadrature rules used by the pack-
age. More generally, if we again consider the case of uniform
p, the subspace dimension scales as n ≈ p2V . The cost of
numerical quadrature scales as p4V = O(p2n), and the cost
of Gaussian elimination for the diagonal blocks of A scales
as p6V = O(p4n). In this situation, if one seeks complexity
estimates that scale as O(n), then p should be bounded, e.g.,
as p ≤ pmax . As a side remark, for d dimensional simplicial
elements, the space dimension scales as n ≈ pdV , while

the quadrature and diagonal block factorization costs scale
as p2dV and p3dV , respectively.

4 Numerical experiments

In this section, we present a selection of numerical results
that illustrate the robustness of this two level h−p solver. To
have a well controlled experimental environment, we used
uniform square meshes and constant p = 8 in all of these
experiments. In particular, we set Ω = (0, 1) × (0, 1), and
employed uniform meshes of size 41 × 41, 81 × 81, and
161× 161, resulting in finite element spaces of approximate
dimension 103K, 410K, and 1.64M, respectively, using con-
tinuous piecewise polynomials of degree p = 8.

We solved the six linear scalar partial differential equa-
tions given below:

− Δu = 1

− 10−3uxx − uyy = 1

− Δu + 103ux = 1

− Δu + 103((y − .5)ux − (x − .5)uy) = 1

− Δu − 103u = 1

− Δu + 103u = 1.

For all these equations we impose homogeneous Dirichlet
boundary conditions u = 0 on ∂Ω . The solutions of these
six problems are shown in Fig. 1.

We solved each of the example problems for the three
values of n, and for two different values of the error tolerance,
ε = 10−3 and ε = 10−6. We started all iterations with initial
guess zero, and used the criteria

ek = ||rk ||
2
||r0||
2

≤ ε (1)

to measure convergence. Here rk is the preconditioned resid-
ual. The problems were accelerated using composite step
conjugate gradients [3] for symmetric problems and compos-
ite step biconjugate gradients for nonsymmetric problems.
The coarse grid problems were solved using one iteration of
ILU where the drop tolerance was made sufficiently small
that as a practical matter it became a direct solve.

The results are reported in Tables 1 and 2. The reported
data are K , the number of iterations required to satisfy (1),
and

Digits = − log eK .

For ε = 10−3, all of the problems were solved in few
iterations, often with eK � ε. This is a reflection of the

123

A two level solver for h−p adaptive finite element equations 55

−Δ = u= 1 (left) and −10−3uxx−uyy = 1 (right).

−Δ u+103ux = 1 (left) and −Δ u+103((y− .5)ux− (x− .5)uy) = 1
(right).

−Δ u−103u= 1 (left) and −Δ u+103u= 1 (right).

Fig. 1 Solutions of example problems

effectiveness of the coarse grid correction. Starting from an
initial guess of zero, on the first iteration, the coarse grid
correction computes a solution that is essentially as good

as the finite element solution for uniform p = 2. Thus, we
should expect an exceptional decrease in the error on the first
iteration that is not necessarily a reflection of the asymptotic
behavior of themethod. For h−p adaptivemeshes, the coarse
grid space always includes the piecewise linear subspace, but
not necessarily the complete quadratic subspace, so one can
still expect an exceptional decrease of the error on the first
iteration. We note that in the context of an adaptive feedback
loop, only a modest error reduction is needed in any solve
step due to a good initial guess. (In PLTMG, the default is
ε = 10−2.) Thus for these classes of problems, this solver is
effective in this context.

The results for ε = 10−6 reveal a bit more about the
asymptotic behavior of the method. The results are still quite
good for the Poisson equation, and for the two equations
−Δu±103u = 1. Particularly impressive is the highly indef-
inite Helmholtz equation, systems that are often very difficult
to solve. The number if iterations decreases with increasing
n. This effect is likely due to improvements in the coarse grid
correction. As h is decreased, the approximation properties
provided by the piecewise quadratic finite element space con-
tained within the coarse grid correction improves.

The two convection dominated equations also perform
well but show a significant increase in the number of iter-
ations for the case n ≈ 1.6m. After some investigation, it
appears that this is due to growth in the condition number of
A with increasing n. Since condition numbers for all these
problems are increasing, this effect will eventually appear in
all of the problems as n increases. The use of higher precision
floating point arithmetic could delay the onset of this effect.
In all these experiments, we used standard double precision
arithmetic.

As a side remark, as the size of the problems addressed
by adaptive methods continues to increase, roundoff error
issues will become increasingly important in many parts of
the calculation, not just the solver. For example, it is now
common for h-refined meshes to locally become so refined
that the coordinates of all the vertices of someelements canbe
identical to the level of roundoff error. This implies thatmany
routine finite element calculations, such as mapping such

Table 1 ε = 10−3
n = 103,041 n = 410,881 n = 1,640,961

K Digits K Digits K Digits

−Δu = 1 1 4.95 1 5.59 1 6.21

−10−3uxx − uyy = 1 2 3.50 1 3.51 1 4.45

−Δu + 103ux = 1 1 6.53 1 6.63 1 5.85

−Δu + 103((y − .5)ux − (x − .5)uy) = 1 1 6.78 1 6.24 1 5.78

−Δu − 103u = 1 3 3.54 1 3.55 1 4.45

−Δu + 103u = 1 1 3.50 1 4.13 1 4.74

123

56 R. E. Bank

Table 2 ε = 10−6
n = 103,041 n = 410,881 n = 1,640,961

K Digits K Digits K Digits

−Δu = 1 3 6.12 3 6.74 1 6.21

−10−3uxx − uyy = 1 63 6.15 46 6.00 25 6.05

−Δu + 103ux = 1 1 6.49 1 6.64 3 6.59

−Δu + 103((y − .5)ux − (x − .5)uy) = 1 1 6.79 1 6.24 4 6.42

−Δu − 103u = 1 8 6.46 6 6.59 4 6.18

−Δu + 103u = 1 6 6.42 5 6.54 4 6.40

Table 3 Storage ×10−3
n = 103,041 n = 410,881 n = 1,640,961

m = 9761 m = 38,721 m = 154,241

Int Sym Nonsym Int Sym Nonsym Int Sym Nonsym

A 135 3101 6100 539 12,398 24,385 2154 45,976 97,512

H 63 63 116 250 250 462 1000 1000 1846

GE(A) 526 6628 13,153 2820 32,495 64,579 14,744 158,375 315,108

GE(H) 247 247 484 1361 1361 2684 7295 7217 14,280

GE(D) 0 878 1652 0 3505 6600 0 14,012 26,384

elements to a reference element, can suffer from catastrophic
cancellation.

Perhaps the most significant difference in Table 2 is the
anisotropic problem, which showed a large increase in the
number of iterations. This is likely due to the smoother. A
block smoother more like a line smoother for point matrices
would be a better choice from the viewpoint of convergence.
While implementation of such a smoothermight be relatively
straightforward for this particular problem, it could be more
challenging in the case of unstructured meshes with variable
p. Also as we discuss below, using an incomplete factor-
ization that allows some fill-in as a smoother to overcome
this problemmight make this two-level solver unattractive in
comparisonwith sparseGaussian elimination.However,with
the low convergence tolerances typical of the feedback loops
used in adaptive methods, development of such a smoother
is not such an important issue in practice.

In Table 3 we provide some data on the size of various
data structures used in these calculations. Indirectly, this also
provides some indication of the computational complexity.
Information is provided on A, H , sparse Gaussian elimina-
tion for both A and H using a minimum degree ordering,
and on factorization of the diagonal blocks of A used in
the smoother of our two level iteration. Three numbers are
provided. In the case of A and its Gaussian elimination fac-
torization, int reports the combined storage of the ja array,
the corresponding pointer array jp (same size as ja), and the
block size array b of sizem. The factorization of the diagonal

blocks of A can make use of the int data structures of A so
no additional integer data structure are needed. For H and its
factorization, only the point ja data structure is needed. The
sym and nonsym columns reports the number of nonzeroes
stored, essentially the size of the a array.

From the data we note that the total integer storage for
the block matrices is far less than the real storage. Thus the
integer overhead operations are greatly reduced in relation
to the floating point operations needed for common matrix
operations, so the block data structure is far more efficient in
these cases than a point data structure, where the integer and
real data structures are of comparable size.

Gaussian elimination of the coarse grid matrix H is less
costly and requires less space than the factorization of the
diagonal blocks of A needed for the block symmetric Gauss–
Seidel smoother. Thus the cost of our two level solver is
dominated by the cost of the smoother. Solving linear systems
involving H by an iterative method, e.g. a hierarchical basis
method, might be locally more efficient than direct solution,
but that efficiency will have a smaller impact on the global
complexity of the two level solver.

Also note that size of the LDU or UTDU factorizations
of A by Gaussian elimination is only 2–3 times that of the
original matrix. Thus, preconditioners or smoothers based
on incomplete factorization allowing even modest fill-in are
likely to result in factorizations very close to Gaussian elim-
ination.

123

A two level solver for h−p adaptive finite element equations 57

References

1. Bank, R.E.: Hierarchical bases and the finite element method. In:
Iserles, A. (ed.) Acta Numerica, pp. 1–43. Cambridge University
Press, Cambridge (1996)

2. Bank, R.E.: PLTMG: A software package for solving elliptic partial
differential equations, users’ guide 12.0. Technical report, Depart-
ment of Mathematics, University of California at San Diego (2016)

3. Bank, R.E., Chan, T.F.: An analysis of the composite step biconju-
gate gradient method. Numer. Math. 66, 295–319 (1993)

4. Eisenstat, S.C., Gursky, M.C., Schultz, M.H., Sherman, A.H.: Yale
sparse matrix package I: the symmetric codes. Int. J. Numer. Meth-
ods Eng. 18, 1145–1151 (1982)

5. Eisenstat, S.C., Schultz, M.H., Sherman, A.H.: Algorithms and data
structures for sparse symmetric Gaussian elimination. SIAM J. Sci.
Stat. Comput. 2, 225–237 (1982)

6. Xu, J.: Iterative methods by space decomposition and subspace cor-
rection. SIAM Rev. 34(4), 581–613 (1992)

7. Yserentant, H.: Old and new convergence proofs for multigridmeth-
ods. In: Iserles, A. (ed.) Acta Numerica, pp. 285–326. Cambridge
University Press, Cambridge (1993)

123

	A two level solver for h-p adaptive finite element equations
	Abstract
	1 Introduction
	2 Sparse matrix data structures
	3 Two level solver
	4 Numerical experiments
	References

