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Abstract Hemodynamic indicators such as the averaged
wall shear stress (AWSS) and the oscillatory shear index
(OSI) are well established to characterize areas of arte-
rial walls with respect to the formation and progression of
aneurysms. Here, we study two different forms for the wall
shear stress vector from which AWSS and OSI are com-
puted. One is commonly used as a generalization from the
two-dimensional setting, the latter is derived from the full
decomposition of the wall traction force given by the Cauchy
stress tensor. We compare the influence of both approaches
on hemodynamic indicators by numerical simulations under
different computational settings. Namely, different (real and
artificial) vessel geometries, and the influence of a physio-
logical periodic inflow profile. The blood is modeled either
as a Newtonian fluid or as a generalized Newtonian fluid
with a shear rate dependent viscosity. Numerical results are
obtained by using a stabilized finite element method. We
observe profound differences in hemodynamic indicators
computed by these two approaches, mainly at critical areas
of the arterial wall.
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1 Introduction

In this article, we aim to analyze the influence of different
computational settings on the blood flow dynamics, with a
focus on the identification of the main hemodynamic indica-
tors in application to the aneurysm problematics. For that, we
shall consider different computational geometries, both real
and artificial, different inflow conditions and hemodynamic
models, and mainly, different approaches for computing the
shear stresses at the arterial walls. We shall not discuss the
influence of the mechanical interaction between the ves-
sel wall and the blood, in order to characterize the main
properties of the above mentioned setups. This should be
nevertheless considered in a following work.

Even though blood is a mixture of biological substances
(namely blood cells suspended in a blood plasma medium
consisting of water, macromolecules and ions), we consider
it, on the macroscopic scale, as a single constituent incom-
pressible, homogeneous and isotropic fluid. Thus, we shall
describe its flow in the framework of continuum mechanics.
In such a case, the fluid model is given by the Cauchy stress
tensor

T = −p I + S, (1.1)

where p I is the mean normal stress (with p denoting the
hydrodynamical pressure) and S is the extra stress tensor
whichneeds to be specifiedby a suitable constitutive equation
reflecting the rheological nature of the considered fluid.

For the needs of computational simplicity, blood is very
commonly considered as a Newtonian fluid, that means,
its rheological behavior is described by a single parameter,
called viscosity, being a constant of proportionality between
the shear stress and the shear rate during a simple shear. Such
an approximation can be validated for blood flow in vessels
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with large diameters. This, on the other hand, should not be
presumed in the case of blood flow in a vessel with aneurysm
where its typical non-Newtonian phenomena occur. More-
over, the focus of this work is laid on the identification of the
distribution of the wall shear stresses, and thus, a Newtonian
description of blood can significantly influence the relevancy
of an aimed computational prediction.

2 Hemodynamic models and equations of flow

In a physiological environment, the non-Newtonian charac-
ter of blood manifests in its ability to thin the shear and the
stress relaxation. The shear-thinning behavior and its connec-
tion to the red blood cell (RBCs) deformation and rouleau
aggregation was originally recognized already in the 1970’s
in the work of Chien et al. [4,5]. Shortly after, Thurston
in [22] described the property of RBCs to store energy via
the rouleau network deformation and consequentlymeasured
the viscoelastic nature of the whole blood. Such a behavior,
related to the rouleau network deformation, must be thus
shear-rate dependent as it is the formation of such a struc-
ture, see [23]. Surprisingly, until now, only few viscoelastic
models (describing among others the mentioned stress relax-
ation) have been proposed: a linearMaxwell model proposed
by Thurston [22], a generalized Oldroyd-B model with a
non-linear apparent viscosity of shear-thinning proposed by
Yeleswarapu et al. [26], and recently, a thermodynamically
consistent model of Anand and Rajagopal [1] describing
blood as a mixture of shear-thinning viscoelastic and New-
tonian fluid, created in the framework of maximization of
the rate of dissipation corresponding to the material natural
(stress-free) configuration.

For our aim, we assume standard Newtonian model given
by

S = 2μD, (2.1)

where D is the symmetric part of the velocity gradient, that
means D = 1

2 (∇u + ∇u�), and μ denotes the constant
dynamic viscosity. As a second model, we shall consider a
generalized Newtonian model describing the shear-thinning
property of blood, namely

S = 2μ(|D|2)D, (2.2)

where the generalized viscosity μ is shear rate dependent,
having the form of a power-law-like Carreau1 model, see [7,
Part II],

1 It is very common that the shear-thinning of blood is described by
a more general Carreau–Yasuda model, having in comparison with the
Carreaumodel onemore additionalmaterial parameter. Nevertheless, in
the case of blood, bothmodels give the same quantitative and qualitative
fits. Thus we use the simpler one.

μ(|D|2) = η∞ + (η0 − η∞)(1 + κ|D|2)n . (2.3)

Here η0, η∞, κ and n are material parameters. While κ > 0
and n ∈ (−0.5, 0) are parameters of shear-thinning, η0 and
η∞ are asymptotic apparent viscosities of blood for the shear
rates γ̇ → 0 and γ̇ → ∞, respectively. From this, it is
clear that η0, η∞ are (in theory) independent of the particular
shear-thinning model, while κ and n need to be specified
from the specific model that they fit the experimental data.
In this work, we use the values2 of material parameters as
given in [7, Chapter II], namely η0 = 65.7 × 10−3 Pa s,
η∞ = 4.45 × 10−3 Pa s, κ = 212.2 s2, and n = −0.325. In
the case of the Newtonian model we use μ = η∞.

As one can see, we completely neglect possible patho-
logical influences on the blood rheology which can occur in
the case of blood flow in aneurysm sack, like degeneration
of the blood cells, thrombus formation etc., see for instance
[21].Nevertheless, suchbiochemical questions should bedis-
cussed, and in order of a better description of the blood flow
nature in aneurysm, more advanced hemodynamic models
with biochemical part should be considered. On the other
hand, as it was mentioned above, we focus mainly on the
description of the effects of real geometries and flow con-
ditions on the wall shear stresses, and thus a generalized
Newtonian shear-thinning model can be considered as a rea-
sonable approximation. A consideration of more rigorous
models of blood can be seen as a future work.

We describe the flow of blood in terms of the velocity field
u(t, x) and the pressure p(t, x) which are governed by the
non-stationary incompressible (generalized) Navier–Stokes
equations with different viscosity models as given in (2.1)
and (2.3). For the consecutive numerical computations, it
will be useful to recast the governing equations in terms of
dimensionless variables, defined as follows

X = x

L∗ , U = u
U ∗ , P = p

P∗ , M = μ

M∗ , (2.4)

where L∗ and U∗ are the characteristic length and velocity,
respectively, M∗ is the characteristic dynamic viscosity and
P∗ is the scaling pressure. All the ∗-characteristic values
are suitably chosen for a particular computational setting in
order to describe the character of the specific flow problem.
For consistency, we choose

P∗ = �(U∗)2 and M∗ = η∞, (2.5)

where � is the density of the fluid. Then the time is natu-
rally non-dimensionalized with respect to L∗/U∗ and the

2 In general, blood viscosity is depending on many factors like hema-
tocrit, pH, age, gender, etc., and thus different values of fitted material
parameters can be found through the literature.
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same holds true for the extra stress tensor S with respect to
M∗U∗/L∗.

For simplicity of the notation, instead of capitals, small
letters for the non-dimensional variables are used.The system
of governing equations is then transformed onto

∂u
∂t

+ [∇u]u = −∇ p + 2

Re
div

(
μ(|D|2)D

)
, (2.6)

div u = 0, (2.7)

using the notation for the reduced Reynolds number3 Re =
�L∗U∗/μ∞. In the case of a Newtonian fluid we have then
μ(·) = 1.

3 Hemodynamic indicators

The initiation, evolution and rupture of aneurysm result,
as most degenerative cardiovascular diseases, from a com-
bination of hemodynamics, vessel wall mechanics, and
physical and biochemical processes within and between
them. In the past decades, the hypothesis of strong corre-
lation between the blood flow induced mechanical stresses
and the arterialwall functionality, degenerative chemical pro-
cesses within and around it has been several times verified
[6,10,11,13,15,17,19,25]. More precisely, the endothelial
cells of the vesselwall aremechanosensitive to the local shear
stresses [14,25], transferring the abnormal wall shear stress
into specific biochemical signals whichmodulate the cellular
structure of the wall. This results in the wall thinning [10]
and in an increase of the lipid and adhesionmolecules perme-
ability through the wall [6], which is connected to aneurysm
plaque or thrombus formation. On the other hand, the physi-
ological level of the shear stress at the wall is protective. As
specified for example in [14], the range4 of wall shear stress
is about 15–70dyne cm−2. From above it is clear that identi-
fication of local wall shear stress (WSS) plays an important
role in the study of aneurysm evolution in silico, and thus, it
shall be a key factor in the characterization of aneurysm in
this work.

Across the literature one can find different approaches
to the WSS computation. By a rheological definition, WSS
is a shear traction caused by the blood flow acting on the
endothelial cell surface. In terms of the Cauchy stress tensor
this means

WSS := (Tn) · tblood, (3.1)

3 Sometimes, the Navier–Stokes equations are expressed in terms of
the kinematic viscosity ν = μ/ρ. Nevertheless, in the case of non-
dimensionalization, this issue is irrelevant due to the Reynolds number
being then of the form Re = L∗U∗/ν
4 The range in non-dimensionalized physical quantities shall be speci-
fied later.

where n is the outer normal unit vector of the tangential
plane to the vessel wall. Then tblood is a tangential unit vec-
tor living in such a plane, having the same direction as the
velocity vector of blood. Notice, that (Tn) · tblood is in our
problem always non-negative. For a two-dimensional case
of unidirectional flow, this characterization is intuitive due
to the unique identification of tblood. Similarly, such charac-
terization of wall shear stress is meaningful also for simple
shear flow in three-dimensional case. Let us bemore concrete
and derive WSS for simple shear flow described in Cartesian
coordinates in the x-axis. Then, the velocity vector and the
corresponding normal and tangential unit vectors are

v = (v1(y), 0, 0)
�, n = (0, 1, 0)�, tblood = (1, 0, 0)�.

(3.2)

Correspondingly we have

(Tn) · tblood = −p n · tblood + 2μ(·)Dn · tblood (3.3)

= μ(·)
⎛
⎜⎝

0 ∂v1(y)
∂y 0

∂v1(y)
∂y 0 0
0 0 0

⎞
⎟⎠

⎛
⎝
0
1
0

⎞
⎠ ·

⎛
⎝
1
0
0

⎞
⎠

= μ(·)∂v1(y)

∂y
. (3.4)

Obviously, for simple shear flow for which the flow is purely
laminar, the wall shear stress vector and the (scalar) wall
shear stress are then derived as

τw,1 = 2μ(·)Dn, WSS1 = |2μ(·)Dn|. (3.5)

Such a derivation then tempt, that these formulas are also
used in general three-dimensional setting, see for example
[9,12–14,20]. However, for complicated geometries, like the
arteries with aneurysms, the flow at the arterial wall can not
be approximated by simple shear, since a non-negligible part
of Dn will not act in the shear direction. Formula (3.1) is
then for those problems not usable, since tblood is given by
two a priori not known tangential vectors, and thus, together
with zero Dirichlet boundary condition for the velocity one
can not directly derive it in this way.

Instead, one can use a full decomposition approach. The
shear stress vector is then derived from the wall traction Tn
by subtracting the normal stress vector as depicted in Fig. 1.
That means

τw,2 = Tn − [(Tn) · n]n (3.6)

= −pn + Sn + [(pn · n)]n − [(Sn) · n]n (3.7)

= Sn − [(Sn) · n]n, (3.8)
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n

Tn

τw

[(Tn) · n]n

Fig. 1 Stress decomposition at the infinitesimal plane into its normal
and tangential part. In the case that n coincides with the outer normal
of the vessel wall, we call the tangential part τw the wall shear stress
vector

and specifically for the (generalized) Newtonian case

τw,2 = Tn − [(Tn) · n]n (3.9)

= 2μ(·)(Dn − [(Dn) · n]n). (3.10)

By the uniqueness of the decomposition of a traction vector
into its normal and shear part, we obtain

WSS2 = |τw,2|. (3.11)

Here one should notice that the normal stress is not identi-
fied with the mean normal stress [−p I]n but it is superposed
together with [(Sn) ·n]n. This normal part of the extra stress
is very often neglected, reasoned by the flow conditions close
to the simple shear. Later we shall see that this term is never-
theless not of small order mainly at the critical points of the
domain where aneurysm or arterial plaque appear.

Whatever definition ofWSSwe use, it is still a local phys-
ical quantity expressed at a given time. Thus, it is preferable
to consider this indicator over a certain time period, either
the time of observation or the period of the cardiac cycle. For
this, we introduce a time-averaged wall shear stress (AWSS)
as proposed in [13], characterizing the areas of low shear
stresses at the vessel wall during the time interval (0, T )

AWSS := 1

T

∫ T

0
|τw(t)| dt, (3.12)

where τw is the wall shear stress vector. Thus, as we are
interested in the differences arising from the choice of the
form of τw, we define

AWSS1 := 1

T

∫ T

0

∣∣τw,1(t)
∣∣ dt,

AWSS2 := 1

T

∫ T

0

∣∣τw,2(t)
∣∣ dt. (3.13)

However, in the case of a pulsative flow, somepathological
flow patterns at or near the wall can develop, such as stagna-
tion points or wall shear stresses with oscillating character,

for which a quantity such as AWSS can be high as well. This
is due to the fact that AWSS is computed from the magni-
tude of the shear force and thus it is free from the information
about the oscillatory character. Hence we introduce, see [13],
an additional hemodynamic indicator, the oscillatory shear
index (OSI)

OSI := 1

2

⎛
⎝1 −

∣∣∣∫ T
0 τw(t) dt

∣∣∣
∫ T
0 |τw(t)| dt

⎞
⎠ , (3.14)

to provide a characterization of the deviation of the WSS
vector from its averaged direction, in other words a measure
of WSS oscillations where AWSS is not predictive. Here,∫ T
0 a(t) dt stands for a vector with components computed
as integrals of corresponding components of the vector a.
In the case that the denominator in (3.14) is zero, we set
OSI = 0, since in that case the nominator adopts zero value
as well. The values of OSI are in the range [0, 0.5], where
OSI = 0 corresponds to a unidirectional flow (protective)
and OSI = 0.5 to a purely oscillating flow (pathological).
Again, in the same fashion as (3.13), we define

OSI1 := 1

2

⎛
⎝1 −

∣∣∣∫ T
0 τw,1(t) dt

∣∣∣
∫ T
0

∣∣τw,1(t)
∣∣ dt

⎞
⎠ ,

OSI2 := 1

2

⎛
⎝1 −

∣∣∣∫ T
0 τw,2(t) dt

∣∣∣
∫ T
0

∣∣τw,2(t)
∣∣ dt

⎞
⎠ . (3.15)

From what has been described above, both indicators
need to be investigated simultaneously, with a focus on the
regions where either AWSS and OSI are small, or, OSI is
high regardless of the AWSS value. Since we are inter-
ested in relative differences between AWSS1 and AWSS2,
OSI1 and OSI2, we will present the numerical results also in
non-dimensionalized form. The corresponding values in the
physical units can be obtained by a simple calculation due to
(2.4)–(2.5) and (4.1).

4 Computational setup

4.1 Geometry and data

We consider four different geometries of cerebral arter-
ies with aneurysm, three realistic, reconstructed from CTA
imaging, and one artificial (symmetric), see Fig. 2. Geom-
etry GEOM_1 was obtained as open source mesh from the
CISTIB lab at the Universitat Pompeu Fabra of Barcelona,
GEOM_2 was provided from [8], and GEOM_3 from [16].

We always denote the domain of interest by 	 and its
boundary by
 which is decomposed into three parts, namely
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GEOM 1 GEOM 2 GEOM 3 GEOM 4a b c d

Fig. 2 Studied geometries. Black arrows denote the inflow boundary

the boundary of the wall and the parts of inflow and outflow,
i.e. 
 = 
w ∪ 
in ∪ 
out, all of positive measure.

Under normal conditions, the diameter of a cerebral artery
is approximately 5mm, and, as it will be specified below, the
velocity inflow is in the range 10–50cm s−1. This, together
with the viscosity η∞ = 4.45× 10−3 Pa s, gives us the char-
acteristic units of the problem under consideration,

L∗ = 1 cm, U∗ = 10 cm s−1,

M∗

�
= 4.2 × 10−2 cm2 s−1, (4.1)

which scales the time by T ∗ = 0.1 s and the stress by
S∗ = 0.445 dynes cm−2. The corresponding Reynolds num-
ber is then Re ≈ 240. The mesh geometries are scaled
into the characteristic units as well, that means the diameter
of all computational arteries is approximately 0.5 of non-
dimensional units.

4.2 Boundary conditions

On the boundary 
 we prescribe the following mixed bound-
ary conditions

u = 0 on 
w, u = g on 
in, Tn = 0 on 
out. (4.2)

By that, we impose the wall to be non-penetrable on which
the fluid perfectly adheres (no-slip), on the outflow we pre-
scribe physical zero stress, sometimes called “do nothing”
boundary condition. On the inflow boundary we prescribe
either a physiological inflow condition or a constant (artifi-
cial) inflow. For both cases, the inflow is governed by a given
velocity function

g = g(t, x) = gt (t) φ(t)gx (x). (4.3)

0 0.2 0.4 0.6 0.8 1
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50

time [s]

pe
ak

ve
lo
ci
ty
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/s
]

Fig. 3 Archetypal waveform of the peak velocity (in units) in the
internal carotid artery over one cardiac cycle, created by fitting to exper-
imental data, from [21]

Here gx (x) represents a parabolic
5 profile of the inflow, 0 �

|gx (x)| � 1, scaled by gt (t), representing its periodic change
over one cardiac cycle. Additionally, φ(t) stands for initial
damping.

In arteries, the velocity profile of the blood flow is gen-
erated by the heart beat, nevertheless, the magnitude and
the shape of pulses change at different parts of the arterial
system, mainly due to the branching, wall deformation, and
the complex curvature of the cardiovascular system. We use
a profile experimentally determined for an internal carotid
artery6 by [21], see Fig. 3, with a period of the cardiac cycle
of 0.917s. Such a multi-harmonic function can be decom-
posed into Fourier series7

gt 1(t) = a0
2

+
7∑

k=1

ak cos(kωt) + bk sin(kωt), (4.4)

5 In general, the vessel cross-sectionmaynot posses a circular profile. In
that case, the prescribed parabolic function needs to be properly scaled
or has to have a suitable decay at the boundary of such a cross-section.
6 Artery of our interest.
7 For this particular case, 7 summands of the series are approximating
the waveform accurately enough.
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Fig. 4 Two different inflow profiles of the function gt (t)with a scaling
φ(t) from the rest st ate, over the computational time interval (0, 5 T f );
Full line gt 1(t)φ(t)—physiological profile, as in Fig. 4, dashed line
gt 2(t)φ(t)—averaged (over one period) profile

where ω = 2π/T f denotes the frequency of oscillation and
ak , bk are the Fourier coefficients given by a fitting of gt
to experimental data (from [21]). As a second profile of the
inflow velocity we consider a constant profile, computed as
an average of the above described wave, namely

gt 2(t) = 1

T f

∫ T f

0
gt 1(t) dt ≈ 3.33. (4.5)

For computational reasons we damp the wave gt at the initial
period by

φ(t) =
{

1
2

(
1 + cos(π( t

T f
− 1))

)
for t < T f ,

1 else,
(4.6)

to obtain a smooth evolution of the flow from the initial rest
state u(0, x) = 0, x ∈ 	. Both inflow time profiles are
depicted in Fig. 4.

4.3 Discretization

First, we discretize the system (2.6)–(2.7) in time by using
a standard Crank–Nicholson method, see for instance [24],
with a time stepping �t = T f /50 in the simulation time
interval (0, 5T f ). On the non-linear terms, we apply a full
Newton method with a relative accuracy of 1e − 8. For the
spatial discretization we use finite elements with piecewise
linear and globally continuous approximations for both, the
velocity and the pressure, i.e. a P1–P1 pairing. This, as a
low order approximation, has an advantage in computation
of large systems due to the lower number of degrees of free-
dom.Nevertheless, such a pairing does not satisfy the inf–sup
condition, and thus, it results in an unstable method, see
for instance [3]. This we overcome by the use of Bochev–
Dohrmann stabilization, which is suitable for equal-order
approximation, see [2]. It introduces an additional pressure

Table 1 Numbers of spatial elements and degrees of freedom (dofs)
for all considered geometries

GEOM_1 GEOM_2 GEOM_3 GEOM_4

Space elements 568,050 1,388,238 1,376,085 1,002,972

Dofs 352,905 900,693 903,104 648,567

penalizing term free of stabilization parameter. Moreover, it
does not require a calculation of higher-order derivatives as
most of other standard stabilized finite element methods.

The computations are performed on the cluster GHOST
with 2 nodes, each consisting of 8 Quad-Core AMDOpteron
Processors (2.3GHz) and 256GBRAM. The resulting linear
system of equations is solved by the direct solver PARDISO,
see [18]. For each geometry, the number of degrees of free-
dom and the number of spatial elements are presented in
Table 1.

5 Numerical results and discussion

As it was outlined in the introduction, we focus on the
determination of the difference between the hemodynamic
indicators (both AWSS and OSI) with respect to the used for-
mula of the wall shear stress vector τw, see (3.5) and (3.10).
This means, we aim to demonstrate absolute differences

diff AWSS := |AWSS1 − AWSS2|, and

diff OSI := |OSI1 − OSI2|, (5.1)

for all four geometries, where AWSS1, AWSS2, OSI1 and
OSI2 are defined in (3.13) and (3.15). The computational
results for periodic inflow (4.4) and for the shear rate depen-
dent viscositymodel (2.3) are presented in Fig. 5, with zooms
on the aneurysms. The results clearly show that the dif-
ferences are strongly dependent on the complexity of the
geometry. This correlates with the fact that near the “enough
smooth” part of the boundary the characteristic of the flow is
close to the simple shear. Hence, both wall shear stress vec-
tors τw,1 and τw,2 are identical, and thus OSI and AWSS are
the same for both approaches. These areas are represented in
Fig. 5 without color. The parts of the walls where the simple
shear approximation fails are either those with higher curva-
ture (like at bifurcations, sharp curves, necks of aneurysms),
or those which are near the flow vortices (like the heads of
aneurysms). Even though those parts of the boundary are
minor, they are exactly the critical regions where aneurysms
evolve, and thus, to obtain more precise results, the whole
decomposition of wall traction should be assumed.

To compare the magnitude of the differences with the
actual magnitudes of computed AWSS and OSI, we include
Fig. 6 of geometry GEOM_3. For this particular computa-
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diff AWSS diff AWSS diff AWSS diff AWSS

diff OSI diff OSI diff OSI diff OSI

a b c d

e f g h

Fig. 5 Absolute differences betweenAWSS andOSI computations for all four geometries. On parts of the boundary without color are the indicators
identical, i.e. AWSS1 = AWSS2 and OSI1 = OSI2. Computational setting: generalized viscosity, periodic inflow

AWSS2 diff AWSS OSI2 diff OSI

AWSS2 diff AWSS OSI2 diff OSI

a b c d

e f g h

Fig. 6 Comparisonof the relative differences for third geometry in twozoomedviews. For this case themaximal difference takes up to approximately
20% in AWSS and 40% in OSI with respect to the result obtained by full decomposition. Computational setting: generalized viscosity, periodic
inflow
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Fig. 7 Direct comparison of the indicators on the line cuts as schemat-
ically depicted in a and b. The line cut through the boundary is
parametrized to the interval (0, 1), used as a characterization of a posi-
tion on the cut for plots in b, c, e and f. As one can see, the differences of

AWSS are placed away from the aneurysm head, while for the OSI they
occur on the top of the head. Full line full decomposition (indicators
computed from τw,2), dashed line partial decomposition (indicators
computed from τw,1)

tional setting, the maximal differences are approximately of
20% in AWSS and 40% in OSI with respect to the result
obtained by full decomposition. Nevertheless, the parts of the
wall where theAWSS andOSI differmostly are not identical.
AWSS1 differs from AWSS2 mainly at the sharp curve of the
main vessel, while the OSI differences are mainly located
at the head of aneurysm and bifurcations. The areas where
diff AWSS are highest reflect regions where vector τw changes
mainly in magnitude, while for the diff OSI they are deter-
mined by the τw having different directions but possibly of
similar magnitude during the flow period. This then causes
that regions of highest AWSS/OSI differences are not always
identical. For better illustration of this fact, we include line
cut profiles in Fig. 7. For both cases, AWSS1 and AWSS2,
respectively OSI1 and OSI2, exhibit similar characteristics
but the values at critical regions differ. The cut 1 is repre-
sented in Fig. 7a, and as it goes from front to the back, the
cut parametrization in plots b, c goes from 0 to 1. For this
cut, we observe nearly no differences in AWSS but profound
differences in OSI. In the case of cut 2 (Fig. 7d), the remark-
able differences in AWSS are positioned at the inner curve
of the main vessel, i.e. the left part of the representation of
cut 2. For clearer comparison reasons, the plotted values are
neither smoothened nor interpolated.

As last, we present in Fig. 8 simulation results with focus
on the influence of the computational setting on the value

of OSI (here are the differences mostly distinguishable)
and the corresponding differences between the full and par-
tial decomposition approaches in computation of τw. The
pictures in Fig. 8 are of geometry GEOM_2 in two mutu-
ally opposite zooms on the aneurysm head. First, we can
notice remarkable influence of the used viscosity model on
the OSI distribution, i.e. the difference in computation with
Newtonian (constant) viscosity and generalized (shear-rate
dependent) viscosity, compare first and third row of the
figure. These both cases are results for periodic inflow of
velocity. On the other hand, the difference between the dis-
tributions of OSI for the case of periodic and constant inflow
is not of such magnitude. This is due to the fact that the flow
in the aneurysm head is slowed down and it does not exhibit
such a strong periodic character as in the vessel itself. Never-
theless, on the vessel wall are the characteristics much more
distinguishable (partially notable in the zoom views as well).
In this set of pictures, the differences are defined as in (5.1).

In this work, we have considered only two averaged
hemodynamic indicators. Nevertheless, there are also other
indicators which play an important role in physiological
research of the vessel wall. The focus of this work was not to
specify the whole scale of the relevant indicators since most
of them are directly derived from the wall shear stress vec-
tor τw. We rather wanted to give a direct example that the
way of how the wall shear stress vector is computed leads
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µc, gt1 µc, gt1 µc, gt1 µc, gt1

µ(|D|2), gt2 µ(|D|2), gt2 µ(|D|2), gt2 µ(|D|2), gt2

µ(|D|2), gt1 µ(|D|2), gt1 µ(|D|2), gt1 µ(|D|2), gt1
zoom1: OSI2 zoom1: diff OSI zoom2: OSI2 zoom2: diff OSI

a b c d

e f g h

i j k l

Fig. 8 Comparison of OSI computed by full decomposition (from
τw,2) and of the absolute differences between the two approaches, with
focus on the influence of different computational setting. Top rowNew-

tonian model (constant viscosity), middle row generalized Newtonian
model (non-constant viscosity), constant inflow (described by function
gt2), bottom row generalizedNewtonianmodel (non-constant viscosity)

to significant differences, illustrated on the two most used
indicators. Obviously, differences in the indicators will also
have an impact on the interpretation of the results from a
physiological point of view.

6 Concluding remarks and outlook

This work has been focused on the illustration of the
importance of the formula forwall shear stress vector in com-
putation of hemodynamic indicators. A full decomposition
approach is from our point of view a good starting point
for the characterization of critical areas of artery walls with
respect to the formation and progression of aneurysms. Nev-
ertheless, in further work the models should be improved by
inclusion of the most significant aspects which can influence
those indicators as well. From our perspective, this includes
the following. First, a more realistic blood model which can,
in a reasonable range, capture the pathological behavior of
blood near the critical areas and/or its non-Newtonian prop-
erties. And as a second, the influence of the wall deformation
caused by the blood flow circulation. For the considered
numerical method this means to include the fluid-structure
interaction (FSI), and, for the modeling part, a reasonable
solid-like deformation model.
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