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Abstract In this work, we study the approximation proper-
ties of multipatch dG-IgAmethods, that apply themultipatch
Isogeometric Analysis discretization concept and the discon-
tinuous Galerkin technique on the interfaces between the
patches, for solving linear diffusion problems with diffu-
sion coefficients that may be discontinuous across the patch
interfaces. The computational domain is divided into non-
overlapping subdomains, called patches in IgA, where B-
splines, or NURBS approximations spaces are constructed.
The solution of the problem is approximated in every sub-
domain without imposing any matching grid conditions and
without any continuity requirements for the discrete solu-
tion across the interfaces. Numerical fluxes with interior
penalty jump terms are applied in order to treat the dis-
continuities of the discrete solution on the interfaces. We
provide a rigorous a priori discretization error analysis for
diffusion problems in two- and three-dimensional domains,
where solutions patchwise belong to Wl,p, with some l ≥ 2
and p ∈ (2d/(d + 2(l − 1)), 2]. In any case, we show opti-
mal convergence rates of the discretization with respect to
the dG - norm.
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1 Introduction

The finite element methods (FEM) and, in particular, discon-
tinuous Galerkin (dG) finite element methods are very often
used for solving elliptic boundary value problemswhich arise
from engineering applications, see, e.g., [17] and [25]. For
realistic problems in complicated geometries, the quality of
the numerical results depends usually on the quality of the
discretized geometry (triangulation of the domain), which is
usually performed by a mesh generator. This is the case even
if curved elements are used, see, e.g., [8,22,36] and [17]. In
many practical situations, extremely finemeshes are required
around fine-scale geometrical objects, singular corner points
etc. in order to achieve numerical solutions with desired res-
olution. This fact leads to an increased number of degrees
of freedom, and thus to an increased overall computational
cost for solving the discrete problem, see, e.g., [32] for fluid
dynamics applications.

Recently, the Isogeometric Analysis (IgA) concept has
been applied for approximating solutions of elliptic problems
[5,18]. IgA generalizes and improves the classical FE (even
isoparametric FE) methodology in the following direction:
complex technical computational domains can be exactly
represented as images of some parameter domain, where
the mappings are constructed by using superior classes of
basis functions like B-spline, or Non-Uniform Rational B-
spine(NURBS), see, e.g., [9] and [28]. The same class of
functions is used to approximate the exact solution without
increasing the computational cost for the computation of the
resulting stiffness matrices [9], systematic hpk refinement
procedures can easily be developed [33], and, last but not
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least, the method can be materialized in parallel environment
incorporating fast domain decomposition solvers [20], [34],
[2].

During the last two decades, there has been an increas-
ing interest in discontinuous Galerkin (dG) finite element
methods for the numerical solution of several types of partial
differential equations, which is attributed to the advantages
of the local approximation spaceswithout continuity require-
ments that dGmethods offer, see, e.g., [3,10,27,29] and [31].

In this paper, we combine the best features of the
two aforementioned methods, and develop a discretization
method that we call multipatch discontinuous Galerkin Iso-
geometric Analysis (dG-IgA). We apply and analyze the
proposed dG-IgA method to elliptic boundary value prob-
lems with discontinuous coefficients. It well known that the
solutions of this type of problems are in general not smooth
enough, see, e.g. [19,21], and the numerical method cannot
produce an (optimal) accurate solution. The problem is set
in a complex, bounded Lipschitz domainΩ ⊂ R

d , d = 2, 3,
which is subdivided in a union of non-overlapping subdo-
mains, say S(Ω) := {Ωi }Ni=1, where we further assume that
the discontinuity of the diffusion coefficients is only observed
across the subdomain boundaries (interfaces). The weak
solution of the problem is approximated in every subdomain
applying IgAmethodology, [5], without imposing continuity
requirements for the approximation spaces across the inter-
faces. Having in our mindmore general problems, where the
use of independent subdomain meshes is more preferable,
see, for example, [4] for the use of dG techniques in the case
of rotating subdomains, we develop our numerical analysis
for non-matching meshes across the interfaces. By construc-
tion, dG methods use discontinuous approximation spaces
utilizing numerical fluxes on the interfaces, [3], and have
been efficiently used for solving problems on non-matching
grids in the past, [10,11,14]. Here, emulating the dG finite
element methods, the numerical scheme is formulated by
applying numerical fluxes with interior penalty coefficients
on the interfaces of the subdomains (patches), and using IgA
formulations in every patch independently. A crucial point
in the presented work, is the expression of the numerical
flux interface terms as a sum over the micro-elements edges
taking note of the non-matching subdomain meshes. This
gives the opportunity to proceed in the error analysis by
applying the trace inequalities locally as in dG finite element
methods. There are many papers, which present dG finite
element approximations for elliptic problems, see, e.g., [3],
the monographs [27,29], and, in particular, for the discon-
tinuous coefficient case, [10,26]. However, there are only a
few publications on the dG-IgA and their analysis. In [7],
the author presented discretization error estimates for the
dG-IgA of plane (2d) diffusion problems on meshes match-
ing across the patch boundaries and under the assumption of
sufficiently smooth solutions. This analysis obviously carries

over to plane linear elasticity problems which have recently
been studied numerically in [2]. In [12], the dG technology
has been used to handle no-slip boundary conditions and
multipatch geometries for IgA of Darcy-Stokes-Brinkman
equations. DG-IgA discretizations of heterogeneous diffu-
sion problems on open and closed surfaces, which are given
by a multipatch NURBS representation, are constructed and
rigorously analyzed in [24].

In thefirst part of this paper,wegive a priori error estimates
in the dG-norm ‖.‖dG under the usual regularity assump-
tion imposed on the exact solution, i.e. u ∈ W 1,2(Ω) ∩
Wl≥2,2(S(Ω)). Next, we consider the model problem with
low regularity solution u ∈ W 1,2(Ω) ∩ Wl,p(S(Ω)), with
l ≥ 2 and p ∈ ( 2d

d+2(l−1) , 2), and derive error estimates in
the dG-norm ‖.‖dG . These estimates are optimal with respect
to the space size discretization.Wenote that the error analysis
in the case of low regularity solutions includes many ingredi-
ents of the dGFE error analysis presented in [35] and [26]. To
the best of our knowledge, optimal error analysis for IgA dis-
cretizations combinedwith dG techniques for solving elliptic
problems with discontinuous coefficients in general domains
Ω ⊂ R

d , d = 2, 3, have not been yet presented in the liter-
ature.

The paper is organized as follows. In Section 2, our model
diffusion problem is described. Section 3 introduces some
notations. The local approximation spaces Bh(S(Ω)) and
the numerical scheme are also presented in this section. Sev-
eral auxiliary results and the analysis of the method for the
case of sufficiently regular solutions are provided in Sec-
tion 4. Section 5 is devoted to the analysis of the method for
low regularity solutions. Section 6 includes several numer-
ical examples that verify the theoretical convergence rates.
Finally, we draw some conclusions.

2 The model problem

Let Ω be a bounded Lipschitz domain inRd , d = 2, 3, with
the boundary ∂Ω . For simplicity, we restrict our study to the
model diffusion problem

−div(α∇u) = f in Ω, and u = uD on ∂Ω, (2.1)

where f and uD are given smooth data. In (2.1), α is the
diffusion coefficient that is assumed to be bounded by strictly
positive constants from above and below. Moreover, for the
sake of simplicity, we will later assume that α is patchwise
constant.

The weak formulation is to find a function u ∈ W 1,2(Ω)

such that u := uD on ∂Ω and satisfies

a(u, φ) = l(φ), ∀φ ∈ W 1,2
0 (Ω), (2.2a)
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where

a(u, φ) =
∫

Ω

α∇u∇φ dx, and l(φ) =
∫

Ω

f φ dx .

(2.2b)

Results concerning the existence and uniqueness of the
solution u of problem (2.2) can be derived by a simple
application of Lax-Milgram Lemma, [13]. To avoid unnec-
essary long formulas below, we only considered in (2.1)
non-homogeneous Dirichlet boundary conditions on ∂Ω .
However, the analysis can be easily generalized to Neumann
and Robin type boundary conditions on a part of ∂Ω , since
they are naturally introduced in the dG formulation.

3 Preliminaries - dG notation

Throughout this work, we denote by L p(Ω), p > 1 the
Lebesgue spaces for which

∫
Ω

|u(x)|p dx < ∞, endowed

with the norm ‖u‖L p(Ω) = ( ∫
Ω

|u(x)|p dx) 1
p . ByD(Ω), we

define the space ofC∞ functions with compact support inΩ ,
and byCk(Ω) the set of functionswith k−th order continues
derivatives. In dealing with differential operators in Sobolev
spaces, we use the following common conventions. For any
(multi-index) α = (α1, . . . , αd), α j ≥ 0, j = 1, . . . , d,
with degree |α| = ∑d

j=1 α j , we define the differential oper-
ator

Da = Dα1
1 · · · Dαd

d ,with Dj = ∂

∂x j
, D(0,...,0)u = u. (3.1)

We also denote by Wl,p(Ω), l positive integer and 1 ≤ p ≤
∞, the Sobolev space functions endowed with the norm

‖u‖Wl,p(Ω) = ( ∑
0≤|α|≤m

‖Dαu‖p
L p(Ω)

) 1
p , ‖u‖Wl,∞(Ω)

= max
0≤|α|≤m

‖Dαu‖∞. (3.2a)

For more details for the above definitions, we refer [1]. In
the sequel we write a ∼ b if ca ≤ b ≤ Ca, where c,C are
positive constants independent of the mesh size.

In order to apply the IgA methodology for the problem
(2.1), the domainΩ is subdivided into a union of subdomains
S(Ω) := {Ωi }Ni=1, such that

Ω̄ =
N⋃
i=1

Ω̄i , with Ωi ∩ Ω j = ∅, if j 
= i. (3.3)

Throughout the paper we assume that the coefficient α in
(2.1) is equal to some given positive constant α(i) in each
subdomain Ωi for i = 1, . . . , N .

As it is common in the IgA analysis, we assume a para-
metric domain D̂ of unit length, (e.g. D̂ = [0, 1]d ). For
any Ωi , we associate n = 1, . . . , d knot vectors Ξ

(i)
n on D̂,

which create a mesh T (i)
hi ,D̂

= {Êm}Mi
m=1, where Êm are the

micro-elements, see details in [9]. We shall refer T (i)
hi ,D̂

as the

parametric mesh of Ωi . For every Êm ∈ T (i)
hi ,D̂

we denote
by hÊm

its diameter and by hi = max{hÊm
} the meshsize of

T (i)
hi ,D̂

. We assume the following quasi-uniformity properties

for every T (i)
hi ,D̂

: (i) for every Êm ∈ T (i)
hi ,D̂

holds hi ∼ hÊm
, (ii)

for the micro-element edges eÊm
⊂ ∂ Êm holds hÊm

∼ eÊm
.

On every T (i)
hi ,D̂

, we construct the finite dimensional space

B̂
(i)
hi

spanned by B-spline basis functions of degree k, [9,30],

B̂
(i)
hi

= span{B̂(i)
j (x̂)}dim(B̂

(i)
hi

)

j=0 , (3.4a)

where every B̂(i)
j (x̂) base function in (3.4a) is derived by

means of tensor products of one-dimensional B-spline basis
functions, e.g.

B̂(i)
j (x̂) = B̂(i)

j1
(x̂1) · · · B̂(i)

jd
(x̂d). (3.4b)

For simplicity, we assume that the basis functions of every
B̂

(i)
hi

, i = 1, . . . , N are of the same degree k. We denote by

D̃(i)

Ê
the support extension of Ê ∈ T (i)

hi ,D̂
.

Every subdomain Ωi ∈ S(Ω), i = 1, . . . , N , is exactly
represented through aparametrization (one-to-onemapping),
[9], having the form

�i : D̂ → Ωi , �i (x̂) =
∑
j

C (i)
j B̂(i)

j (x̂) := x ∈ Ωi ,

(3.5a)

with x̂ = � i (x) := �−1
i (x), (3.5b)

where C (i)
j are the control points. For the purposes of this

work, we assume that the components� i = (Ψi,1, . . . , Ψi,d)

and �i = (Φi,1, . . . , Φi,d) are highly smooth functions.
Using �i , we construct a mesh T (i)

hi ,Ωi
= {Em}Mi

m=1 for
every Ωi , whose vertices are the images of the vertices
of the corresponding mesh T (i)

hi ,D̂
through �i . If hΩi =

max{hEm }, Em ∈ T (i)
hi ,Ωi

is the subdomain Ωi mesh size,
then based on Definition (3.5) of �i , there is a constant
C := C(‖�i‖∞) such that hi ∼ ChΩi . In what follows,
we denote the subdomain mesh size by hi without the con-
stant C := C(‖�i‖∞) explicitly appearing.

The mesh ofΩ is considered to be Th(Ω) = ⋃N
i=1 T

(i)
hi ,Ωi

,
where we note that there are no matching mesh requirements
on the interior interfaces ∂Ωi

⋂
∂Ω j , i 
= j .
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For the sake of brevity in our notations, the interior faces
of Ωi which are common to the interior faces of Ω j are
denoted by Fi j , i.e., Fi j = ∂Ωi ∩ ∂Ω j , i 
= j . We denote
the collection of the faces that belong to ∂Ωi ∩ ∂Ω by Fi,B .

Lastly, we define on Ω the finite dimensional B−spline
space

Bh(S(Ω)) = B
(1)
h1

× ...×B
(N )
hN

, where everyB(i)
hi

is defined

on T (i)
hi ,Ωi

as follows

B
(i)
hi

:= {B(i)
hi

|Ωi : B(i)
h (x) = B̂(i)

h ◦ � i (x), ∀B̂(i)
h ∈ B̂

(i)
hi

}.
(3.6)

We define the union support in physical subdomain Ωi as
D(i)

E := �(D̃(i)

Ê
).

Assumption 1 We suppose that there exist constants 0 <

cm < cM such that for all x̂ ∈ D̂

cm ≤ |det (�′
i (x̂))| ≤ cM , i = 1, . . . , N , (3.7)

where �
′
i (x̂) denotes the Jacobian matrix ∂(x1,...,xd )

∂(x̂1,...,x̂d )
.

Now, for any û ∈ Wm,p(D̂),m ≥ 0, p > 1, we define the
function

U(x) = û(� i (x)), x ∈ Ωi , (3.8)

and for the error analysis below, we need to show the relation

Cm‖û‖Wm,p(D̂)
≤ ‖U‖Wm,p(Ωi ) ≤ CM‖û‖Wm,p(D̂)

, (3.9)

where Cm,CM depending on Cm := Cm

(maxm0≤m(‖Dm0�i‖∞), ‖det (� ′
i )‖∞) and CM := CM

(maxm0≤m(‖Dm0� i‖∞), ‖det (�′
i )‖∞), correspondingly.

Indeed, for any û ∈ Wm,p(D̂) we can find a sequence

{û j } ⊂ C∞(
¯̂D) converging to û in ‖.‖Wm,p(D̂)

, by the chain
rule in (3.8) we obtain

Dx (� i (x))
−1DU j (x) = Dû j (� i (x)). (3.10)

Then for anymulti-indexm we can get the following formula

DmU j (x) =
∑
m0≤m

Pm,m0(x)D
m0U j (x), (3.11)

where Pm,m0(x) is a polynomial of degree less than k and
includes the various derivatives of� i (x). Multiplying (3.11)
by ϕ(x) ∈ D(Ω), and integrating by parts we have

(−1)|m|
∫

Ωi

U j (x)D
mϕ(x) dx

=
∑
m0≤m

∫
Ωi

Pm,m0(x)D
m0U j (x)ϕ(x) dx . (3.12)

We transfer the integral in (3.12) to integrals over D̂ and
use the change of variable x = �i (x̂) to obtain

(−1)|m|
∫
D̂
û j (x̂)D

mϕ(�i (x̂))|det (�′
i (x̂))| dx̂

=
∑
m0≤m

∫
D̂
Pm,m0(�i (x̂))D

m0 û j (x̂)

ϕ(�i (x̂))|det (�′
i (x̂))| dx̂ . (3.13)

But it holds that Dm0 û j → Dm0 û in ‖.‖L p(D̂)
, thus taking

the limit j → ∞ in (3.13) and transferring the integrals back
to Ωi , we can derive (3.12) with respect to U. We conclude
that (3.11) holds in the distributional sense, and therefore

∫
Ωi

|DmU(x)|p dx≤Cp

∫
Ωi

∑
m0≤m

∣∣Pm,m0(x)D
m0U(x)|p dx

≤ Cp max
m0≤m

(
max
x∈Ωi

(Pm,m0(x))
) ∑
m0≤m

∫
Ωi

∣∣Dm0U(x)|p dx

≤ Cp max
m0≤m

(
max
x∈Ωi

(Pm,m0(x))
)
max
x̂∈D̂

(|det (�′
i (x̂))|

∑
m0≤m

∫
D̂

∣∣Dm0 û(x̂)|p d x̂

≤ C(max
m0≤m

(‖Dm0� i (x)‖∞, ‖det (�′
i (x̂))‖∞)

∑
m0≤m

∣∣Dm0 û(x̂)|p
Wm0,p(D̂)

. (3.14)

This proves the “right inequality” in (3.9). The “left inequal-
ity” in (3.9) can be shown following the same steps as above
using the change of variable x̂ = � i (x).

3.1 The numerical scheme

We use the B−spline spaces defined in (3.6) for approximat-
ing the solution of (2.2) in every subdomain Ωi . Continuity
requirements forBh(S(Ω)) are not imposed on the interfaces
Fi j of the subdomains, and hence, the problem (2.2) is dis-
cretized by discontinuous Galerkin techniques on Fi j , [10].

Using the notation φ
(i)
h := φh |Ωi , we define the average and

the jump of φh

{φh} :=1

2
(φ

(i)
h +φ

( j)
h ), �φh� :=φ

(i)
h −φ

( j)
h , on Fi j =∂Ωi ∩ ∂Ω j ,

(3.15a)

{φh} :=φ
(i)
h , �φh� :=φ

(i)
h , on Fi∂ =∂Ωi ∩ ∂Ω.

(3.15b)

The dG-IgAmethod reads as follows: find uh ∈ Bh(S(Ω))

such that
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ah(uh, φh) = l(φh) + pD(uD, φh), ∀φh ∈ Bh(S(Ω)),

(3.16a)

where

ah(uh, φh) =
N∑
i=1

ai (uh, φh) −
N∑
i=1

∑
Fi j⊂∂Ωi

1

2
sFi j (uh, φh)

− pFi j (uh, φh)

−
N∑
i=1

∑
Fi∂∈Fi,B

sFi∂ (uh, φh)

− pFi∂ (uh, φh), (3.16b)

and the bilinear forms for the interior Fi j and the boundary
faces Fi∂ defined as

ai (uh, φh) =
∫

Ωi

α∇uh∇φh dx, (3.16c)

sFi j (uh, φh) =
∫
Fi j

{α∇uh} · nFi j �φh� ds, (3.16d)

pFi j (uh, φh)=
∫
Fi j

(μα( j)

h j
+ μα(i)

hi

)
�uh��φh� ds, (3.16e)

pD(uD, φh) =
N∑
i=1

∑
Fi∂∈Fi,B

∫
Fi

μα(i)

hi
uDφh ds, (3.16f)

whereα(i) is the diffusion coefficient restricted onΩi ,nFi j
is the unit normal vector oriented fromΩi towards the interior
of Ω j and the parameter μ > 0 is large enough (will be
specified later in the error analysis). For the faces Fi∂ ∈ Fi,B ,
the forms in (3.16d) and (3.16e) are defined according to
(3.15b). For notation convenience in what follows, we will
use the same expression

∫
Fi j

{α∇uh} · nFi j �φh� ds,

∫
Fi j

(μα( j)

h j
+ μα(i)

hi

)
�uh��φh� ds,

for both cases, boundary and interior faces. For the boundary
jump terms, we will assume that α( j) = 0. If it is necessary
to mention separately the integrals on Fi∂ ∈ Fi,B , we will
explicitly write this.

Remark 1 We mention that, in [10], Symmetric Interior
Penalty (SIP) dG formulations have been considered by intro-
ducing harmonic averages of the diffusion coefficients on the
interface symmetric fluxes. Furthermore, harmonic averages
of the two different grid sizes have been used to penalize the
jumps. The possibility of using other averages for construct-
ing the diffusion terms in front of the consistency and penalty

terms has been analyzed in many other works as well, see,
e.g. [16,26]. For simplicity of the presentation, we provide
a rigorous analysis of the Incomplete Interior Penalty (IIP)
forms (3.16d) and (3.16e). However, our analysis can easily
be carried over to SIP dG-IgA that is preferred in practice for
symmetric and positive definite (spd) variational problems
due to the fact that the resulting systems of algebraic equa-
tions are spd and, therefore, can be solved by means of some
preconditioned conjugate gradient method.

4 Auxiliary results

In order to proceed to error analysis, several auxiliary results
must be shown for u ∈ Wl,p(S(Ω)) and φh ∈ Bh(S(Ω)).
The general frame of the proofs consists of three steps: (i)
the required relations are expressed-proved on a parent ele-
ment Dp, see Fig. 1, (ii) the relations are “transformed” to

Ê ∈ T (i)
hi ,D̂

using an affine-linear mapping and scaling argu-
ments, (iii) by virtue of the mappings �i defined in (3.6) and
relations (3.9), we express the results in every Ωi .

Let Dp be the parent element e.g [−xb, xb]d ⊂ R
d , with

diameter Hp, see Fig. 1. Dp is convex simply connected
domain, thus for any x ∈ ∂Dp, ∃x0 ∈ Dp such that

(x − x0) · n∂Dp ≥ CHp . (4.1)

Fig. 1 The parent element, the parametric domain and two adjacent
subdomains
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Based on [15] and [13], we give the following trace inequal-
ity.

Lemma 1 Let u ∈ Wl,p(Ωi ), l ≥ 1, p > 1, then there is a
constant C depended on problem data and on the constants
of (3.9) such that, the following trace inequality holds true
for any Fi ⊂ ∂Ωi

∫
Fi

|u(s)|p ds

≤ C
( 1

hi

∫
Ωi

|u(x)|p dx + h p−1
i

∫
Ωi

|∇u(x)|p dx). (4.2)

Proof Let u ∈ Wl,p(Dp), then for r = (x − x0) we have

∫
Dp

∇|u|p · r dx =
d∑

i=1

∫
Dp

p|u|p−2u
∂u

∂xi
ri

dx = p
∫
Dp

|u|p−2u∇u · r dx . (4.3)

The application of divergence theorem gives

∫
Dp

∇|u|p · r dx =
∫

∂Dp

|u|pr · n∂Dp ds

−
∫
Dp

|u|pdiv(r) dx . (4.4)

By (4.1), (4.3) and (4.4) it follows that

∫
∂Dp

|u|pr · n∂Dp ds = p
∫
Dp

|u|p−2u∇u · r dx

+
∫
Dp

|u|pdiv(r) dx

and by (4.1), we get

CHp

∫
∂Dp

|u|p ds ≤ p
∫
Dp

|u|p−2u∇u · r dx

+
∫
Dp

|u|pdiv(r) dx .

Applying Hölder and Youngs inequalities, we have

∫
∂Dp

|u|p ds ≤ CHp

(
C1,p

( ∫
Dp

|u|p dx

+ |∇u|p dx) + Cd

∫
Dp

|u|p dx
)

≤ CHp,d,p

( ∫
Dp

|u|p dx +
∫
Dp

|∇u|p dx
)

= CHp,d,p

(
‖u‖p

L p(Dp)
+ ‖∇u‖p

L p(Dp)

)
. (4.5)

Now, Dp can be considered as a reference element of any

micro-element Ê ∈ T (i)
hi ,D̂

with the linear affine map

φÊ : Dp → Ê ∈ T (i)
hi ,D̂

, φÊ (xDp ) = BxDp + b, (4.6)

where |det (B)| = |Ê |, see [6]. By (4.6), we have that

|u|Wl,p(Dp)
= h

l− d
p

Ê
|û|Wl,p(Ê)

and then for e ⊂ ∂ Ê we
deduce by (4.2) that

h−(d−1)
Ê

∫
e
|u|p ds

≤ C
(
h

(0− d
p )p

Ê

∫
Ê

|u|p dx + h
p(1− d

p )

Ê

∫
Ê

|∇u|p dx
)

which directly gives

∫
e
|u|p ds ≤ C

( 1

hi

∫
Ê

|u|p dx + h p−1
i

∫
Ê

|∇u|p dx
)
.

(4.7)

Summing over all micro-elements Ê ∈ T (i)
hi ,D̂

, we have for

F̂i ⊂ ∂ D̂

∫
F̂i

|u|p ds ≤ C
( 1

hi

∫
D̂

|u|p dx + h p−1
i

∫
D̂

|∇u|p dx
)
.

(4.8)

Finally, applying (3.9), we obtain the trace inequality on
every subdomain

∫
Fi

|u|p ds ≤ C
( 1

hi

∫
Ωi

|u|p dx + h p−1
i

∫
Ωi

|∇u|p dx
)
.

(4.9)

��
We point out that similar proof has been given in [14] in

case of p = 2.

Lemma 2 For all φh ∈ B̂
(i)
hi

defined on T (i)
hi ,D̂

, there is a

constant C depended on mesh quasi-uniformity parameters
of the mesh but not on hi , such that

‖∇φh‖p
L p(D̂)

≤ C

hp
i

‖φh‖p
L p(D̂)

. (4.10)

Proof The restriction of φh |Ê is a B−spline polynomial of
the same order. Considering the same polynomial space on
the Dp and by the equivalence of the norms on Dp we have,
[6],

‖∇φh‖p
L p(Dp)

≤ CDp‖φh‖p
L p(Dp)

. (4.11)
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Applying scaling arguments and the mesh quasi-uniformity
properties of T (i)

hi ,D̂
, the left and the right hand side of (4.11)

can be expressed on every Ê ∈ T (i)
hi ,D̂

as

h
p− d

p p

i ‖∇φh‖p

L p(Ê)
≤ Ch

− d
p p

i ‖φh‖p

L p(Ê)
, (4.12)

summing over all in (4.12) Ê ∈ T (i)
hi ,D̂

, we can easily deduce
(4.10). ��
Lemma 3 For all φh ∈ B̂

(i)
hi

defined on T (i)
hi ,D̂

and for all

F̂i ∈ ∂ D̂, there is a constant C depended on mesh quasi-
uniformity parameters of the mesh but not on hi , such that

‖φh‖p

L p(F̂i )
≤ C

hi
‖φh‖p

L p(D̂)
. (4.13)

Proof Applying the same scaling arguments as before and
using the local quasi-uniformity of T (i)

hi ,D̂
, that is for every

ê ∈ ∂ Ê holds |ê| ∼ hi , we can show the following local
trace inequality

‖φh‖p
L p(ê) ≤ Ch−1

i ‖φh‖p

L p(Ê)
, (4.14)

summing over all Ê ∈ T (i)
hi ,D̂

that have an edge on F̂i we
deduce (4.13). ��

Next a Lemma for the relation among the |φh |Wl,p(D̂) and
|φh |Wm,p(D̂).

Lemma 4 Let φh ∈ B̂
(i)
hi

such that φh ∈ Wl,p(Ê) ∩
Wm,q(Ê), Ê ∈ T (i)

hi ,D̂
, and 0 ≤ m ≤ l, 1 ≤ p, q ≤ ∞.

Then there is a constant C := C(l, p,m, q) depended on
mesh quasi-uniformity parameters of the mesh but not on hi ,
such that

|φh |Wl,p(Ê) ≤ Ch
m−l− d

q + d
p

i |φh |Wm,q (Ê). (4.15)

Proof We mimic the analysis of Chp 4 in [6]. For any φh ∈
B̂

(i)
hi

|Dp , we have that

|φh |Wl,p(Dp)
≤ C |φh |Wm,q (Dp), φh ∈ B̂

(i)
hi

|Dp . (4.16)

Using the scaling arguments as in proof of (4.7),

h
l− d

p

Ê
|φh |Wl,p(Ê)

≤Ch
m− d

q

Ê
|φh |Wm,q (Ê)

,

which directly implies

|φh |Wl,p(Ê)
≤ C h

m−l− d
q + d

p
i |φh |Wm,q (Ê)

, φh ∈ B̂
(i)
hi

. (4.17)

For the particular case of m = l = 0 in (4.15), we have that

‖φh‖L p(Ê)
≤ Ch

d( 1
p − 1

q )

i ‖φh‖Lq (Ê)
. (4.18)

��
Remark 2 The foregoing results can be expressed on every
Ωi ∈ S(Ω) using (3.9).

4.1 Analysis of the dG-IgA discretization

We next study the convergence properties of the method
(3.16) under the following regularity assumption for the solu-
tion u.

Assumption 2 We assume for u that u ∈ Wl,2
S :=

W 1,2(Ω) ∩ Wl,2(S(Ω)), l ≥ 2. Under this assumption, we
consider the B-spline degree k to be k ≥ l − 1.

We consider the enlarged space Wl,2
h := Wl,2

S +
Bh(S(Ω)), equipped with the broken dG-norm

‖u‖2dG =
N∑
i=1

(
α(i)‖∇u(i)‖2L2(Ωi )

+pi (u
(i), u(i))

)
, u ∈ Wl,2

h ,

(4.19)

where denote pi (u(i), u(i)) = ∑
Fi j⊂∂Ωi

pFi j (u
(i), u(i)). For

the error analysis is necessary to show the continuity and
coercivity properties of the bilinear form ah(., .) of (3.16).
Initially, we give a bound for the consistency terms.

Lemma 5 For (u, φh) ∈ Wl,2
h × Bh(S(Ω)), there are

C1,ε,C2,ε > 0 such that for Fi j ⊂ ∂Ωi

|sFi j | =
∣∣∣
∫
Fi j

{α∇u} · nFi j (φ
(i)
h − φ

( j)
h ) ds

∣∣∣
≤ C1,ε

(
hiα

(i)‖∇u(i)‖2L2(Fi j )

+h jα
( j)‖∇u( j)‖2L2(Fi j )

)

+ 1

C2,ε

(α(i)

hi
+ α( j)

h j

)
‖φ(i)

h − φ
( j)
h ‖2L2(Fi j )

. (4.20)

Proof Expanding the terms and applying Cauchy-Schwartz
inequality yields

|sFi j | ≤ C
∣∣∣
∫
Fi j

{α∇u} · nFi j (φ
(i)
h

−φ
( j)
h ) ds

∣∣∣ ≤
C

(
α(i)‖∇u(i)‖L2(Fi j ) + α( j)‖∇u( j)‖L2(Fi j )

)
‖φ(i)

h

−φ
( j)
h ‖L2(Fi j ).

Applying Young’s inequality:
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α(i)‖∇u(i)‖L2(Fi j )‖φ(i)
h − φ

( j)
h ‖L2(Fi j )

≤ C1,εhiα
(i)‖∇u(i)‖2L2(Fi j )

+ α(i)

C2,εhi
‖φ(i)

h − φ
( j)
h ‖2L2(Fi j )

we obtain

|sFi j | ≤ C1,εhiα
(i)‖∇u(i)‖2L2(Fi j )

+C1,εh jα
( j)‖∇u( j)‖2L2(Fi j )

+ α(i)

C2,εhi
‖φ(i)

h − φ
( j)
h ‖2L2(Fi j )

+ α( j)

C2,εh j
‖φ(i)

h − φ
( j)
h ‖2L2(Fi j )

=C1,ε

(
hiα

(i)‖∇u(i)‖2L2(Fi j )
+h jα

( j)‖∇u( j)‖2L2(Fi j )

)

+ 1

C2,ε

(α(i)

hi
+ α( j)

h j

)
‖φ(i)

h − φ
( j)
h ‖2L2(Fi j )

.

��

Lemma 6 Suppose uh ∈ Bh(S(Ω)) is the dG-IgA solution
derived by (3.16). There exist a C > 0 independent of α and
hi but depended on μ such that

ah(uh, uh) ≥ C‖uh‖2dG, uh ∈ Bh(S(Ω)) (4.21)

Proof By (3.16a), we have that

ah(uh, uh) =
N∑
i=1

(
ai (uh, uh) −

∑
Fi j⊂∂Ωi

1

2
sFi j (uh, uh)

+ pFi j (uh, uh)
)

=
N∑
i=1

(
αi‖∇uh‖2L2(Ωi )

−
∑

Fi j⊂∂Ωi

1

2

∫
Fi j

{α∇uh} · nFi j �uh� ds

+
∑

Fi j⊂∂Ωi

μ
(α(i)

hi
+ α( j)

h j

)
‖�uh�‖2L2(Fi j )

)
.

(4.22)

For the second term on the right hand side, Lemma 5 and the
trace inequality (4.13) expressed on Fi j ∈ F yield the bound

−
∑

Fi j⊂∂Ωi

1

2

∫
Fi j

{α∇uh} · nFi j �uh� ds ≥

−C1,ε

N∑
i=1

(
αi‖∇uh‖2L2(Ωi )

−
∑

Fi j⊂∂Ωi

1

C2,ε

(α(i)

hi
+ α( j)

h j

)
‖�uh�‖2L2(Fi j )

)
. (4.23)

Inserting (4.23) into (4.22) and choosing C1,ε < 1
2 and μ >

2
C2,ε

we obtain (4.21). ��
Lemma 7 There are C1,C2 > 0 independent of hi such that
for all (u, φh) ∈ Wl,2

h × Bh(S(Ω))

ah(u, φh) ≤ C1

(
‖u‖2dG +

N∑
i=1

∑
Fi j⊂∂Ωi

α(i)hi‖∇u(i)‖2L2(Fi j )

)

+C2‖φh‖2dG . (4.24)

Proof We have by (3.16a) that

ah(u, φh) =
N∑
i=1

( ∫
Ωi

α∇u∇φh dx

+
∑

Fi j⊂∂Ωi

1

2

∫
Fi j

{α∇u} · nFi j �φh� ds

+
∑

Fi j⊂∂Ωi

∫
Fi j

(μα( j)

h j

+ μα(i)

hi

)
�u��φh� ds

)
= T1 + T2 + T3.

(4.25)

Applying Cauchy-Schwartz inequality and consequently
Young’s inequality on every term in (4.25) yield the
bounds

T1 ≤ C1‖u‖2dG + C2‖φh‖2dG .

For the term T2, owing to the Lemma 5, we have

T2 ≤
N∑
i=1

∑
Fi j⊂∂Ωi

(
C1α

(i)hi‖∇u(i)‖2L2(Fi j )
+ C2

(
μα( j)

h j

+ μα(i)

hi

)
‖�φh�‖2L2(Fi j )

)

≤ C1

N∑
i=1

∑
Fi j⊂∂Ωi

α(i)hi‖∇u(i)‖2L2(Fi j )
+ C2‖φh‖2dG ,

T3 ≤
N∑
i=1

∑
Fi j⊂∂Ωi

(μα( j)

h j
+ μα(i)

hi

)
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×
(
C1‖�u�‖2L2(Fi j )

+ C2‖�φh�‖2L2(Fi j )

)

≤ C1‖u‖2dG + C2‖φh‖2dG .

Substituting the bounds of T1, T2, T3 into (4.25), we can
derive (4.24). ��

In Chp 12 in [30], B-spline quasi-intrpolants, say Πh ,
are defined for u ∈ Wl,p functions. Next, we consider the
same quasi-interpolant and give an estimate on howwellΠhu
approximates functions u ∈ Wl,2(Ωi ) in ‖.‖dG -norm.

Lemma 8 Let m, l ≥ 2 be positive integers with 0 ≤ m ≤
l ≤ k + 1 and let E = �i (Ê), Ê ∈ T (i)

hi ,D̂
. For u ∈ Wl,2(Ωi )

there exist a quasi-interpolantΠhu ∈ B
(i)
h and a constant Ci

depended on Cm and CM of (3.9) such that

∑
E∈T (i)

hi ,Ωi

|u − Πhu|2Wm,2(E)
≤ Cih

2(l−m)
i ‖u‖2Wl,2(Ωi )

. (4.26)

Further, for any Fi j ⊂ ∂Ωi the following estimates are true

hiα
(i)‖(∇u(i) − ∇Πhu

(i)) · nFi j ‖2L2(Fi j )
≤ Cih

2l−2
i ,

(4.27a)(
α( j)

h j
+ α(i)

hi

)
‖u(i) − Πhu

(i)‖2L2(Fi j )
≤ Ci

(
α(i)h2l−2

i

+α( j)h2l−1
i

h j

)
, (4.27b)

‖u − Πhu‖2dG ≤
N∑
i=1

Ci

(
h2l−2
i +

∑
Fi j⊂∂Ωi

α( j) hi
h j

h2l−2
i

)
.

(4.27c)

Proof The proof of (4.26) is included in Lemma 10 (see
below) if we set p = 2.

Applying the trace inequality (4.9) for u := u(i) −Πhu(i)

and consequently using the approximation estimate (4.26)
the result (4.27a) easily follows.

To prove (4.27b), we apply again (4.9) and obtain

(α( j)

h j
+ α(i)

hi

)
‖u(i) − Πhu

(i)‖2L2(Fi j )
≤

Ci

(α( j)

h j
+ α(i)

hi

)( 1

hi
‖u(i) − Πhu

(i)‖2L2(Ωi )

+hi‖∇u(i) − ∇Πhu
(i)‖2L2(Ωi )

≤

Ci

(α( j)

h j
+ α(i)

hi

)
h2l−1
i ≤ Ci

(
α(i)h2l−2

i + α( j)h2l−1
i

h j

)

Recalling the approximation result (4.26) and using (4.27b)
we can deduce (4.27c). ��

In order to proceed and to give an estimate for the error
‖u−uh‖dG , we need to show that the weak solution satisfies
the form (3.16a).

Lemma 9 Under the Assumption 2, the weak solution u of
the variational formulation (2.2) satisfies the dG-IgA vari-
ational identity (3.16), that is for all φh ∈ Bh(S(Ω)), we
have

N∑
i=1

∫
Ωi

α∇u · ∇φh dx

−
N∑
i=1

∑
Fi j⊂∂Ωi

( ∫
Fi j

{α∇u} · nFi j �φh� ds

+ (μα(i)

hi
+ μα( j)

h j

) ∫
Fi j

�u��φh� ds
)

+
N∑
i=1

∑
Fi∂∈Fi,B

( ∫
Fi∂

α(i)∇u · nFi∂ φh ds

+ μα(i)

hi

∫
Fi∂

uφh ds
)

=
N∑
i=1

( ∫
Ωi

f φh dx +
∑

Fi∂∈Fi,B

μα(i)

hi

∫
Fi∂

uDφh ds
)
.

(4.28)

Proof We multiply (2.1) by φh ∈ Bh(S(Ω)) and integrating
by parts on each subdomain Ωi we get

∫
Ωi

α∇u · ∇φh dx −
∫

∂Ωi

α∇u · n∂Ωi φh ds =
∫

Ωi

f φh dx .

Summing over all subdomains

N∑
i=1

( ∫
Ωi

α∇u · ∇φh dx −
∑

Fi j⊂∂Ωi

∫
Fi j

�α∇uφh� · nFi j ds
)

=
N∑
i=1

∫
Ωi

f φh dx . (4.29)

The regularity Assumption 2 implies that �α∇u� · nFi j = 0.
Making use of the identity

�ab� = a1b1 − a2b2 = {a}�b� + �a�{b},

the relation (4.29) can be reformulated as

N∑
i=1

( ∫
Ωi

α∇u · ∇φh dx

−
∑

Fi j⊂∂Ωi

1

2

∫
Fi j

{α∇u} · nFi j �φh� ds
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+
∑

Fi∂∈Fi,B

∫
Fi∂

α∇u · nFi∂ φh ds
)

=
N∑
i=1

∫
Ωi

f φh dx . (4.30)

The continuity of u implies further that

N∑
i=1

( ∑
Fi j⊂∂Ωi

(μα(i)

hi
+ μα( j)

h j

) ∫
Fi j

�u��φh� ds

+
∑

Fi∈Fi,B

μα(i)

hi

∫
Fi
uφh ds

)

=
N∑
i=1

∑
Fi∈Fi,B

μα(i)

hi

∫
Fi∂

uDφh ds. (4.31)

Adding (4.31) and (4.30) we obtain (4.28). ��
We can now give an error estimate in ‖.‖dG -norm.

Theorem 1 Let u ∈ Wl,2
S be the solution of (2.2) and let

uh ∈ Bh(S(Ω))be the solutionof the discrete problem (3.16).
Then the error u − uh satisfies

‖u−uh‖2dG <

N∑
i=1

Ci

(
h2l−2
i +

∑
Fi j⊂∂Ωi

α( j) hi
h j

h2l−2
i

)
, (4.32)

where the positive constant Ci is depended on Cm and CM

of (3.9) and |u|Wl,2(Ωi )
.

Proof Let Πhu ∈ Bh(S(Ω)) as in Lemma 8, by subtracting
(4.28) from (3.16a) we get

ah(uh, φh) = ah(u, φh),

and adding −ah(Πhu, φh) on both sides

ah(uh − Πhu, φh) = ah(u − Πhu, φh). (4.33)

Note that uh − Πhu ∈ Bh(S(Ω)). Therefore we may set
φh = uh−Πhu in (4.33), and consequently applying Lemma
6 and Lemma 7, we find

‖uh − Πhu‖2dG ≤ C
(
‖u − Πhu‖2dG

+
N∑
i=1

∑
Fi j⊂∂Ωi

α(i)hi‖∇(u(i) − Πhu
(i))‖2L2(Fi j )

)
. (4.34)

Using the triangle inequality in (4.34) and consequently
applying the estimates of (4.27) we can obtain (4.32). ��

5 Low-regularity solutions

In this section, we investigate the convergence of the uh
produced by the dG-IgA method (3.16), under the assump-
tion that the weak solution u of the model problem (2.1)
has less regularity, that is u ∈ Wl,p

S := W 1,2(Ω) ∩
Wl,p(S(Ω)), l≥2, p ∈ ( 2d

d+2(l−1) , 2]. Problems with low
regularity solutions can be found in several cases, as for
example, when the domain has singular boundary points,
points with changing boundary conditions, see e.g. [15], even
in particular choices of the discontinuous diffusion coef-
ficient, [19]. We use the enlarged space Wl,p

h = Wl,p
S +

Bh(S(Ω)) and will show that the dG-IgA method con-
verges in optimal rate with respect to ‖.‖dG norm defined
in (4.19). We develop our analysis inspired by the tech-
niques used in [35], [27]. A basic tool that we will use
is the Sobolev embeddings theorems, see [1,13]. Let l =
j + m ≥ 2, then for j = 0 or j = 1 it holds
that

‖u‖W j,2(Ωi )
≤ C(l, p, 2,Ωi )‖u‖Wl,p(Ωi )

, for p >
2d

d + 2m
.

(5.1)

We start by proving estimates on how well the quasi-
interpolant Πhu defined in Lemma 8 approximates u ∈
Wl,p(Ωi ). We consider always for the B-spline degree k that
k ≥ l − 1.

The constants appear below are depended on the constants
of (3.9) and (4.9) and are not explicitly specified.

Lemma 10 Let u ∈ Wl,p(Ωi ) with l ≥ 2, p ∈
(max{1, 2d

d+2(l−1) }, 2] and let E ∈ T (i)
hi ,Ωi

. Then for 0 ≤ m ≤
l ≤ k + 1, there exist constants Ci such that

∑
E∈T (i)

hi ,Ωi

|u − Πhu|pWm,p(E) ≤ Cih
p(l−m)
i ‖u‖Wl,p(Ωi )

. (5.2)

Moreover, we have the following estimates

• hβ
i ‖∇u(i) − ∇Πhu

(i)‖p
L p(Fi j )

≤ Chp(l−1)−1+β
i , (5.3a)

• (α( j)

h j
+ α(i)

hi

)‖�u − Πhu�‖2L2(Fi j )

≤ Ciα
( j) hi

h j

(
hδ(p,d)
i |u|p

Wl,p(Ωi )

)2

+ C jα
(i) h j

hi

(
hδ(p,d)
j ‖u‖Wl,p(Ω j )

)2

+ C j

(
hδ(p,d)
j |u|Wl,p(Ω j )

)2 + Ci

(
hδ(p,d)
i ‖u‖Wl,p(Ωi )

)2
,

(5.3b)
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•‖u − Πhu‖2dG ≤
N∑
i=1

Ci

(
hδ(p,d)
i ‖u‖Wl,p(Ωi )

)2

+
N∑
i=1

∑
Fi j⊂∂Ωi

Ciα
( j) hi

h j

(
hδ(p,d)
i ‖u‖Wl,p(Ωi )

)2
, (5.3c)

where δ(p, d) = l + ( d2 − d
p − 1).

Proof We give the proof of (5.2) based on the results of Chap
12 in [30]. Given f ∈ Wl,p(D̂), there exists a tensor-product
polynomial Tm f of order m, such that, for every Ê ∈ T (i)

hi ,D̂
the estimate

| f − Tm f |Wm,p(Ê)
≤ Cd,l,mh

l−m
i | f |

Wl,p(D(i)
Ê

)
, (5.4)

holds, cf. [6] and [30]. Because ofm ≤ k holdsΠh(Tm f ) =
Tm f and ‖Πh f ‖L p(Ê)

≤ C‖ f ‖
L p(D(i)

Ê
)
. Hence,we have that

|u − Πhu|Wm,p(Ê)
≤ |u − Tmu|Wm,p(Ê)

+ |Πhu − Tmu|Wm,p(Ê)

≤ |u − Tmu|Wm,p(Ê)
+ |Πh(u − Tmu)|Wm,p(Ê)

≤ C1h
l−m
i |u|

Wl,p(D(i)
Ê

)

+C2h
−m+ d

p − d
p

i |Πh(u − Tmu)|L p(Ê)
(by (4.10))

≤ C1h
l−m
i |u|

Wl,p(D(i)
Ê

)

+C2h
−m
i |u − Tmu|L p(Ê)

(by (5.4))

≤ Chl−m
i |u|

Wl,p(D(i)
Ê

)
. (5.5)

Recalling (3.9), the above inequality is expressed on every
E ∈ T (i)

hi ,Ωi
. Then, taking the p − th power and summing

over the elements we obtain the estimate (5.2).
We consider now the interface Fi j = ∂Ωi ∩Ω j . Applying

(4.9) and using the uniformity of the mesh we get

hβ
i ‖∇u(i) − ∇Πhu

(i)‖p
L p(Fi j )

≤ Chβ
i (

1

hi
‖∇u(i) − ∇Πhu

(i)‖p
L p(Ωi )

+h p−1
i ‖∇2u(i) − ∇2Πhu

(i)‖p
L p(Ωi )

)

≤by (5.2) Chp(l−1)−1+β
i . (5.6)

To prove(5.3b), we again make use of the trace inequality
(4.9)

α(i)

hi
‖u(i) − Πhu

(i)‖2L2(Fi j )

≤ Cα(i)( 1

h2i

∫
Ωi

|u(i) − Πhu
(i)|2 dx

+
∫

Ωi

|∇(u(i) − Πhu
(i))|2 dx)

= Cα(i)
( 1

h2i

∑
E∈T (i)

hi ,Ωi

∫
E

|u(i) − Πhu
(i)|2 dx

+
∑

E∈T (i)
hi ,Ωi

∫
E

|∇(u(i) − Πhu
(i))|2 dx

)
. (5.7)

The Sobolev embedding (5.1) gives

‖u‖L2(Dp)
≤ C(p, 2, Dp)

(‖u‖p
L p(Dp)

+ |u|p
W 1,p(Dp)

) 1
p .

(5.8)

Using the scaling arguments, see (4.6), and the bounds (3.9)
we can derive the coresponding expression of (5.8) on every
E ∈ T (i)

hi ,Ωi
,

h
−d
2
i ‖u‖L2(E) ≤ Cih

−d
p

i

(‖u‖p
L p(E) + h p

i |u|p
W 1,p(E)

) 1
p ,

where a straight forward computation gives

h−2
i ‖u‖2L2(E)

≤Ch
2( d2 − d

p−1)

i

(‖u‖p
L p(E) + h p

i |u|p
W 1,p(E)

) 2
p ,

(5.9)

‖u‖2W 1,2(E)
≤Ch

2( d2 − d
p−1)

i

(‖u‖p
L p(E)

+ h p
i |u|p

W 1,p(E)
+ h2pi |u|p

W 2,p(E)

) 2
p .

(5.10)

Setting in (5.9) and (5.10) u := u(i) − Πhu(i) and applying
(5.2), we obtain that

∑
E∈T (i)

hi ,Ωi

α(i)(h−2
i ‖u(i) − Πhu

(i)‖2L2(E)

+‖u(i) − Πhu
(i)‖2W 1,2(E)

)

≤
∑

E∈T (i)
hi ,Ωi

(
α(i)Cih

l+( d2 − d
p −1)

i ‖u‖
Wl,p(D(i)

E )

)2

≤ (note that f (x) = (ax + bx )
1
x ↓)

α(i)Ci

( ∑
E∈T (i)

hi ,Ωi

(
h
lp+p( d2 − d

p −1)

i ‖u‖p

Wl,p(D(i)
E )

)) 2
p
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≤ α(i)Ci

(
h
l+( d2 − d

p −1)

i ‖u‖Wl,p(Ωi )

)2
. (5.11)

Moreover, by (5.11) we can deduce that

α( j)hi
h j

1

hi
‖u(i) − Πhu

(i)‖2L2(Fi j )

≤ Ci
α( j)hi
h j

(
h
l+( d2 − d

p −1)

i ‖u‖Wl,p(Ωi )

)2
, (5.12)

similarly

α(i)h j

hi

1

h j
‖u( j) − Πhu

( j)‖2L2(Fji )

≤ Ci
α(i)h j

hi

(
h
l+( d2 − d

p −1)

j ‖u‖Wl,p(Ω j )

)2
. (5.13)

Now, we return to the left hand side of (5.3b) and use (5.11),
(5.12) and (5.13), to obtain

(
α( j)

h j
+ α(i)

hi

)
‖�u − Πhu�‖2L2(Fi j )

≤ α( j)hi
h j

1

hi
‖u(i) − Πhu

(i)‖2L2(Fi j )

+α(i)h j

hi

1

h j
‖u( j) − Πhu

( j)‖2L2(Fji )

+α( j)

h j
‖u( j) − Πhu

( j)‖2L2(Fji )

+α(i)

hi
‖u(i) − Πhu

(i)‖2L2(Fi j )

≤ Ci
α( j)hi
h j

(
h
l+( d2 − d

p −1)

i |u|Wl,p(Ωi )

)2

+C j
α(i)h j

hi

(
h
l+( d2 − d

p −1)

j ‖u‖Wl,p(Ω j )

)2

+C j

(
h
l+( d2 − d

p −1)

j ‖u‖Wl,p(Ω j )

)2

+Ci

(
h
l+( d2 − d

p−1)

i ‖u‖Wl,p(Ωi )

)2
. (5.14)

For the proof (5.3c), we recall the definition (4.19) for
u − Πhu and have

‖u − Πhu‖2dG =
N∑
i=1

(
α(i)‖∇(u(i) − Πhu

(i))‖2L2(Ωi )

+
N∑
i=1

∑
Fi j⊂∂Ωi

(μα(i)

hi
+ μα( j)

h j

)
‖�u − Πhu�‖2L2(Fi j )

)
.

(5.15)

Estimating the first term on the right hand side in (5.15)
by (5.2) and the second term by (5.3b), the approximation
estimate (5.3c) follows. ��

We need further discrete coercivity, consistency and
boundedness. The discrete coercivity (Lemma 6) can also
be applied here. Using the same arguments as in Lemma 9,
we can prove the consistency for u. Due to assumed regular-
ity of the solution, the normal interface flux (α∇u)|Ωi · nFi j
belongs (in general) to L p(Fi j ). Thus, we need to prove the
boundedness for ah(., .) by estimating the flux terms (3.16d)
in different way than this in Lemma 7. We work in a similar
way as in [26] and show bounds for the interface fluxes in
‖.‖L p setting.

Lemma 11 There is a constant C such that the following
inequality for (u, φh) ∈ Wl,p

h × Bh(S(Ω)) holds true

N∑
i=1

∑
Fi j⊂∂Ωi

1

2

∫
Fi j

{α∇u} · nFi j �φh� ds ≤

C
( N∑

i=1

∑
Fi j⊂∂Ωi

α(i)h
1+γp,d
i ‖∇u(i)‖p

L p(Fi j )

+ α( j)h
1+γp,d
j ‖∇u( j)‖p

L p(Fi j )

) 1
p ‖φh‖dG,

where γp,d = 1

2
d(p − 2). (5.16)

Proof For the interface edge ei j ⊂ Fi j Hölder inequality
yield

1

2

∫
ei j

1

2
|α(i)∇u(i) + α( j)∇u( j)||�φh�| ds

≤ C
∫
ei j

(α(i)h
1+γp,d
i )

1
p |∇u(i)| α(i)

1
q

h
1+γp,d

p
i

|�φh�|

+(α( j)h
1+γp,d
j )

1
p |∇u( j)| α( j)

1
q

h
1+γp,d

p
j

|�φh�| ds

≤ C(α(i)h
1+γp,d
i )

1
p ‖∇u(i)‖L p(ei j )

α(i)
1
q

h
1+γp,d

p
i

‖�φh�‖Lq (ei j )

+C(α( j)h
1+γp,d
j )

1
p ‖∇u( j)‖L p(ei j )

α( j)
1
q

h
1+γp,d

p
j

‖�φh�‖Lq (ei j ).

(5.17)

We employ the inverse inequality (4.18) with p = q > 2,
q = 2 and use the analytical form

1+γp,d
p = 2+d(p−2)

2p to
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express the jump terms in (5.17) in the convenient L2 form
as follows

α(i)
1
q

h
2+d(p−2)

2p
i

‖�φh�‖Lq (ei j )

≤ Cinv,p,2α
(i)

1
q
h

(d−1)( 1q − 1
2 )− 2+d(p−2)

2p
i ‖�φh�‖L2(ei j )

≤ Cinv,p,2α
(i)

1
q
h

−1
2
i ‖�φh�‖L2(ei j ). (5.18)

Inserting the result (5.18) into (5.17) and summing over all
ei j ∈ Fi j we obtain for q > 2,

1

2

∫
Fi j

{α∇u} · nFi j �φh� ds ≤ C
∑

ei j∈Fi j

∫
ei j

|α(i)∇u(i)

+α( j)∇u( j)||�φh�| ds
≤ C

( ∑
ei j∈Fi j

α(i)h
1+γp,d
i ‖∇u(i)‖p

L p(ei j )

) 1
p

( ∑
ei j∈Fi j

α(i)( 1

h
1
2
i

‖�φh�‖L2(ei j )

)q) 1
q

+C
( ∑
ei j∈Fi j

α( j)h
1+γp,d
j ‖∇u( j)‖p

L p(ei j )

) 1
p

( ∑
ei j∈Fi j

α( j)( 1

h
1
2
j

‖�φh�‖L2(ei j )

)q) 1
q
. (5.19)

Now, using that the function f (x) = (λαx + λβx )
1
x , λ >

0, x > 2 is decreasing, we estimate the “q-power terms” in
the sum of the right hand side in (5.19) as follows

( ∑
ei j∈Fi j

α( j)( 1

h
1
2
j

‖�φh�‖L2(ei j )

)q) 1
q

≤
( ∑
ei j∈Fi j

α( j)( 1

h
1
2
j

‖�φh�‖L2(ei j )

)2) 1
2

≤
((μα(i)

hi
+ μα( j)

h j

)‖�φh�‖2L2(Fi j )

) 1
2
. (5.20)

Applying (5.20) into (5.19) we get

1

2

∫
Fi j

{α∇u} · nFi j �φh� ds

≤ 2C
(
α(i)h

1+γp,d
i ‖∇u(i)‖p

L p(Fi j )

+α( j)h
1+γp,d
j ‖∇u( j)‖p

L p(Fi j )

) 1
p

((μα(i)

hi
+ μα( j)

h j

)‖�φh�‖2L2(Fi j )

) 1
2
. (5.21)

In (5.21), we sum over all Fi j ⊂ ∂Ωi for all i = 1, . . . , N
and consequently we apply Hölder inequality

1

2

∑
Fi j

∫
Fi j

{α∇u}�φh� ds

≤ 2C
( ∑

Fi j

α(i)h
1+γp,d
i ‖∇u(i)‖p

L p(Fi j )

+α( j)h
1+γp,d
j ‖∇u( j)‖p

L p(Fi j )

) 1
p

(∑
Fi j

((μα(i)

hi

+μα( j)

h j

)‖�φh�‖2L2(Fi j )

) q
2
) 1

q
. (5.22)

Following in much the same arguments as in proof of
(5.20), we can bound the last

∑
Fi j in (5.22) as

( ∑
Fi j

((μα(i)

hi
+ μα( j)

h j

)‖�φh�‖2L2(Fi j )

) q
2
) 1

q

≤
( ∑

Fi j

(μα(i)

hi
+ μα( j)

h j

)‖�φh�‖2L2(Fi j )

) 1
2

≤ ‖φh‖dG . (5.23)

Employing (5.23) in (5.22), we can easily obtain (5.16). ��
Lemma 12 There is a C independent of hi such that
∀(u, φh) ∈ Wl,p

h × Bh(S(Ω))

ah(u, φh) ≤ C(‖u‖p
dG

+
N∑
i=1

∑
Fi j⊂∂Ωi

h
1+γp,d
i α(i)‖∇u(i)‖p

L p(Fi j )

+ h
1+γp,d
j α( j)‖∇u( j)‖p

L p(Fi j )

) 1
p ‖φh‖dG . (5.24)

Proof We estimate the terms of ah(u, φh) in (3.16b) sepa-
rately. Applying Cauchy-Schwartz for the terms (3.16c) and
(3.16e) we have

N∑
i=1

ai (u, φh) ≤ C‖u‖dG‖φh‖dG (5.25a)

N∑
i=1

∑
Fi j⊂∂Ωi

pFi j (u, φh) ≤ C‖u‖dG‖φh‖dG . (5.25b)

For the term (3.16d) we use Lemma 11

N∑
i=1

si (u, φh) ≤ C
( N∑

i=1

∑
Fi j⊂∂Ωi

α(i)h
1+γp,d
i ‖∇u(i)‖p

L p(Fi j )
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+α( j)h
1+γp,d
j ‖∇u( j)‖p

L p(Fi j )

) 1
p ‖φh‖dG, (5.26)

Combining (5.25) with (5.26) we can derive (5.24). ��
Next,we prove themain convergence result of this section.

Theorem 2 Let u ∈ Wl,p
S , l ≥ 2, p ∈ (max{1, 2d

d+2(l−1) }, 2]
be the solution of (2.2a). Let uh ∈ Bh(S(Ω)) be the dG-IgA
solution of (3.16a) and Πhu ∈ Bh(S(Ω)) is the interpolant
of Lemma 10. Then there are constants Ci specified by the
constants of (5.3c), (5.16) and (5.24), such that

‖u − uh‖dG ≤
N∑
i=1

(
Ci

(
hδ(p,d)
i

+
∑

Fi j⊂∂Ωi

α( j)( hi
h j

) 1
2 hδ(p,d)

i

)
‖u‖Wl,p(Ωi )

)
, (5.27)

where δ(p, d) = l + ( d2 − d
p − 1).

Proof Since (uh − Πhu) ∈ Bh(S(Ω)) by the discrete coer-
civity (4.21) we have

‖uh − Πhu‖2dG ≤ ah(uh − Πhu, uh − Πhu). (5.28)

By orthogonality we have

‖uh − Πhu‖2dG ≤ ah(uh − Πhu, uh − Πhu)

= ah
(
(uh − u) + (u − Πhu), uh − Πhu

)
= ah

(
u − Πhu, uh − Πhu)

≤ C
(
‖u − Πhu‖dG +

( ∑
Fi j⊂∂Ωi

h
1+γp,d
i α(i)‖∇u(i)

−Πhu
(i)‖p

L p(Fi j )

+h1+γp,d
j α( j)‖∇u( j)

−Πhu
( j)‖p

L p(Fi j )

) 1
p
)
‖uh − Πhu‖dG,

where immediately we get

‖uh − Πhu‖dG ≤ ‖u − Πhu‖dG
+

( ∑
Fi j⊂∂Ωi

h
1+γp,d
i α(i)‖∇u(i) − Πhu

(i)‖p
L p(Fi j )

+h
1+γp,d
j α( j)‖∇u( j)

−Πhu
( j)‖p

L p(Fi j )

) 1
p
. (5.29)

Now, using triangle inequality, the estimates (5.3) and the
bound (5.16) in (5.29), we obtain

‖uh − u‖dG ≤
N∑
i=1

Ci

(
hδ(p,d)
i

+
∑

Fi j⊂∂Ωi

α( j)( hi
h j

) 1
2 hδ(p,d)

i

)
‖u‖Wl,p(Ωi )

, (5.30)

which is the required error estimate (5.27). ��

6 Numerical examples

In this section, we present a series of numerical examples to
validate numerically the theoretical results of the previous
Sections. We first validate the estimates by considering the
model problem with uniform diffusion coefficients for both
cases regular and low regular exact solutions. The second
example comes from [19], where an appropriate choice of
highly heterogeneous coefficients on the interfaces produces
a low regularity solution. In the third example, we solve the
problem utilizing non-matching meshes and study the influ-
ence of the term hi

h j
on the convergence rates.We have chosen

the domain to be a circular sector where the parametrization
mapping, see (3.5), has a singular point. All the numerical
tests have been performed in G+SMO1.

1 Regular solution and solution with an interior point sin-
gularity
We consider the problem in Ω = (−1

2 , 1
2 )

d=3, with
ΓD = ∂Ω and α = 1 uniformly in Ω . The domain Ω is
subdivided in four equal subdomains Ωi , i = 1, . . . , 4,
where for simplicity every Ωi is initially partitioned
into a mesh T (i)

hi ,Ωi
with h := hi = h j , i 
= j, i, j =

1, . . . , 4. Successive uniform refinements are performed
on every T (i)

hi ,Ωi
in order to compute numerically the con-

vergence rates. In the first test, the data uD and f in
(2.1) are determined so that the exact solution is given
by u(x) = sin(2.5πx) sin(2.5πy) sin(2.5π z) (smooth
test case). The first two columns of Table 1 display the
convergence rates. As it was expected, the convergence
rates are optimal. In the second case, the exact solution
is u(x) = |x |λ. The parameter λ is chosen such that
u ∈ Wl,p=1.4(Ω). In the last columns of Table 1, we dis-
play the convergence rates for degree k = 2, k = 3 and
l = 2, l = 3. We observe that, for each of the two tests,
the error in the dG-norm behaves according to the main
error estimate given by (5.27).

1 G+SMO: http://www.gs.jku.at/gs-gismo.shtml
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Table 1 Regular/interior point singularity test: the numerical conver-
gence rates

h/2s Highly smooth k = 2 k = 3

k = 2 k = 3 l = 2 l = 3 l = 2 l = 3

− Convergence rates

s = 0 – – – – – –

s = 1 0.15 2.91 0.62 0.76 0.24 1.64

s = 2 2.34 2.42 0.29 1.10 0.28 0.89

s = 3 2.08 3.14 0.35 1.32 0.47 1.25

s = 4 2.02 3.04 0.35 1.36 0.36 1.37

a13

a

a

a13
24

24

ΩΩ

Ω
Ω

12

3
4

Fig. 2 Kellog’s test: Ωi , i = 1, . . . , 4

2 Kellogg’s test problem, highly heterogeneous diffusion
coefficients
The solutions of problem (2.1) with rough diffusion coef-
ficients may not be very smooth. We examine such a
case by solving the so-called Kellogg test problem [19].
We consider the computational domain Ω = (−1, 1)2,
which is subdivided into four subdomains Ωi , i =
1, . . . , 4, see Fig. 2. We choose a piecewise constant dif-
fusion coefficient α in (2.1), having the same value, say
α := α13, in Ω1 and Ω3, similarly, α := α24 in the Ω2

and Ω4, see Fig. 2. The exact solution of the problem for
f = 0 is given in polar coordinates by u(r, θ) = rλϕ(θ),
where

ϕ(θ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cos((π/2−σ)λ) cos((θ − π/2+ρ)λ), if 0 ≤ θ <π/2,

cos(ρλ) cos((θ − π + σ)λ), if π/2 ≤ θ <π,

cos(σλ) cos((θ − π − ρ)λ), if π ≤ θ <3π/2,

cos((π/2−ρ)λ) cos((θ−3π/2−σ)λ), if 3π/2 ≤ θ ≤2π,

and the numbers λ, ρ, σ satisfy the nonlinear relations

Table 2 Kellog’s test: the convergence rates

h/2s k = 2, λ = 0.3
Rates

s = 0 –

s = 1 0.318

s = 2 0.312

s = 3 0.308

s = 4 0.305

s = 5 0.303

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− tan((π/2 − σ)λ) cot(ρλ) = R,

− tan(ρλ) cot(σλ) = 1/R,

− tan(σλ) cot((π/2 − ρ)λ) = R,

0 < λ < 2,

max{0, πλ − π} < 2λρ < min{πλ, π},
max{0, π − πλ} < −2λσ < min{π, 2π − λπ},

(6.1)

where R := α13/α24. The above system of equa-
tions admits several solutions. For this example, we set
λ = 0.3, and ρ = π/4. A Newton iteration recov-
ers one solution for the rest of the parameters, namely
σ = −4.4505895927 and R = 17.34972217. Note that
in this case u ∈ W 1.3,2(Ω). We solved the problem using
B-spline spaces with degree k = 2. In Table 2, we display
the convergence rates of the error. We can see that, the
experimental convergence rates approach the value 0.3,
which is in agreement with the regularity of the solution
and (5.27).

3 Circular sector domain, non-matching meshes
Consider the problem on a circular sector domain
described in polar coordinates as Ω = {(r, φ) : 0 ≤
r ≤ 3, 0 ≤ φ ≤ π

2 }. The diffusion coefficient is set to
be uniformly α = 1 in Ω , the function f and the bound-
ary condition uD in (2.1) are determined to have exact
solution u(x, y) = sin(2πx) sin(2πy). The domain Ω

is divided into two subdomains Ω1 (circular sector) and
Ω2 (annulus) and non-matching meshes are considered,
as it is presented in Fig. 3. We performed three numerical
tests, where the mesh size h1 of the circular sector and
the mesh size h2 of the annulus are such that

h1
h2

= κ with
κ = 2, 4 and 8 correspondingly. The results for the three
test cases are displayed in Table 3. The second, fourth
and sixth column include the error ‖uh − u‖dG(Ω) val-
ues. The third, the fifth and the seventh column include
the convergence rates of the error for the different ratio
κ . We observe that the convergence rates for all cases of
the non-matching meshes, tend to get the optimal value
with respect to the B-spline degree k = 2, (see also esti-
mate (4.27c)). Thus, for this problem the different grid
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Fig. 3 Circular sector: the two subdomains

Table 3 Circular sector: the ‖u−uh‖dG(Ω) values and the convergence
rates for h1/h2 = κ

h/2s k = 2, h1/h2 = 2 k = 2, h1/h2 = 4 k = 2, h1/h2 = 8

‖uh − u‖dG rates ‖uh − u‖dG rates ‖uh − u‖dG rates

s = 1 1.65054 – 1.72928 – 1.73149 –

s = 2 0.446972 1.88 0.371505 2.21 0.355404 2.28

s = 3 0.0313984 3.83 0.0301854 3.62 0.0298388 3.57

s = 4 0.00660832 2.24 0.00656384 2.20 0.00655856 2.18

s = 5 0.00161788 2.03 0.00161349 2.02 0.00161317 2.02

s = 6 0.000403005 2.00 0.000402154 2.00 0.000402099 2.00

sizes of the subdomains do not influence the behavior of
the convergence rate. We point out that for the present
example the point (0, 0) is a singular point and the Jaco-
bian determinant is vanished. As we have seen in the
results in Table 3, this singularity of the mapping did not
affect the convergence rates. However, if we continue
the refinement steps reaching the limits of our code, we
would have numerical problems. This occurs, because
in that case, the quadrature points would be located too
close to the singularity of the mapping, and thus we
might be lead to division by (almost) zero while perform-
ing the numerical integration. We mention that, similar
type problems, where the parametrizationmappings have
singular points, have been solved and discussed more
thoroughly by the authors in [23].

7 Conclusions

In this paper, we presented theoretical error estimates of
the dG-IgA method applied to a model elliptic problem
with discontinuous coefficients. The problemwas discretized

according to IgA methodology using discontinuous B-spline
spaces. Due to global discontinuity of the approximate
solution on the subdomain interfaces, dG discretizations
techniques were utilized. In the first part, we assumed higher
regularity for the exact solution, that is u ∈ Wl≥2,2, and we
showed optimal error estimates with respect to ‖.‖dG . In the
second part, we assumed low regularity for the exact solu-
tion, that is u ∈ Wl,p for l ≥ 2 and p ∈ ( 2d

d+2(l−1) , 2),
applying the Sobolev embedding theorem we proved opti-
mal convergence rates with respect to ‖.‖dG . The theoretical
error estimates were validated by numerical tests. The results
can obviously be carried over to diffusion problems on open
and closed surfaces as studied in [24], and to more general
second-order boundary value problems like linear elasticity
problems as studied in [2].
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