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Abstract Amultigrid method for linear systems stemming
from theGalerkinB-spline discretization of classical second-
order elliptic problems is considered. The spectral features
of the involved stiffness matrices, as the fineness parameter
h tends to zero, have been deeply studied in previous works,
with particular attention to the dependencies of the spectrum
on the degree p of the B-splines used in the discretization
process. Here, by exploiting this information in connection
with τ -matrices, we describe a multigrid strategy and we
prove that the corresponding two-grid iterations have a con-
vergence rate independent of h for p = 1, 2, 3. For larger p,
the proof may be obtained through algebraic manipulations.
Unfortunately, as confirmed by the numerical experiments,
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the dependence on p is bad and hence other techniques have
to be considered for large p.
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1 Introduction

In this paper we consider the differential problem

{−Δu + γ u = f, in Ω,

u = 0, on ∂Ω,
(1)

with Ω := (0, 1)d , f ∈ L2(Ω), γ ≥ 0. We are interested
in designing a multigrid strategy for the fast numerical solu-
tion of large linear systems stemming from the discretization
of (1) by the Galerkin B-spline isogeometric analysis (IgA)
technique; see [7,18].

In [16] we studied in detail the spectral properties of
the resulting stiffness matrices based on uniform tensor-
product B-splines. Not only the spectral localization and the
conditioning were investigated, but also the global spectral
behavior. This spectral behavior can be described in theWeyl
sense (see [24] and the literature therein) in terms of a d-
variate trigonometric polynomial f p, the so-called (spectral)
symbol; here, p := (p1, . . . , pd) and pi is the spline degree
in the i-th direction, i = 1, . . . , d. It turns out that the symbol
f p is equivalent to the classical symbol

zd(θ) = zd(θ1, . . . , θd) :=
d∑
j=1

(2 − 2 cos θ j ), (2)
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which is obtained when approximating (1) by standard uni-
form centered second-order Finite Differences (FD) or by
piecewise linear Finite Elements (FE) on uniform triangula-
tions. In other words, there exist positive constants c p,C p

such that

c pzd(θ) ≤ f p(θ) ≤ C pzd(θ), ∀θ ∈ [0, π ]d . (3)

From (3) we expect that the conditioning of the Galerkin
B-spline IgA stiffness matrices grows like m2/d , where m is
the matrix size, d is the dimensionality of the elliptic prob-
lem, and 2 is the order of the elliptic operator in (1). The
approximation parameters p play a limited role, and charac-
terize the constant in the expression O(m2/d). We refer the
reader to [15, Theorem 4.6] for a rigorous proof of the above
statements.1

Moreover, in view of the equivalence (3) and given the
τ -like (resp., Toeplitz-like) structure of the considered stiff-
ness matrices, we expect that a standard multigrid procedure
designed for τ (resp., Toeplitz) linear systems with symbol
zd has to be optimal also in our context. The optimality was
predicted and validated through numerical experiments in
[9], but a formal proof was not yet given in the literature. In
this paper, we formally prove the optimality for the two-grid
method and certain values of p, and hence also for the W-
cycle and k-grid method (with k independent of the matrix
size).

In order to design our optimal multigrid solver, we heavily
rely on the spectral and structural information of the coef-
ficient matrices analyzed in detail in [16]. More precisely,
the stiffness matrices arising from the Galerkin B-spline IgA
discretization of problem (1) are:

– banded in a d-level sense with partial bandwidths pro-
portional to p j , j = 1, . . . , d;

– a small perturbation of a d-level τ -matrix (or Toeplitz
matrix) generated by f p, and are spectrally distributed
like the symbol f p in the Weyl sense.

The first item implies that optimal methods should have a
total cost which is linear with respect to the matrix size
and with a constant proportional to ‖ p‖∞. The second item
suggests to look for optimal methods in the wide litera-
ture of multilevel τ (or Toeplitz) solvers [19]. In this paper,
inspired by [12,22], we follow a sort of ‘canonical proce-
dure’ for creating—on the basis of the symbol—a two-grid
method from which we expect optimal convergence proper-
ties. The design of the method is based on analogous optimal

1 Take into account that these statements hold when the discretization
steps hi = 1/ni in each direction xi tend to 0 with the same speed. This
happens, for instance, when ni = νi n, ν := (ν1, . . . , νd ) is fixed and
n → ∞.

techniques for τ and Toeplitz matrices with symbol f p or,
equivalently, with symbol zd , because of the relation (3).
The optimality of the method was already predicted in [9]
on the basis of heuristic arguments, but no rigorous proof
was given. Here, we provide the formal proof, at least for
p j ≤ 3, j = 1, . . . , d. When proving the optimality result,
we arrive at a matrix inequality, see (26), which is useful not
only in a multigrid setting, but also in a preconditioning con-
text for designing optimal preconditioners for Krylov-type
techniques, in particular for the Conjugate Gradient (CG)
method; see Remark 6.

It is worth mentioning that our proof of optimality is
based on standard tools from algebraic multigrid analysis
[20], applied within the framework of the theory of τ and
Toeplitz matrices [22]. Our choice to consider the formalism
of multigrid methods for τ and Toeplitz matrices instead of
the classical Local Fourier Analysis (LFA) is motivated by
the possibility to apply directly the results in [16]. Neverthe-
less, as proved in [8], the convergence analysis based on the
symbol of τ and Toeplitz matrices arising in the discretiza-
tion of differential problems is equivalent to the LFA. The
reader who is familiar with the LFA can follow the proof just
being aware of two facts:

– the symbol is not scaled by the discretization step;
– the information on the order of the differential problem
survives in the order of the zero of the symbol.

We refer to [8] for further details.
Unfortunately, it turns out that the equivalence constant

c p in (3) tends to 0 when p j → ∞ for some j , i.e., when
‖ p‖∞ → ∞. Even worse, two further facts occur [9,11]:

– the convergence to 0 is exponential with respect to each
p j , j = 1, . . . , d;

– the values of θ for which f p(θ) tends to 0 exponentially
are localized at the frontier of [0, π ]d , where at least one
variable θ j equals π .

As a consequence, despite the m-independence of the two-
grid convergence rate (recalling that m is the matrix size),
the method is unsatisfactory when p has large entries: we
have theoretical optimality, but the spectral radius of the
two-grid iteration matrix is close to 1. For instance, in the
1D case the spectral radius of the two-grid iteration matrix
tends to 1 exponentially as p increases and a similar phenom-
enon is observed for any dimensionality d. This unpleasant
behavior is due to the analytical properties of the symbol
f p and is essentially related to the existence of a subspace
of high frequencies associated with very small eigenvalues.
This explains the numerical results in [9,14]. In particular, the
considered two-grid and the associated V/W-cycle methods
converge very fast in low frequencies, but they are slow, for
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large p, in high frequencies. This fact is nontrivial, but it can
be understood in terms of the theory of multilevel τ -matrices
(or Toeplitz matrices) and is related to specific analytic fea-
tures of the symbol. We refer the reader to [11] for a deeper
theoretical insight in these statements.

The above intrinsic difficulty can be addressed by fol-
lowing the multi-iterative idea from [21]. Indeed, the m-
independent two-grid/multigrid method was successfully
combined in [9,11] with a p-independent smoother of
preconditioned Krylov type (namely a PCG), where the pre-
conditioner was suggested by the symbol. This results in a
multi-iterative multigrid solver with m- and p-independent
convergence rate. A very similar multi-iterative multigrid
solver was also constructed for IgA collocation methods in
[10].

The remainder of this paper is organized as follows. In
Sect. 2 we detail the considered model problem; we define
d-level τ -matrices; and we describe the two-grid method
for such kind of matrices. In Sect. 3 we recall the spectral
properties obtained in [16] for the matrices arising from the
discretization of (1) by IgA based on uniform B-splines. In
Sect. 4 the optimality of the two-grid applied to our problem
is proved for p = 1, 2, 3 in 1D and for 1 ≤ p1, p2 ≤ 3 in 2D.
The proof can be trivially extended to any dimensionality for
1 ≤ p1, . . . , pd ≤ 3. In Sect. 5 we provide some numerical
examples to support our theoretical analysis. Sect. 6 con-
cludes the work.

2 Preliminaries

We start with a brief description of the Galerkin method
applied to (1) in the IgA context. Then, we introduce some
auxiliary structures, namely d-level τ -matrices, which are
used for designingmultigrid algorithms and for studying their
convergence features.

2.1 The d-dimensional problem setting

IgAwas introduced in [18] aiming to reduce the gap between
FiniteElementAnalysis andComputer-AidedDesign (CAD).
The main idea in IgA is to use directly the geometry pro-
vided by CAD systems—which is usually expressed in terms
of tensor-product B-splines or their rational version, the
so-called NURBS—and to approximate the unknown solu-
tions of differential equations by the same type of functions.
Thanks to the well-known properties of the B-spline basis
(see, e.g., [6]), this approach offers some interesting advan-
tages from the geometric, the analytic, and the computational
point of view; see [7,18] and references therein.

Let us now consider our model problem (1). The corre-
sponding weak form reads as follows: find u ∈ H1

0 (Ω) such
that

a(u, v) = F(v), ∀v ∈ H1
0 (Ω), (4)

where a(u, v) := ∫
Ω

(∇u · ∇v + γ uv) and F(v) := ∫
Ω
fv.

It is well-known that there exists a unique solution u of (4),
the so-called weak solution of (1).

In the Galerkinmethod, we look for an approximation uW
of u by choosing a finite dimensional approximation space
W ⊂ H1

0 (Ω) and by solving the following problem: find
uW ∈ W such that

a(uW , v) = F(v), ∀v ∈ W. (5)

Let dimW = N , and fix a basis {ϕ1, . . . , ϕN } for W . It is
known that problem (5) always has a unique solution uW ,
which can be written as uW = ∑N

j=1 u jϕ j and can be com-

puted as follows: find u := (u1, . . . , uN )T ∈ R
N such that

Au = b, (6)

where A := [
a(ϕ j , ϕi )

]N
i, j=1 ∈ R

N×N is the stiffness matrix

and b := [F(ϕi )]Ni=1 ∈ R
N .

In classical FE methods the approximation space W is
usually a space of C0 piecewise polynomials vanishing on
∂Ω , whereas in the IgA frameworkW is a spline space with
higher continuity; see [7,18]. In this paper we only consider
the IgA setting without any geometry map.

2.2 d-Level τ -matrices

For every m ∈ N we denote by Qm the symmetric unitary
discrete sine transform,

Qm :=
√

2

m + 1

[
sin

(
ijπ

m + 1

)]m
i, j=1

,

and for every multi-index m := (m1, . . . ,md) ∈ N
d we set

Qm := Qm1 ⊗ · · · ⊗ Qmd .

Definition 1 Given a d-variate function g : [0, π ]d → R

and a multi-index m ∈ N
d , the d-level τ -matrix τm(g) of

partial orders m1, . . . ,md (and order m1 · · ·md ) associated
with g is defined as

τm(g) := Qm·
diag

j1=1,...,m1

[
. . .

[
diag

jd=1,...,md

g

(
j1π

m1+1
, . . . ,

jdπ

md+1

)]
. . .

]
Qm.

The function g is called the generating function of the τ -
family {τm(g)}m∈Nd .

We denote by Cc(R) the set of all continuous functions
on R with compact support. Given g : [0, π ]d → R in
C([0, π ]d), one can check that, ∀F ∈ Cc(R),
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lim
m→∞

1

m1 . . .md

m1···md∑
j=1

F(λ j (τm(g)))

= 1

πd

∫
[0,π ]d

F(g(θ1, . . . , θd)) dθ1 . . . dθd , (7)

where, for a multi-index m ∈ N
d , m → ∞ means that

min(m1, . . . ,md) → ∞. Due to the limit relation (7), the
function g is called the symbol of the τ -family {τm(g)}m∈Nd .

Note that, for every m ∈ N
d , if g is a linear d-variate

cosine trigonometric polynomial then the d-level τ -matrix
τm(g) coincides with the d-level Toeplitz matrix Tm(g) asso-
ciated with g (see [9, Definition 3.2] for its definition).

2.3 Multigrid methods

Given a linear system of dimension m,

Amu = b, (8)

we assume to have a convergent stationary iterative method

u(k+1) = Smu(k) + (I − Sm)A−1
m b,

called smoother, for the solution of (8), and a full-rankmatrix
Pm ∈ R

l×m with l ≤ m, called projector or grid-transfer
operator.Moreover,wedefine the coarsematrix as Pm Am PT

m ,
following the Galerkin approach. Then, given an approxi-
mation u(k) to the solution u = A−1

m b, the corresponding
Two-Grid Method (TGM) for solving (8) computes a new
approximation u(k+1) by applying a coarse-grid correction
and a smoothing iteration as follows:

Algorithm 1 [TGM]

1. compute the residual: r ← b − Amu(k);
2. project the residual: r ← Pmr;
3. compute the correction: e ← (

Pm Am PT
m

)−1
r;

4. extend the coarse error: e ← PT
m e;

5. correct the given approximation: u(k+1) ← u(k) + e;
6. relax one time: u(k+1) ← Smu(k+1) + (I − Sm)A−1

m b.

The iteration matrix of this two-grid scheme is

TG(Sm, Pm) := Sm

(
I − PT

m

(
Pm Am PT

m

)−1
Pm Am

)
.

Note that Algorithm 1 only considers a single post-
smoothing iteration in order to stay in the framework of [20],
so as to simplify the presentation of the theoretical analy-
sis, but it is clear that one can add a convergent pre-smoother
and/ormore smoothing iterations to improve the convergence
rate of the TGM.

In practice, the coarser linear system of the TGM could
be too large to be solved directly. Hence, the third step in
Algorithm 1 is usually replaced by one recursive call, obtain-
ing a multigrid V-cycle algorithm, or by two recursive calls,
obtaining a multigrid W-cycle algorithm.

The optimality proofs for the two-gridmethods, presented
in this paper, heavily rely on a classical result for the two-grid
convergence rate, stated in Theorem 2. For its proof, we refer
the reader to [20, Theorem 5.2] and [2, Remark 2.2]. Given
a Symmetric Positive Definite (SPD) matrix X ∈ R

m×m , we
denote by ‖ · ‖X both the vector-norm and the matrix-norm
induced by X , i.e.,

‖x‖X := ‖X1/2x‖2, x ∈ R
m,

‖Y‖X := ‖X1/2Y X−1/2‖2, Y ∈ R
m×m,

where ‖ · ‖2 stands for both the classical 2-norm (the Euclid-
ean norm) and its induced matrix-norm.

Theorem 2 ([20])Let Am ∈ R
m×m beSPD, let Sm ∈ R

m×m,
and let Pm ∈ R

l×m be full-rank (l ≤ m). Assume

(a) ∃ am > 0 : ‖Smx‖2Am
≤ ‖x‖2Am

− am‖x‖2
A2
m
,

(b) ∃ bm > 0 : miny∈Rl ‖x − PT
m y‖22 ≤ bm‖x‖2Am

,

for all x ∈ R
m. Then bm ≥ am and

ρ (TG(Sm, Pm)) ≤ ‖TG(Sm, Pm)‖Am ≤
√
1 − am

bm
.

The first condition (a) in Theorem 2 is referred to as the
smoothing condition, whereas the second condition (b) as
the approximation condition. In the following, we discuss
the values of the constants am and bm for specific smoothers
andprojectors. For the smoothers, the discussionwill be com-
pletely general, independent of thematrix Am (seeLemma1),
while for the projectors wewill restrict our attention tomatri-
ces Am = Am (of sizem = m1 · · ·md ) that ‘majorize’, in the
sense of (13), the τ -matrix τm(zd) generated by the trigono-
metric polynomial (2).

When using the Richardson iteration, the smoothing con-
dition can be easily satisfied and the next lemma can be
proved in the same way as [20, Theorem 4.4] (with D = I
and Q = I/ω).

Lemma 1 Let Am ∈ R
m×m be SPD, let Sm := I − ωAm

(ω ∈ R), and let μm ≥ ρ(Am). If 0 < ω < 2/μm, then
the smoothing condition (a) in Theorem 2 holds with am :=
ω(2 − ωμm) > 0 and moreover ρ(Sm) < 1.

2.4 Multigrid methods for τ -matrices

The definition of multigrid methods for τ -matrices requires
a proper choice of the grid-transfer operators, in order to
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guarantee fast convergence speed and to preserve the same
structure of the matrices at the coarser levels [1,2,12,13].

We now define our grid-transfer operator (or projector)
Pm for multi-indices m ∈ N

d satisfying certain additional
constraints. For any odd m ≥ 3, let us denote by Um the
cutting matrix of size m−1

2 × m given by

Um :=

⎡
⎢⎢⎢⎣
0 1 0

0 1 0
. . .

...

0 1 0

⎤
⎥⎥⎥⎦ ∈ R

m−1
2 ×m .

For anym ∈ N
d with oddm1, . . . ,md ≥ 3, we defineUm :=

Um1 ⊗ · · · ⊗Umd . Then, we set

Pm := Um τm(qd), (9)

with

qd(θ1, . . . , θd) :=
d∏
j=1

(1 + cos θ j ).

By the properties of τ -matrices and Kronecker tensor-
products, we have

Pm =
d⊗
j=1

Um j τm j (1 + cos θ j ),

and

Pm =
d⊗
j=1

1

2

⎡
⎢⎢⎢⎣
1 2 1

1 2 1
. . .

1 2 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
m j

.

The matrix Pm has full rank M := ∏d
j=1

m j−1
2 and is the

standard restriction operator or the so-called full-weighting
projector. Its transpose PT

m is the traditional linear interpola-
tion operator.

Let zd be defined as in (2). Note that zd is a linear non-
negative d-variate cosine trigonometric polynomial with a
unique zero at (0, . . . , 0) over [0, π ]d . The next lemma
(Lemma 2) addresses the approximation condition in The-
orem 2 when Am = Am is the d-level τ -matrix τm(zd) (of
size m = m1 · · ·md ) and Pm = Pm is the projector in (9).
The lemma is a direct consequence of [22, Lemma8.2] thanks
to the following two properties of qd and zd : given the set of
mirror points of θ := (θ1, . . . , θd) as defined in [22, p. 454],
namely

M(θ) :=
{̂
θ := (θ̂1, . . . , θ̂d) ∈ [0, π ]d :

θ̂i ∈ {θi , π − θi }, ∀i = 1, . . . , d

}
\ {θ},

we have 2

∑
θ̂∈M(θ)∪{θ}

q2d (̂θ) > 0, ∀θ ∈ [0, π ]d , (10)

lim sup
θ→0

max
θ̂∈M(θ)

q2d (̂θ)

zd(θ)
< ∞. (11)

Lemma 2 ([22]) For m ∈ N
d with odd m1, . . . ,md ≥ 3,

let Am = τm(zd) and let Pm be the full-rank projector given
by (9). Then, the matrix Am is SPD and the approximation
condition (b) in Theorem 2 holds with a constant depending
only on d, i.e.,

∃ b̃d > 0 : min
y∈RM

‖x − PT
my‖22 ≤ b̃d‖x‖2Am

, (12)

for all x ∈ R
m1···md . Moreover, if d = 1 then (12) holds with

b̃1 = 1/2.

The specific value b̃1 has been found by looking carefully at
the proof of [22, Lemma 3.2].

From Lemma 2 we deduce the result in Lemma 3. Given
X,Y ∈ C

m×m , we write X ≤ Y if and only if X,Y are both
Hermitian and Y − X is nonnegative definite.

Lemma 3 For m ∈ N
d with odd m1, . . . ,md ≥ 3, let Am ∈

R
(m1···md )×(m1···md ) be SPD and let Pm be given by (9). Let

δm > 0 such that

Am ≥ δm τm(zd). (13)

Then, the approximation condition (b) in Theorem 2 holds,
i.e.,

∃ bm,d := b̃d
δm

> 0 : min
y∈RM

‖x − PT
my‖22 ≤ bm,d‖x‖2Am

,

for all x ∈ R
m1···md , where b̃d is defined in Lemma 2.

Proof We use the same monotonicity argument as in [22,
proof of Lemmas 4.2 and 9.2]. Assuming (13), we have

‖x‖2τm(zd ) = xT τm(zd)x ≤ 1

δm
xT Amx = 1

δm
‖x‖2Am

,

2 The first property holds because qd is nonnegative and, by a direct
computation,
∑

θ̂∈M(θ)∪{θ} qd (̂θ) = 2d > 0, ∀θ ∈ [0, π ]d .
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for all x ∈ R
m1···md . By Lemma 2 we get

min
y∈RM

‖x − PT
my‖22 ≤ b̃d‖x‖2τm(zd ) ≤ b̃d

δm
‖x‖2Am

,

for all x ∈ R
m1···md , which completes the proof. ��

The next corollary follows immediately from Theorem 2
in combination with Lemmas 1 and 3.

Corollary 1 Let I be a set of multi-indices such that I ⊆
{m ∈ N

d : m1, . . . ,md ≥ 3 odd}. ∀m ∈ I, let Am ∈
R

(m1···md )×(m1···md ) be SPD, let Sm := I − ωAm and let
Pm := Um τm(qd). Assume that μ := supm∈I ρ(Am) < ∞
and that the inequality (13) holds with δ := infm∈I δm > 0,
and take 0 < ω < 2/μ. Then,

ρ(TG(Sm, Pm)) ≤
√
1 − a δ

b̃d
, ∀m ∈ I,

where a := ω(2 − ωμ) and b̃d is defined in Lemma 2.

In the case where Am = τm(zd) and the projector Pm
is taken as in (9), the coarser matrix PmAmPT

m is again a
τ -matrix generated by zd up to a multiplicative constant.
More generally, in a multigrid perspective, if we fix multi-
indices m0 := m > m1 > m2 > · · · > ml > 0, where the
inequalities are componentwise; if we take at each multigrid
level i = 0, . . . , l − 1 the projector Pmi , as given by (9) for
m = mi ; and if we define the coefficient matrix at level i +1
as Ami+1 := Pmi Ami P

T
mi

for i = 0, . . . , l − 1; then, from
the results in [22] or by direct computation, we have Ami =
τmi (ri zd) for all i = 0, . . . , l, where ri is a positive constant.
This observation shows that the τ structure is preserved on
the coarser levels, which is fundamental for the construction
of multigrid algorithms with more than one recursion level.

In this regard, we remark that the conditions (10)–(11)
are not sufficient to obtain the V-cycle optimality; see [2].
Nevertheless, taking into account the properties of qd and zd ,
we see that condition (11) can be replaced by the following
stronger version:

lim sup
θ→0

max
θ̂∈M(θ)

qd (̂θ)

zd(θ)
< ∞. (14)

According to the analysis in [1], conditions (10) and (14)
lead to the V-cycle optimality, when the V-cycle algorithm
is applied to the τ -matrix Am = τm(zd). Unfortunately,
Lemma 3 does not suffice to extend the optimality proof
provided in [1,2] for τ -matrices (and matrix algebras in gen-
eral) to more general matrix structures like our matrices in
the IgA context. Such a proof will be a (difficult) task to be
addressed in future work.

3 Galerkin discretization using B-splines

We now detail the Galerkin discretization based on uniform
B-splines of our model problem (1), and we devote special
attention to the symbol which describes the spectral behavior
of the discretization matrices.

3.1 The 1D setting

In this section we focus on our model problem for d = 1:

{−u′′ + γ u = f, in (0, 1),
u(0) = 0, u(1) = 0,

(15)

with f ∈ L2(0, 1) and γ ≥ 0. We approximate the (weak)
solution u of (15) in the spaceW of polynomial splines with
maximal smoothness represented in the B-spline basis. More
precisely, for p ≥ 1 and n ≥ 2, let

V [p]
n :=

{
s ∈ C p−1([0, 1]) : s∣∣∣[ i

n , i+1
n

) ∈ Pp, 0 ≤ i < n
}
,

W [p]
n :=

{
s ∈ V [p]

n : s(0) = s(1) = 0
}

⊂ H1
0 (0, 1).

It is known that dim V [p]
n = n+ p and dimW [p]

n = n+ p−2.
In the Galerkin method (5) we chooseW = W [p]

n , for some
p ≥ 1 and n ≥ 2, and forW [p]

n we choose the B-spline basis
{N2,[p], . . . , Nn+p−1,[p]}, which is defined as follows (see
[6] or [16]).

Definition 2 Consider the knot sequence

t1 = · · · = tp+1 = 0 < tp+2 < · · ·
· · · < tp+n < 1 = tp+n+1 = · · · = t2p+n+1, (16)

with tp+i+1 := i/n, i = 0, . . . , n. The B-splines Ni,[p] :
[0, 1] → R, i = 1, . . . , n + p, are defined recursively over
the knot sequence (16) as follows: for 1 ≤ i ≤ n + 2p,

Ni,[0](x) :=
{
1, if x ∈ [ti , ti+1),
0, elsewhere,

and, for 1 ≤ k ≤ p, 1 ≤ i ≤ n + 2p − k,

Ni,[k](x)

:= x − ti
ti+k − ti

Ni,[k−1](x) + ti+k+1 − x

ti+k+1 − ti+1
Ni+1,[k−1](x),

where we assume that a fraction with zero denominator is
zero.

With these choices of the approximation space W [p]
n and

of the basis functions {N2,[p], . . . , Nn+p−1,[p]}, we obtain in
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(6) the (n + p − 2) × (n + p − 2) stiffness matrix A = A[p]
n

given by

A[p]
n = [

a(N j,[p], Ni,[p])
]n+p−1
i, j=2 = nK [p]

n + γ

n
M [p]

n , (17)

where

nK [p]
n :=

[∫
(0,1)

N ′
j,[p]N ′

i,[p]
]n+p−1

i, j=2

, (18)

1

n
M [p]

n :=
[∫

(0,1)
N j,[p]Ni,[p]

]n+p−1

i, j=2

. (19)

The above matrices have the following properties.

Lemma 4 [16] For every p ≥ 1 and n ≥ 2,

– K [p]
n is SPD and ‖K [p]

n ‖∞ ≤ 4p;
– M [p]

n is SPD, ‖M [p]
n ‖∞ ≤ 1 and ∃C [p] > 0, depending

only on p, such that λmin(M
[p]
n ) > C [p].

We now recall the spectral properties of the sequence
{ 1n A[p]

n }n obtained in [16]. For p ≥ 0, let φ[p] be the car-
dinal B-spline of degree p over the uniform knot sequence
{0, 1, . . . , p + 1}, which is defined recursively as follows:

φ[0](t) :=
{
1, if t ∈ [0, 1),
0, elsewhere,

and

φ[p](t) := t

p
φ[p−1](t) + p + 1 − t

p
φ[p−1](t − 1), p ≥ 1.

We point out that the ‘central’ basis functions Ni,[p](x), i =
p + 1, . . . , n, are uniformly shifted and scaled versions of
the cardinal B-spline φ[p], because we have

Ni,[p](x) = φ[p](nx − i + p + 1), i = p + 1, . . . , n.

Let us denote by φ̈[p](t) the second derivative of φ[p](t)with
respect to its argument t (for p ≥ 3). For p ≥ 0, let h p :
[−π, π ] → R,

h p(θ) := φ[2p+1](p + 1) + 2
p∑

k=1

φ[2p+1](p + 1 − k) cos(kθ).

(20)

In particular, we have h0(θ) = 1. For p ≥ 1, let f p :
[−π, π ] → R,

f p(θ) := −φ̈[2p+1](p + 1) − 2
p∑

k=1

φ̈[2p+1](p + 1 − k) cos(kθ).

(21)

Let m[p]
n := n + p − 2 and fix p ≥ 1. It has been proved in

[16, Theorem 12] that, ∀F ∈ Cc(R),

lim
n→∞

1

m[p]
n

m[p]
n∑

j=1

F

(
λ j

(
1

n
A[p]
n

))
= 1

2π

∫ π

−π

F( f p(θ)) dθ.

(22)

Due to this limit relation, f p is called the symbol of the

sequence of matrices { 1n A[p]
n }n . Note that f p is symmetric on

[−π, π ], so it is also the symbol of {τn+p−2( f p)}n , meaning

that (22) holds with τn+p−2( f p) instead of 1
n A

[p]
n .

Remark 1 The symbol f p is independent of γ . Moreover,
when modifying our problem (15) by adding an advection
term βu′, the resulting symbol is again f p, independent of
β and γ ; see [16]. The independence of f p from the advec-
tion/reaction terms is not a surprise, as it is known in the
literature (see, e.g., [17,23,24]) that the symbol has a canon-
ical structure inwhich only the coefficient of the higher-order
operator is present (in our specific case, the higher-order
operator is the Laplacian). If |β| is very large, however, the
fineness parameter n has to be chosen extremely large in
order to dampen the effects of the advection term. In such
cases, the theoretical spectral distribution (22) is reasonably
attained only for very large n. This implies that, for small
values of n, the advection term affects significantly the spec-
trum of 1

n A
[p]
n (and also the performance of multigrid solvers

like the one presented in this paper).

Lemma 5 ([16]) For all p ≥ 1 and θ ∈ [−π, π ],

f p(θ) = z1(θ)h p−1(θ),

with z1(θ) = 2− 2 cos θ as defined by (2) for d = 1, and h p

as defined by (20). Moreover,

(
4

π2

)p

≤ h p−1(θ) ≤ h p−1(0) = 1,

and f p has a unique zero of order two at θ = 0 (like the
function z1).

The properties in Lemma 5 have been proved in [16,
Lemma 7 and Remark 2] for p ≥ 2, but they can be easily
checked for p = 1 by direct computation. Lemma 5 imme-
diately provides two constants cp and Cp for the inequalities
(3) in the case d = 1. Figure 1 shows the graph of f p nor-
malized by its maximum M fp for p = 1, . . . , 5.

We conclude this section by pointing out that h p is the

symbol of the sequence of matrices {M [p]
n }n : ∀F ∈ Cc(C),

lim
n→∞

1

m[p]
n

m[p]
n∑

j=1

F(λ j (M
[p]
n )) = 1

2π

∫ π

−π

F(h p(θ)) dθ.

123



126 M. Donatelli et al.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

p=1 p=2 p=3 p=4 p=5

Fig. 1 Graph of f p/M fp for p = 1, . . . , 5

We omit the formal proof of this result; it can be proved using
the same arguments as [16, Theorem 12].

3.2 The 2D setting

In this section we focus on our model problem (1) in the case
d = 2, and we follow the same scheme as the 1D setting.
Given any two functions f, g : [a, b] → R, we denote by
f ⊗ g the tensor-product function

f ⊗ g : [a, b]2 → R, ( f ⊗ g)(x, y) := f (x)g(y).

We approximate the weak solution u of (1) by means of
tensor-product B-splines. More precisely, we choose W =
W [p1,p2]

n1,n2 , for some p1, p2 ≥ 1, n1, n2 ≥ 2, where

W[p1,p2]
n1,n2 := 〈

N j1,[p1] ⊗ N j2,[p2] :
j1 = 2, . . . , n1 + p1 − 1, j2 = 2, . . . , n2 + p2 − 1

〉
,

and N j,[p], j = 2, . . . , n + p − 1, are the basis func-
tions considered in Sect. 3.1 (see Definition 2). We order
the tensor-product B-spline basis {N j1,[p1] ⊗ N j2,[p2] : j1 =
2, . . . , n1+ p1−1, j2 = 2, . . . , n2+ p2−1} in the following
way:

[[
N j1,[p1] ⊗ N j2,[p2]

]
j1=2,...,n1+p1−1

]
j2=2,...,n2+p2−1

.

With these choices of the approximation space and of the
basis functions, we obtain in (6) the stiffness matrix A =
A[p1,p2]
n1,n2 given by

A[p1,p2]
n1,n2 := K [p1,p2]

n1,n2 + γ

n1n2
M [p2]

n2 ⊗ M [p1]
n1 , (23)

where

K [p1,p2]
n1,n2 := n1

n2
M [p2]

n2 ⊗ K [p1]
n1 + n2

n1
K [p2]
n2 ⊗ M [p1]

n1 ,

and the matrices K [p]
n , M [p]

n are defined in (18)–(19).

Remark 2 By Lemma 4 and by the fact that X ⊗ Y is SPD
whenever X,Y are SPD, we know that A[p1,p2]

n1,n2 is SPD for
all p1, p2 ≥ 1 and n1, n2 ≥ 2.

We now recall from [16] the spectral properties of the
sequence {A[p1,p2]

ν1n,ν2n}n . For p1, p2 ≥ 1 and ν1, ν2 ∈ Q+ :=
{r ∈ Q : r > 0}, let f (ν1,ν2)

p1,p2 : [−π, π ]2 → R,

f (ν1,ν2)
p1,p2 := ν1

ν2
h p2 ⊗ f p1 + ν2

ν1
f p2 ⊗ h p1 ,

where h p and f p are given in (20)–(21). From now on we
assume that n ∈ N is chosen so that ν1n, ν2n ∈ N. Let us
consider the sequence of matrices {A[p1,p2]

ν1n,ν2n}n . It was proved
in [16, Section 5.2] that, ∀F ∈ Cc(R),

lim
n→∞

1

Nn

Nn∑
j=1

F
(
λ j

(
A[p1,p2]

ν1n,ν2n

))

= 1

(2π)2

∫ π

−π

∫ π

−π

F( f (ν1,ν2)
p1,p2 (θ1, θ2)) dθ1dθ2, (24)

where Nn := (ν1n + p1 − 2)(ν2n + p2 − 2) is the size
of A[p1,p2]

ν1n,ν2n . Due to this limit relation, f (ν1,ν2)
p1,p2 is called

the symbol of the sequence {A[p1,p2]
ν1n,ν2n}n . Since we have

f (ν1,ν2)
p1,p2 (±θ1,±θ2) = f (ν1,ν2)

p1,p2 (θ1, θ2), the relation (24)

continues to hold if A[p1,p2]
ν1n,ν2n were replaced by the two-

level τ -matrix τν2n+p2−2,ν1n+p1−2( f
(ν1,ν2)
p1,p2 ). This means that

f (ν1,ν2)
p1,p2 is also the symbol of the sequence of τ -matrices

{τν2n+p2−2,ν1n+p1−2( f
(ν1,ν2)
p1,p2 )}n .

The symbol f (ν1,ν2)
p1,p2 possesses the following properties,

which are consequences of Lemma 5.

Lemma 6 Let p1, p2 ≥ 1 and ν1, ν2 ∈ Q+. Then, for all
(θ1, θ2) ∈ [−π, π ]2,

f (ν1,ν2)
p1,p2 (θ1, θ2) ≥

(
4

π2

)p1+p2+1

min

(
ν2

ν1
,
ν1

ν2

)
z2(θ1, θ2),

f (ν1,ν2)
p1,p2 (θ1, θ2) ≤ max

(
ν2

ν1
,
ν1

ν2

)
z2(θ1, θ2),

with z2(θ1, θ2) = ∑2
j=1(2 − 2 cos θ j ) as defined by (2) for

d = 2. In particular, f (ν1,ν2)
p1,p2 has a unique zero at (θ1, θ2) =

(0, 0) of order two (like the function z2).

Lemma 6 immediately provides two constants c p and C p for
the inequalities (3) in the case d = 2.
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4 TGM for Galerkin B-spline matrices: proof of
optimality

In this section we prove that the standard TGM with
relaxed Richardson smoother and full-weighting projector
(described in Sects. 2.3 and 2.4) is optimal for linear systems
with coefficient matrix 1

n A
[p]
n (1 ≤ p ≤ 3) in the 1D case

and A[p1,p2]
ν1n,ν2n (1 ≤ p1, p2 ≤ 3) in the 2D case. The results

can be easily extended to higher dimensionalities d > 2, by
replicating the argument used in the 2D case.

4.1 Optimality of the TGM for 1
n A

[ p]
n

Let us start by giving an intuitive motivation based on the
symbol f p why the proposed TGM with relaxed Richardson
smoother and full-weighting projector is expected to be opti-
mal for 1

n A
[p]
n . Because f p is the symbol of both { 1n A[p]

n }n
and {τn+p−2( f p)}n , these sequences of matrices share the
same spectral distribution. The convergence properties of
two-grid/multigridmethods strongly depend on the spectrum
of the matrices to which they are applied. Therefore, it is
reasonable to use for 1

n A
[p]
n the same TGM as proposed in

[22] which was proved to be optimal for τn+p−2( f p), and to

expect that it is optimal also for 1
n A

[p]
n .

Fix p ≥ 1 and consider the sequence of matrices { 1n A[p]
n :

n ∈ Ip}, with Ip ⊆ {n ≥ 2 : n + p − 2 ≥ 3 odd} an
infinite set of indices. The requirement on the matrix size
is due to our projector choice; see (25). We want to solve
1
n A

[p]
n u = b, with n ∈ Ip and b ∈ R

n+p−2, by means of the
TGM. As smoother we take the relaxed Richardson method
with iteration matrix

S[p]
n := I − ω[p] 1

n
A[p]
n ,

whereω[p] ∈ R is a relaxation parameter chosen as a function
of p and independent of n. The projector is taken to be

P [p]
n := Un+p−2 τn+p−2(1 + cos θ), (25)

as defined in (9) for d = 1 and m = n + p − 2.
For the sake of simplicity, we now assume γ = 0, so

1
n A

[p]
n = K [p]

n . Under this assumption and under suitable
conditions on the relaxation parameterω[p], we show that, for
p = 1, 2, 3, the TGM with iteration matrix TG(S[p]

n , P [p]
n )

is optimal, i.e., ∃ cp < 1 such that ρ(TG(S[p]
n , P [p]

n )) ≤ cp
for all n ∈ Ip. Corollary 1 can be reformulated in our 1D
context as follows.

Corollary 2 Assume that for fixed p ≥ 1,

∃ δ[p] > 0 : K [p]
n ≥ δ[p]τn+p−2(2 − 2 cos θ), ∀n ≥ 2,(26)

and let μ[p] := supn∈Ip
ρ(K [p]

n ). Then, for any ω[p] ∈
(0, 2/μ[p]) it holds that

ρ(TG(S[p]
n , P [p]

n )) ≤
√
1 − 2 a[p] δ[p], ∀n ∈ Ip,

where a[p] := ω[p](2 − ω[p]μ[p]).

From Lemma 4 we know that μ[p] ≤ 4p for all p ≥ 1.
We also have μ[1] = 4 and μ[2] ≤ 3/2 + (1 + √

2)/6; see
[16, Eq. (79)]. Moreover, from some numerical experiments
it seems that μ[2] = 3/2 and μ[3] ≤ 1.80.

In the next theorem we prove that (26) holds for p =
1, 2, 3.

Theorem 3 For 1 ≤ p ≤ 3, condition (26) is satisfied with
δ[1] = 1, δ[2] = 1/3 and δ[3] = 28/465. Hence, for 1 ≤
p ≤ 3 and for any ω[p] ∈ (0, 2/μ[p]), ∃ cp < 1 such that

ρ(TG(S[p]
n , P [p]

n )) ≤ cp for all n ∈ Ip.

Proof Since K [1]
n = τn−1(2 − 2 cos θ) for any n ≥ 2, it is

obvious that (26) holds for p = 1 with δ[1] = 1.
In the case p = 2, for n ≥ 5 we have

K [2]
n = 1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 −1 −1
−1 6 −2 −1
−1 −2 6 −2 −1

. . .
. . .

. . .
. . .

. . .

−1 −2 6 −2 −1
−1 −2 6 −1

−1 −1 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and one can check that the matrix K [2]
n − δ τn(2 − 2 cos θ)

is nonnegative definite for δ = 1/3, thanks to the Ger-
shgorin theorems [5]. As it can be directly verified that
K [2]
n ≥ (1/3)τn(2 − 2 cos θ) for n = 2, . . . , 4, we conclude

that (26) holds for p = 2 with δ[2] = 1/3.
In the case p = 3, for n ≥ 8 we have

K [3]
n = 1

240
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

360 9 −60 −3
9 162 −8 −47 −2

−60 −8 160 −30 −48 −2
−3 −47 −30 160 −30 −48 −2

−2 −48 −30 160 −30 −48 −2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

−2 −48 −30 160 −30 −48 −2
−2 −48 −30 160 −30 −47 −3

−2 −48 −30 160 −8 −60
−2 −47 −8 162 9

−3 −60 9 360

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Since

f3(θ) = (cos2 θ + 13 cos θ + 16)(2 − 2 cos θ)/30

≥ (2/15)(2 − 2 cos θ), ∀θ ∈ [−π, π ],

we have τm( f3) ≥ (2/15)τm(2 − 2 cos θ), ∀m ≥ 1. By
the Gershgorin theorems we find that K [3]

n ≥ ε τn+1( f3)
for all n ≥ 8 with ε = 14/31. As a consequence, the
inequality K [3]

n ≥ (28/465)τn+1(2 − 2 cos θ) holds for all
n ≥ 8. A direct verification shows that it also holds for
n = 2, . . . , 7. ��
Remark 3 There are at least two reasons why condition (26)
is likely to be satisfied for all p ≥ 1.

– The condition would hold if we had τn+p−2( f p) instead

of K [p]
n . Indeed, from Lemma 5 it follows that f p(θ) ≥

(4/π2)p (2 − 2 cos θ), and this implies that τm( f p) ≥
(4/π2)p τm(2 − 2 cos θ), ∀m ≥ 1. On the other hand,
K [p]
n mimics τn+p−2( f p), because these matrices share

the same symbol f p and they differ from each other only
by a small-rank correction term [16].

– The matrices K [p]
n and τn+p−2(2 − 2 cos θ) are both

associated with particular approximations of the elliptic
problem (15) in the case γ = 0.

Multiplying (26) by (τn+p−2(2 − 2 cos θ))−1/2 on the left
and the right, and observing that

(τn+p−2(2 − 2 cos θ))−1/2K [p]
n (τn+p−2(2 − 2 cos θ))−1/2

is similar to

(τn+p−2(2 − 2 cos θ))−1K [p]
n ,

we obtain that (26) is equivalent to the following:

∃δ[p] > 0 :
λmin((τn+p−2(2 − 2 cos θ))−1K [p]

n ) ≥ δ[p], ∀n ≥ 2.
(27)

The inequality (27) is certainly satisfied for p = 1 (with
δ[1] = 1), and numerical experiments reveal that (27) is also
satisfied for p = 2, . . . , 6, with the best value δ[p],∗ :=
infn≥2 λmin((τn+p−2(2 − 2 cos θ))−1K [p]

n ) given by δ[2],∗ ≈
0.3333, δ[3],∗ ≈ 0.1333, δ[4],∗ ≈ 0.0537, δ[5],∗ ≈ 0.0177,
δ[6],∗ ≈ 0.0054. Note that the value δ[p] obtained in Theo-
rem 3 coincides with δ[p],∗ not only for p = 1 but also for
p = 2.

Remark 4 From a theoretical viewpoint, the normalized
symbol f p(θ)/M fp has a unique zero at θ = 0. On the other
hand, it has been proved in [11] that the value f p(π)/M fp ≤

22−p decreases exponentially to zero as p → ∞. Thismeans
that, from a numerical viewpoint, for large p, the normal-
ized symbol f p/M fp possesses two zeros over [0, π ]: one
at θ = 0 and another at the corresponding mirror point
θ = π . Because of this, we expect a slow (though optimal)
convergence rate, when solving a linear system of the form
1
n A

[p]
n u = b for large p, by means of the TGM described

above; see [11] for a rigorous analysis in the case of the τ -
matrix τn+p−2( f p). Possible ways to overcome this problem
are the choice of a different size reduction at the lower level
and/or adopting a multi-iterative strategy, involving a varia-
tion of the smoothers. Both approaches have been extensively
numerically tested in [9] and the second one turned out to be
more efficient, especially for large values of p and higher
dimensionalities.

4.2 Optimality of the TGM for A[ p1, p2]
ν1n,ν2n

Throughout this section, we use the notationm
[p j ]
ν j n := ν j n+

p j − 2, j = 1, 2. The symbol-based motivation why the
TGM with relaxed Richardson smoother and full-weighting
projector is expected to be optimal for A[p1,p2]

ν1n,ν2n is essentially
the same as in the 1D case: if this TGM were applied to the
τ -matrix τ

m
[p2]
ν2n ,m

[p1]
ν1n

( f (ν1,ν2)
p1,p2 ), which has the same symbol

f (ν1,ν2)
p1,p2 as A[p1,p2]

ν1n,ν2n , then it would be optimal by the results
in [22].

Fix p1, p2 ≥ 1, ν1, ν2 ∈ Q+, and consider the sequence
of matrices {A[p1,p2]

ν1n,ν2n : n ∈ I(ν1,ν2)
p1,p2 }, with

I(ν1,ν2)
p1,p2 ⊆

{
n : ν1n ≥ 2, ν2n ≥ 2, m[p1]

ν1n ≥ 3 odd,

m[p2]
ν2n ≥ 3 odd

}
, #I(ν1,ν2)

p1,p2 = ∞.

The requirements onm[p1]
ν1n andm[p2]

ν2n are due to our projector

choice; see (28). We want to solve A[p1,p2]
ν1n,ν2nu = b, with n ∈

I(ν1,ν2)
p1,p2 and b ∈ R

m
[p1]
ν1n m

[p2]
ν2n , by means of the TGM. Like in

the 1D setting, we take the relaxed Richardson iteration as
smoother,

S[p1,p2]
ν1n,ν2n := I − ω[p1,p2,ν1,ν2]A[p1,p2]

ν1n,ν2n,

where ω[p1,p2,ν1,ν2] is the relaxation parameter (independent
of n). The projector is taken to be

P [p1,p2]
ν1n,ν2n := U

m
[p2]
ν2n ,m

[p1]
ν1n

τ
m

[p2]
ν2n ,m

[p1]
ν1n

(q2), (28)

as defined in (9) for d = 2 and m = (m[p2]
ν2n ,m[p1]

ν1n ).
For the sake of simplicity, we now assume γ = 0, so

A[p1,p2]
ν1n,ν2n = K [p1,p2]

ν1n,ν2n . In the bilinear case p1 = p2 = 1, it can
be shown that

K [1,1]
ν1n,ν2n = τν2n−1,ν1n−1( f

(ν1,ν2)
1,1 ),
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and the eigenvalues of K [1,1]
ν1n,ν2n are given by

f (ν1,ν2)
1,1

(
j2π

ν2n
,
j1π

ν1n

)
,

for j2 = 1, . . . ,m[1]
ν2n , j1 = 1, . . . ,m[1]

ν1n , and

μ[1,1,ν1,ν2] := sup
n∈I(ν1,ν2)

1,1

ρ(K [1,1]
ν1n,ν2n) = lim

n→∞ ρ(K [1,1]
ν1n,ν2n)

= max
(θ1,θ2)∈[0,π]2

f (ν1,ν2)
1,1 (θ1, θ2) = 4max

(
ν1

ν2
,
ν2

ν1

)
.

In this case, for any ω[1,1,ν1,ν2] ∈ (
0, 2/μ[1,1,ν1,ν2]) and

ν1, ν2 ∈ Q+, the optimality of the TGMwith iterationmatrix
TG(S[1,1]

ν1n,ν2n, P
[1,1]
ν1n,ν2n)was proved in [22] and the optimality

of the related V-cycle in [1].
More generally, for 1 ≤ p1, p2 ≤ 3 and ν1, ν2 ∈ Q+,

we are going to show that the TGM with iteration matrix
TG(S[p1,p2]

ν1n,ν2n, P
[p1,p2]
ν1n,ν2n ) is optimal under the assumption

ω[p1,p2,ν1,ν2] ∈ (0, 2/μ[p1,p2,ν1,ν2]), with μ[p1,p2,ν1,ν2] :=
sup

n∈I(ν1,ν2)
p1,p2

ρ(K [p1,p2]
ν1n,ν2n). From Lemma 4 we know that,

∀n ≥ 2,

ρ(K [p1,p2]
ν1n,ν2n)

= ‖K [p1,p2]
ν1n,ν2n‖2

≤ ν1

ν2
‖M [p2]

ν2n ‖2‖K [p1]
ν1n ‖2 + ν2

ν1
‖K [p2]

ν2n ‖2‖M [p1]
ν1n ‖2

≤ ν1

ν2
‖M [p2]

ν2n ‖∞‖K [p1]
ν1n ‖∞ + ν2

ν1
‖K [p2]

ν2n ‖∞‖M [p1]
ν1n ‖∞

≤ 4p1ν1
ν2

+ 4p2ν2
ν1

,

where we used the fact that if X,Y are normal matrices then
‖X ⊗ Y‖2 = ‖X‖2‖Y‖2 and ‖X‖2 ≤ ‖X‖∞.

In our 2D context, condition (13) reads as

∃ δ[p1,p2,ν1,ν2] > 0 : K [p1,p2]
ν1n,ν2n ≥ δ[p1,p2,ν1,ν2]·

τ
m

[p2]
ν2n ,m

[p1]
ν1n

(4 − 2 cos θ1 − 2 cos θ2). (29)

In the next theoremwe show that (29) holds for 1 ≤ p1, p2 ≤
3, yielding the optimality of the TGM with iteration matrix
TG(S[p1,p2]

ν1n,ν2n, P
[p1,p2]
ν1n,ν2n ) for these values of p1 and p2.

Theorem 4 Let 1 ≤ p1, p2 ≤ 3. Then, (29) holds with

δ[p1,p2,ν1,ν2] = min

(
ν1

ν2
C [p2]δ[p1], ν2

ν1
C [p1]δ[p2]

)
,

where C [p] is given in Lemma 4 and δ[p] is specified in The-
orem 3 for 1 ≤ p ≤ 3. Hence, the TGMwith iteration matrix
TG(S[p1,p2]

ν1n,ν2n, P
[p1,p2]
ν1n,ν2n ) is optimal for 1 ≤ p1, p2 ≤ 3 and

for any ω[p1,p2,ν1,ν2] ∈ (0, 2/μ[p1,p2,ν1,ν2]).

Proof Recall that if X, X ′,Y,Y ′ are SPD with X ≥ X ′ and
Y ≥ Y ′, then X⊗Y and X ′⊗Y ′ are SPDwith X⊗Y ≥ X ′⊗
Y ′. Hence, for every ν1n, ν2n ≥ 2 integer, from Theorem 3
and the properties of τ -matrices we deduce that

K [p1,p2]
ν1n,ν2n

= ν1

ν2
M [p2]

ν2n ⊗ K [p1]
ν1n + ν2

ν1
K [p2]

ν2n ⊗ M [p1]
ν1n

≥ ν1

ν2
C [p2] I

m
[p2]
ν2n

⊗ δ[p1]τ
m

[p1]
ν1n

(2 − 2 cos θ1)

+ ν2

ν1
δ[p2]τ

m
[p2]
ν2n

(2 − 2 cos θ2) ⊗ C [p1] I
m

[p1]
ν1n

≥ δ[p1,p2,ν1,ν2] τ
m

[p2]
ν2n ,m

[p1]
ν1n

⎛
⎝ 2∑

j=1

(2 − 2 cos θ j )

⎞
⎠ .

��
The proof of Theorem 4 can be extended in a straightfor-

ward way to higher dimensionalities d > 2.

Remark 5 The key result that allowed us to prove the opti-
mality of the two-grid methods both in the 1D and 2D setting
is the matrix inequality (26). If (26) were true for all p ≥ 1,
then it would be easy to give a proof of optimality for all
p ≥ 1 (in the 1D setting) and for all p1, p2 ≥ 1 (in the 2D
setting). Indeed, the former would be a direct consequence
of Corollary 2, whereas the latter would follow by replicat-
ing the argument used in Theorem 4. We point out that the
matrix inequality (26) for larger p could be handled by using
a dyadic decomposition argument; see [4] and references
therein or [25,26] for further insights on this subject.

Remark 6 The inequality (26) would be also of interest in
the context of preconditioning related to the CG method and
the GMRES method. Indeed, in the light of the Axelsson–
Lindskog theorems [3], it can be shown that (26), which is
equivalent to (27) by Remark 3, ensures that τn+p−2(2 −
2 cos θ) is an optimal CG preconditioner for K [p]

n . Hence,
for p = 1, 2, 3, Theorem 3 ensures τn+p−2(2 − 2 cos θ) to

be an optimal CG preconditioner for K [p]
n .

Remark 7 Let M
f
(ν1,ν2)
p1,p2

:= maxθ∈[0,π ]2 f (ν1,ν2)
p1,p2 (θ). It fol-

lows from Lemma 6 that the normalized symbol f (ν1,ν2)
p1,p2 /

M
f
(ν1,ν2)
p1,p2

has a unique zero at θ = 0. However, from

[11] we know that f (ν1,ν2)
p1,p2 (θ1, π) ≤ 22−p1M

f
(ν1,ν2)
p1,p2

and

f (ν1,ν2)
p1,p2 (π, θ2) ≤ 22−p2M

f
(ν1,ν2)
p1,p2

. Hence, when p1, p2 are

large, the normalized symbol also has infinitely many small
values (they can be seen as numerical zeros) over [0, π ]2,
located at the edge points

{(θ1, π) : 0 ≤ θ1 ≤ π} ∪ {(π, θ2) : 0 ≤ θ2 ≤ π}.
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Due to this behavior, the TGMdescribed above for thematrix
A[p1,p2]

ν1n,ν2n is expected to show a bad (though optimal) conver-
gence rate for large p1, p2. A possible way to overcome this
problem has been proposed in [9,11] and consists in adopt-
ing a multi-iterative strategy involving a specialized PCG
smoother.

5 Numerical examples

Numerical experiments addressing the pure Laplacian (γ =
0) can be found in [9, Sections 6.1 and 7.1]. They confirm
the optimality of the TGM analyzed in Sect. 4. However,
they also reveal that the spectral radii of the corresponding
iteration matrices rapidly approach 1 for increasing p ≥ 2
(resp., p1, p2 ≥ 2). This poor behavior is related to the fact
that f p(π)/M fp (resp., f (ν1,ν2)

p1,p2 /M
f
(ν1,ν2)
p1,p2

) converges expo-

nentially to 0 for increasingdegree, as discussed inRemarks 4
and 7. Such a worsening was observed in [9] not only in the
presence of the relaxed Richardson smoother, but also in the
case of the relaxed Gauss-Seidel smoother; in particular, we
refer the reader to [9, Table 4]. Actually, this worsening is
an intrinsic feature of the problem that arises whenever a
classical smoother is employed. So, the proposed TGM can
be used only when dealing with small values of p (resp.,
p1, p2). Nevertheless, we point out that other techniques
can be considered for large p (resp., p1, p2), as illustrated
in [9,11].

In this section we show that the same conclusions also
hold when addressing more general second-order elliptic
problems, involving nonzero advection/reaction terms.

5.1 1D Examples

Table 1 shows the results of some numerical experiments for
TG(S[p]

n , P [p]
n ) applied to a system with coefficient matrix

1
n A

[p]
n and γ = 1000. The value of the parameter ω[p]

for the relaxed Richardson smoother S[p]
n was taken as in

[9, Table 2]; it was determined in order to approximately
minimize the asymptotic spectral radius in the pure Lapla-
cian case (γ = 0). Then, we computed the spectral radii
ρ

[p]
n := ρ(TG(S[p]

n , P [p]
n )) for p = 1, . . . , 6 and increasing

values of n. In all the considered experiments, the proposed
TGM is optimal. Moreover, when n → ∞, ρ

[p]
n converges

to a limit ρ[p]∞ , which is minimal for p = 2. We also observe
that ρ

[p]∞ increases for increasing p ≥ 2, in such a way that
even for moderate values of p (such as p = 5, 6) the value
ρ

[p]∞ is not really satisfactory.
To show that the numerical behavior observed for

TG(S[p]
n , P [p]

n ) is common to all classical smoothers, we
perform the same test using as smoother the relaxed Gauss-
Seidel method, whose iteration matrix is denoted by Ŝ[p]

n .
Table 2 illustrates the behavior of the spectral radius ρ̂

[p]
n :=

ρ(TG(Ŝ[p]
n , P [p]

n )). The relaxation parameter ω[p] for Ŝ[p]
n

was chosen as in [9, Table 3], which again approximately
minimizes the asymptotic spectral radius in the pure Lapla-
cian case (γ = 0). It follows from Table 2 that, except for the
particular case p = 2, the use of the Gauss-Seidel smoother
improves the convergence rate of the two-grid. However, we
also observe that ρ̂[p]

n presents the same dependence on p as
ρ

[p]
n : the scheme is optimal but its asymptotic convergence

rate (if existing) attains its minimum for p = 2 and then
worsens as p increases from 2 to 6.

Table 1 Values of
ρ

[p]
n := ρ(TG(S[p]

n , P [p]
n )) in

the case γ = 1000, for the
specified parameter ω[p]

n ρ
[1]
n [ω[1] = 1/3] ρ

[3]
n [ω[3] = 1.0368] ρ

[5]
n [ω[5] = 1.2576]

80 0.3501889 0.5069841 0.9238604

160 0.3375447 0.4666843 0.9013911

320 0.3343860 0.4540155 0.8952219

640 0.3335965 0.4497422 0.8934305

1280 0.3333991 0.4481536 0.8928593

2560 0.3333498 0.4475009 0.8926547

n ρ
[2]
n [ω[2] = 0.7311] ρ

[4]
n [ω[4] = 1.2229] ρ

[6]
n [ω[6] = 1.2235]

81 0.0791465 0.7783691 0.9823774

161 0.0423859 0.7490167 0.9662849

321 0.0308670 0.7406819 0.9616686

641 0.0271624 0.7382560 0.9602275

1281 0.0259266 0.7374988 0.9597231

2561 0.0254774 0.7372365 0.9595247
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Table 2 Values of
ρ̂

[p]
n := ρ(TG(Ŝ[p]

n , P [p]
n )) in

the case γ = 1000, for the
specified parameter ω[p]

n ρ̂
[1]
n [ω[1] = 0.9065] ρ̂

[3]
n [ω[3] = 0.9483] ρ̂

[5]
n [ω[5] = 1.1999]

80 0.1649162 0.1497176 0.4269339

160 0.1946180 0.1324016 0.3803359

320 0.2151965 0.1392187 0.4151028

640 0.2295672 0.1495306 0.4440683

1280 0.2379982 0.1555952 0.4622802

2560 0.2425720 0.1587062 0.4721079

n ρ̂
[2]
n [ω[2] = 0.9109] ρ̂

[4]
n [ω[4] = 1.0602] ρ̂

[6]
n [ω[6] = 1.3292]

81 0.0565397 0.2831668 0.5866458

161 0.0561352 0.2613614 0.5249935

321 0.0593355 0.2849307 0.5494735

641 0.0618100 0.3051810 0.5818468

1281 0.0632679 0.3177150 0.6027278

2561 0.0640522 0.3247125 0.6128128

Table 3 Values of
ρ

[p]
n := ρ(TG(S[p]

n , P [p]
n )) in

the case β = −30 and γ = 1,
for the specified parameter ω[p]

n ρ
[1]
n [ω[1] = 1/3] ρ

[3]
n [ω[3] = 1.0368] ρ

[5]
n [ω[5] = 1.2576]

80 0.3230098 0.4790377 0.9108503

160 0.3307569 0.4575274 0.8976670

320 0.3326895 0.4506303 0.8940369

640 0.3331724 0.4483575 0.8930053

1280 0.3332931 0.4475402 0.8926882

2560 0.3333233 0.4472142 0.8925937

n ρ
[2]
n [ω[2] = 0.7311] ρ

[4]
n [ω[4] = 1.2229] ρ

[6]
n [ω[6] = 1.2235]

81 0.1048347 0.7610977 0.9726925

161 0.0534626 0.7440238 0.9632887

321 0.0335327 0.7391183 0.9606204

641 0.0267034 0.7377120 0.9598142

1281 0.0251805 0.7372869 0.9595439

2561 0.0251951 0.7371457 0.9594419

We also investigated the behavior of the TGM in the case
of the diffusion-advection-reaction problem

{−u′′ + βu′ + γ u = f, in (0, 1),
u(0) = 0, u(1) = 0,

with β = −30 and γ = 1. It is known (see Remark 1) that
the corresponding sequence of Galerkin B-spline matrices
has the same symbol f p as in (21), which is independent of
β and γ . The results of some numerical experiments (with a
similar setup as in the previous test) are collected in Tables 3
and 4.Wemay conclude that the nonzero advection and reac-
tion terms do not have a major influence on the asymptotic
spectral radii of the TGM both in the case of the Richard-
son and theGauss-Seidel smoother. However, as explained in

Remark 1, the presence of a very large |β| may affect (neg-
atively) the two-grid convergence rate for relatively small
values of n.

5.2 2D examples

Table 5 shows the results of some numerical experiments
for TG(S[p,p]

n,n , P [p,p]
n,n ) applied to a system with coefficient

matrix A[p,p]
n,n and γ = 1; see (23). The value of the relax-

ation parameter ω[p,p] for the relaxed Richardson smoother
S[p,p]
n,n was taken as in [9, Table 12], and was determined

in order to approximately minimize the asymptotic spectral
radius in the pure Laplacian case (γ = 0). Then, we com-
puted the spectral radii ρ[p,p]

n,n := ρ(TG(S[p,p]
n,n , P [p,p]

n,n )) for
p = 1, . . . , 6 and increasing values of n. In all the consid-
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Table 4 Values of
ρ̂

[p]
n := ρ(TG(Ŝ[p]

n , P [p]
n )) in

the case β = −30 and γ = 1,
for the specified parameter ω[p]

n ρ̂
[1]
n [ω[1] = 0.9065] ρ̂

[3]
n [ω[3] = 0.9483] ρ̂

[5]
n [ω[5] = 1.1999]

80 0.2628693 0.2662531 0.3914766

160 0.2414011 0.1807720 0.3528311

320 0.2374313 0.1638459 0.4034783

640 0.2402989 0.1608873 0.4393023

1280 0.2432890 0.1609092 0.4607042

2560 0.2452101 0.1611828 0.4707694

n ρ̂
[2]
n [ω[2] = 0.9109] ρ̂

[4]
n [ω[4] = 1.0602] ρ̂

[6]
n [ω[6] = 1.3292]

81 0.1724812 0.2852895 0.5864728

161 0.1132497 0.2574381 0.4942180

321 0.0837635 0.2831336 0.5396466

641 0.0731110 0.3053799 0.5793680

1281 0.0688985 0.3194229 0.6005087

2561 0.0670204 0.3264244 0.6121435

Table 5 Values of ρ
[p,p]
n,n :=

ρ(TG(S[p,p]
n,n , P [p,p]

n,n )) in the
case γ = 1, for the specified
parameter ω[p,p]

n ρ
[1,1]
n,n [ω[1,1] = 0.3335] ρ

[3,3]
n,n [ω[3,3] = 1.3739] ρ

[5,5]
n,n [ω[5,5] = 1.3293]

16 0.3278650 0.9250838 0.9984588

28 0.3313190 0.9245759 0.9983433

40 0.3321758 0.9233720 0.9983185

52 0.3325122 0.9231215 0.9983133

n ρ
[2,2]
n,n [ω[2,2] = 1.1009] ρ

[4,4]
n,n [ω[4,4] = 1.4000] ρ

[6,6]
n,n [ω[6,6] = 1.2505]

17 0.6085012 0.9885328 0.9997976

29 0.6085456 0.9881167 0.9997766

41 0.6085572 0.9880109 0.9997724

53 0.6085998 0.9879838 0.9997715

Table 6 Values of ρ̂
[p,p]
n,n :=

ρ(TG(Ŝ[p,p]
n,n , P [p,p]

n,n )) in the
case γ = 1, for the specified
parameter ω[p,p]

n ρ̂
[1,1]
n,n [ω[1,1] = 1.0035] ρ̂

[3,3]
n,n [ω[3,3] = 1.3143] ρ̂

[5,5]
n,n [ω[5,5] = 1.3990]

16 0.1586321 0.6423071 0.9630879

28 0.1677612 0.6412603 0.9633778

40 0.1749603 0.6418210 0.9626884

52 0.1802092 0.6464128 0.9620643

n ρ̂
[2,2]
n,n [ω[2,2] = 1.1695] ρ̂

[4,4]
n,n [ω[4,4] = 1.3248] ρ̂

[6,6]
n,n [ω[6,6] = 1.4914]

17 0.2661695 0.8798789 0.9913530

29 0.2683807 0.8780234 0.9903296

41 0.2896229 0.8773965 0.9898868

53 0.3041406 0.8778226 0.9897379

ered numerical experiments, the proposed TGM is optimal.
However, for p ≥ 3, the (asymptotic) spectral radius is
very close to 1, and this is not satisfactory for practical
purposes.

The numerical experiments in Table 6, obtained as those in
Table 5, show a certain improvement in the two-grid conver-

gence rate when using the relaxed Gauss-Seidel smoother
instead of Richardson’s, but again the results worsen for
increasing p.

An effective smoother for large p based on a precondi-
tioned Krylov method has been proposed in [11], whereas an
extensive numerical testing can be found in [9].
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6 Conclusion and perspectives

In this paper we have proposed two-grid (and multigrid)
methods for the solution of linear systems arising from the
Galerkin B-spline IgA approximation of 1D and 2D elliptic
problems. The optimality of the two-grid scheme, already
predicted in [9], has been formally proved for some val-
ues of the spline degrees p. It is important to point out
that:

– the proposal of the methods is motivated and based on
the spectral symbol and on the corresponding techniques
for τ -matrices [1,2,12,13,22]; we could also have opted
for Toeplitz matrices;

– the optimality proofs are based on classical tools from
algebraic multigrid analysis, applied within the frame-
work of the theory of τ -matrices [20,22]; again, we could
have opted for Toeplitz matrices;

– the spectral properties of the considered matrices, as well
as the properties of the associated symbol, were analyzed
in a previous work [16].

A plan for future research could include the proof of rela-
tion (26) for all p ≥ 1. It would give at once the optimality
proof of the two-grid and—with a little more effort—the
optimality proof of the W-cycle multigrid method.

Acknowledgments This work was partially supported by INdAM-
GNCS Gruppo Nazionale per il Calcolo Scientifico, by the MIUR
‘Futuro in Ricerca 2013’ Programme through the project DREAMS, by
the MIUR-PRIN 2012 N. 2012MTE38N, and by the Donation KAW
2013.0341 from the Knut & AliceWallenberg Foundation in collabora-
tion with the Royal Swedish Academy of Sciences, supporting Swedish
research in mathematics.

References

1. Aricò, A., Donatelli, M.: A V-cycle multigrid for multilevel matrix
algebras: proof of optimality. Numer. Math. 105, 511–547 (2007)

2. Aricò, A., Donatelli,M., Serra-Capizzano, S.: V-cycle optimal con-
vergence for certain (multilevel) structured linear systems. SIAM
J. Matrix Anal. Appl. 26, 186–214 (2004)

3. Axelsson, O., Lindskog, G.: On the rate of convergence of the
preconditioned conjugate gradient method. Numer. Math. 48, 499–
523 (1986)

4. Beckermann, B., Serra-Capizzano, S.: On the asymptotic spectrum
of finite element matrix sequences. SIAM J. Numer. Anal. 45, 746–
769 (2007)

5. Bhatia, R.: Matrix Analysis. Springer, New York (1997)
6. Boor, C. de: A Practical Guide to Splines. Springer, New York

(2001)

7. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis:
Toward Integration of CAD and FEA. Wiley, Chichester (2009)

8. Donatelli, M.: An algebraic generalization of local Fourier analysis
for grid transfer operators in multigrid based on Toeplitz matrices.
Numer. Linear Algebra Appl. 17, 179–197 (2010)

9. Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S.,
Speleers, H.: Robust and optimal multi-iterative techniques for IgA
Galerkin linear systems. Comput. Methods Appl. Mech. Eng. 284,
230–264 (2015)

10. Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S.,
Speleers, H.: Robust and optimal multi-iterative techniques for IgA
collocation linear systems. Comput. Methods Appl. Mech. Eng.
284, 1120–1146 (2015)

11. Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S.,
Speleers, H.: Symbol-based multigrid methods for Galerkin B-
spline isogeometric analysis, submitted

12. Fiorentino, G., Serra, S.: Multigrid methods for Toeplitz matrices.
Calcolo 28, 283–305 (1991)

13. Fiorentino, G., Serra, S.: Multigrid methods for symmetric posi-
tive definite block Toeplitz matrices with nonnegative generating
functions. SIAM J. Sci. Comput. 17, 1068–1081 (1996)

14. Gahalaut, K.P.S., Kraus, J.K., Tomar, S.K.: Multigrid methods for
isogeometric discretization. Comput. Methods Appl. Mech. Eng.
253, 413–425 (2013)

15. Garoni, C.: Structured matrices coming from PDE approximation
theory: spectral analysis, spectral symbol anddesignof fast iterative
solvers. Ph.D. Thesis in Mathematics of Computation, University
of Insubria, Como, Italy. http://hdl.handle.net/10277/568 (2015)

16. Garoni, C., Manni, C., Pelosi, F., Serra-Capizzano, S., Speleers,
H.: On the spectrum of stiffnessmatrices arising from isogeometric
analysis. Numer. Math. 127, 751–799 (2014)

17. Garoni, C., Manni, C., Serra-Capizzano, S., Sesana, D., Speleers,
H.: Spectral analysis and spectral symbol of matrices in isogeo-
metric Galerkin methods. Technical Report 2015-005, Department
of Information Technology, Uppsala University, Sweden (2015)

18. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refine-
ment. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

19. Jin, X.Q.: Developments and Applications of Block Toeplitz Iter-
ative Solvers. Kluwer Academic Publishers, Dordrecht (2002)

20. Ruge, J.W., Stüben, K.: Algebraic multigrid, Chapter 4 of the
book Multigrid Methods by S. McCormick. SIAM Publications,
Philadelphia (1987)

21. Serra, S.: Multi-iterative methods. Comput. Math. Appl. 26, 65–87
(1993)

22. Serra-Capizzano, S.: Convergence analysis of two-grid methods
for elliptic Toeplitz and PDEs matrix-sequences. Numer. Math.
92, 433–465 (2002)

23. Serra-Capizzano, S.: Generalized locally Toeplitz sequences: spec-
tral analysis and applications to discretized partial differential
equations. Linear Algebra Appl. 366, 371–402 (2003)

24. Serra-Capizzano, S.: The GLT class as a generalized Fourier analy-
sis and applications. Linear Algebra Appl. 419, 180–233 (2006)

25. Serra-Capizzano, S., Tablino-Possio, C.: Spectral and structural
analysis of highprecisionfinite differencematrices for elliptic oper-
ators. Linear Algebra Appl. 293, 85–131 (1999)

26. Serra-Capizzano, S., Tablino-Possio, C.: Positive representation
formulas for finite difference discretizations of (elliptic) second
order PDEs. Contemp. Math. 281, 295–318 (2001)

123

http://hdl.handle.net/10277/568

	Two-grid optimality for Galerkin linear systems based on B-splines
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The d-dimensional problem setting
	2.2 d-Level τ-matrices 
	2.3 Multigrid methods
	2.4 Multigrid methods for τ-matrices

	3 Galerkin discretization using B-splines
	3.1 The 1D setting
	3.2 The 2D setting

	4 TGM for Galerkin B-spline matrices: proof of optimality
	4.1 Optimality of the TGM for 1nAn[p]
	4.2 Optimality of the TGM for Aν1 n,ν2 n[p1,p2]

	5 Numerical examples
	5.1 1D Examples
	5.2 2D examples

	6 Conclusion and perspectives
	Acknowledgments
	References




