
Comput Visual Sci (2013) 16:181–192
DOI 10.1007/s00791-014-0230-y

Visual reflection library: a framework for declarative GUI
programming on the Java platform

Michael Hoffer · Christian Poliwoda · Gabriel Wittum

Received: 4 August 2011 / Accepted: 16 January 2012 / Published online: 17 December 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract The automated mapping of program functional-
ity to intuitive user interfaces is a highly challenging task.
Nevertheless it is a promising way to significantly improve
software quality by simplifying the development process.
This paper describes a method for a declarative and fully
automated creation of graphical user interfaces from Java
objects, i.e. the information accessible via the Java Reflec-
tion API. For this purpose we created the Visual Reflection
Library (VRL). VRL interfaces are able to represent complex
workflows and allow for a certain degree of visual program-
ming. We start by describing an application: the development
of an interactive user interface for the simulation system UG.
By shortly discussing the requirements for such an interface,
we will explain the reasons for creating VRL and the bene-
fits we gained from it. After that we give an overview of our
methods and show several applications. We end by summa-
rizing our results and giving a future outlook.

1 Introduction

In the last decades, increasing computing power made more
and more accurate simulations possible. Simulations used
to design industrial products solve coupled problems, e.g.,

Communicated by : Randolph E. Bank.

M. Hoffer (B) · C. Poliwoda · G. Wittum
Goethe-Center for Scientific Computing (G-CSC),
Goethe Universität Frankfurt am Main, Kettenhofweg 139,
60325 Frankfurt am Main, Germany
e-mail: michael.hoffer@gcsc.uni-frankfurt.de

C. Poliwoda
e-mail: christian.poliwoda@gcsc.uni-frankfurt.de

G. Wittum
e-mail: wittum@gcsc.uni-frankfurt.de

detailed spatially resolved computations of turbulent flow in
combustion engines, coupling it with combustion models and
thermomechanics. Usually these kind of simulations require
the simultaneous control of numerous input parameters, like
the full geometry, including material properties, coupling of
different physical processes, different grids, numerical meth-
ods, simulation software and finally computers. Such a simu-
lation process may contain incompatible components [2]. In
particular, controlling such an involved process and synchro-
nizing it with the data requirements is very hard to achieve.
That means, that simulation complexity nowadays does not
only refer to the mere computational complexity of e.g. solv-
ing systems of linear equations, but extends to controlling the
complex and involved workflow of the simulation process
itself. Thus, it is substantial to develop and establish tools
allowing easy control of the simulation workflow.

The first step is establishing a graphic and intuitive envi-
ronment for the user. There are several types of users. An
important one is the expert in the application problem to be
simulated, but not in numerics or computing. Other users
have a lot of expertise in numerics as well. Thus, we need
a flexible environment, which allows to set up a simulation
in close analogy to the decisions and selections the user is
making when approaching the simulation of a model.

As an example for this, we use the simulation system
Unstructured Grids (UG), a general platform for the numer-
ical solution of partial differential equations [10]. This sim-
ulation system is being developed in the last author’s group
since more than 20 years. It is a flexible and powerful simu-
lation system, allowing to solve pde-based models from very
different application areas and to couple them. In its current
state it allows interaction via a built-in scripting language and
a corresponding shell. This enables detailed and flexible sys-
tem control. However, the complexity of the system requires
particular skills in programming. The time necessary to learn

123

182 M. Hoffer et al.

and understand the scripting language, such that someone
is able to set up and run a new application independently
varies around several months. Further, the scripting language
describes the methods used and the necessary parameters in a
flat, i.e., chronological way. This was suitable when this lan-
guage was developed, but for simulations with a complicated
workflow this is not appropriate any more. Instead, we need
a new tool which allows a hierarchical approach to set up
a simulation, corresponding to the way a typical user would
approach it. Since there are different expert levels in different
areas (application, numerics, computing, …), the tool must
offer flexibility in selecting and specifying models, methods
and parameters.

To overcome those problems, we decided to create an
interface that is able to reflect the complexity and flexibil-
ity of UG. As UG is not a regular application, but a plat-
form for the development of numerical applications, we had
several requirements for the interface. Instead of creating a
separate interface for each UG based application, we tried to
find a general solution. Firstly, the creation of intuitive user
interfaces is rather time consuming. Changing the program
often implies changes in the implementation of the inter-
face. Secondly, it is almost impossible to prevent program
errors introduced by the interface. This increases the time
and effort necessary for testing. Thus, we wanted a platform
for automatic GUI (graphical user interface) generation that
is capable of creating user interfaces only by supplying the
required functionality of the interface. The Visual Reflec-
tion Library [7] addresses this problem. Another require-
ment is the support for domain specific programming, i.e.,
domain specific GUI elements. By combining visual pro-
gramming and problem specific interfaces, it is possible to
build an efficient and intuitive platform that fulfills these
requirements.

2 Declarative GUI development

2.1 Definition

Declarative GUI programming is already used by several
technologies such as Qt [12] and JavaFX [14]. Those toolk-
its introduce specific scripting languages for defining custom
GUI elements. While making the development of custom
user interfaces more efficient, this approach does not solve
the problem that the connection between the non-graphical
backend of the application and the frontend (GUI) has to
be created manually and changed whenever the application
structure changes.

Declarative Programming as used by VRL is focused
on the last aspect. We succeeded in creating a mechanism
that allows to keep the backend and frontend in synchro-
nization. VRL does not introduce a specific language for

Fig. 1 VRL component types

GUI development. Rather than that, we automatically gener-
ate interactive visualizations of Java [13] objects, i.e., their
public interface. This totally decouples the GUI generation
from the language, i.e., objects from every language that can
be accessed via the Java Reflection API can be visualized.
Throughout this paper we use Groovy1 code unless noted
otherwise.

As mentioned before, VRL GUI generation is based on
the Java Reflection API. There are other tools and frame-
works that make use of this information as well to create
user interfaces. A common use of this is a property edi-
tor as used in development environments such as the Net-
beans IDE [15] or Eclipse [4]. But a property editor is
optimized for manipulating data and does not give inter-
active access to the functionality of an object. The BlueJ
IDE [9] provides interactive access to the functionality of
an object. The intention here is to give an introduction to
object-oriented programming. This is an attempt to allow
visual interaction with Java objects. However, it does not
provide a full mapping from functionality to graphical inter-
faces.

These usages of GUI generation via Reflection do not
solve the problem of automatically generating high-quality
interfaces. The challenge is to create a general-purpose
framework for declarative GUI programming.

2.2 VRL component types

To accomplish this task, VRL uses three types of visual com-
ponents (see Fig. 1). An object representation is a container,
comparable to a program window that can group several
child components. A method representation is a container
component inside an object representation. It can also group
child components and provides elements for calling the rep-
resented method. To represent variable data VRL provides
type representations. In most cases they allow interaction
with the visualized data.

1 Groovy is a dynamic language for the Java platform (see: [3]).

123

Visual reflection library 183

Fig. 2 Visualization of a simple Java object

2.3 Object visualization

Figure 2 shows the visualization result for a simple class that
provides a method that is capable of adding two integer num-
bers. Based on the component types of Sect.2.2 it is possible
to create interfaces with only a minimal amount of code:

Listing 1 Code used to create the visualization shown in Fig. 2

public class AddIntegers {
public Integer add(Integer a , Integer b) {

return a+b
}

}

To create a graphical user interface it is only necessary
to specify the functionality. In our case we request a GUI
that is capable of adding two integer values. Compared to
Java code that implements this functionality and also involves
GUI generation, this example shows that declarative GUI
development can be very efficient. It has to be mentioned
that this example visualization has several extra features such
as error messages for incorrect data etc. For a common Java
implementation using the Swing [11] toolkit much more code
is required. A sample implementation2 is shown in Listing 2.

Furthermore, VRL can do the interface generation without
any additional interface related commands. But by defining
the problem domain, interfaces can be customized (see Sect.
2.4).

This is one of the major advantages. The VRL user only
provides functionality and optionally some details about the
problem domain. These details are not commands. They
are meta information, i.e., annotations3 that do not influ-
ence the functionality of the given code. The absence of
GUI related commands keeps the code simple and clean.
Even more important is the fact that the code can be used

2 This is not necessarily the shortest possible implementation.
3 Annotations are meta-data that can be added to source code without
affecting its functionality. See http://download.oracle.com/javase/1.5.
0/docs/guide/language/annotations.html for detailed explanations.

for other purposes as well. That is, the implemented func-
tionality can be used in any Java program or library with-
out changing the code. For source code that does contain
GUI related commands other than annotations this is in often
impossible.

Even though architectural patterns such as the Model-
View-Control pattern (MVC) [5] improve the development
process and help to separate the functionality from the graph-
ical interface, we think that the application logic should be
completely independent from the user interface and should
not be a part of the implementation. Namely, if not automat-
ically generated, the graphical user interface and the appli-
cation logic will always diverge to some degree and a lot
of work has to be done to prevent that. In many projects this
results in user interfaces that cannot provide the newest func-
tionality of the application backend. In these cases users have
to disregard the graphical user interface and use the backend
directly (programmatically). This adds even more features to
the backend that are not accessible through the user interface.

Under the assumption that UG provides a service that is
able to create such an interface description for its function-
ality, VRL visualization can be done without an extra imple-
mentation. For the upcoming UG version such a service is in
preparation. Our early tests show that this is a highly promis-
ing approach.

2.4 Domain specific GUI elements

While object representations and method representations are
mostly generic elements, type representations are individual
components. Their appearance depends on the data type of
the visualized variable and the problem domain. Let us recall
the example (Listing 1) from Sect. 2.3. The code does not
include any GUI related commands. Thus, VRL uses a default
type representation for the parameter types. For numbers and
strings this is relatively easy.

Although this seems to be a reasonable approach for sim-
ple objects, it is not clear that this is true for complex cases
as well. Compared to classical GUI development this seems
rather inflexible. To overcome those problems VRL supports
multiple type representations per data type. By supplying
information about the problem domain, i.e., the context of
the variable to visualize, it is possible to advise the system to
choose between different type representations. For our exam-
ple we might want to use a slider instead of an edit field. VRL
supports such meta information via parameter annotations.
Parameter annotations can be used to request a specific visu-
alization and to define problem specific properties such as
value ranges. If the requested visualization is available it will
be preferred over the default visualization. Listing 3 shows a
customized version of Listing 1. The resulting visualization
is shown in Fig. 3.

123

http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html

184 M. Hoffer et al.

Listing 2 Compact implementation of a Swing application that is able to add two numbers

public class Main {
public static void main(String [] args) {

javax .swing.JFrame frame = new javax .swing.JFrame(‘ ‘Add Integers ’ ’) ;
frame. setLayout(new java .awt.GridLayout ()) ;
final javax .swing. JTextField input1 = new javax .swing. JTextField () ;
final javax .swing. JTextField input2 = new javax .swing. JTextField () ;
final javax .swing. JTextField output = new javax .swing. JTextField () ;
frame.add(new javax .swing. JLabel(‘ ‘ Integer ’ ’)) ;
frame.add(input1) ;
frame.add(new javax .swing. JLabel(‘ ‘ Integer ’ ’)) ;
frame.add(input2) ;
frame.add(new javax .swing. JLabel(‘ ‘Result ’ ’)) ;
frame.add(output) ;
javax .swing. JButton btn = new javax .swing. JButton(‘ ‘invoke’ ’) ;
btn . addActionListener(new java .awt. event . ActionListener () {

public void actionPerformed(java .awt. event .ActionEvent e) {
output . setText (new Integer (new Integer (input1 . getText ()) +

new Integer (input2 . getText ())) . toString ()) ;
}

});
frame.add(btn) ;
frame.pack() ;
frame. setVisible (true) ;
}

}

Listing 3 Illustration of parameter annotations

public class AddIntegers {
public Integer add(@ParamInfo(style=‘‘slider ’ ’ ,options=‘‘min=0;max=100’ ’) Integer a ,

@ParamInfo(style=‘‘slider ’ ’ ,options=‘‘min=0;max=100’ ’) Integer b) {
return a+b;

}
}

Fig. 3 Visualization of a simple Java object using parameter annota-
tions

Defining properties of the type representation may be
impractical in some cases because the annotations will
become rather complicated. In this case it is suggested to

define a custom type representation which will be discussed
in Sect. 2.5.

2.5 Custom type representations

To extend the number of known problem domains, VRL can
be extended by adding custom type representations. Cur-
rently type representations for common variable types such
as Integer, Float, Boolean and String exist. In
addition it provides interactive type representations for 2D
and 3D visualizations. The UG specific extensions enable
UG script generation and include MathML [16] based ren-
dering for mathematical formulas (see Sects. 4.1 and 4.2).
Extensions for modifying surface properties such as bound-
ary conditions are in development.

Technically a type representation is a Swing component
that provides additional methods for data processing and
visualization including data specific error handling. Defin-
ing custom type representations is a problem specific task.

123

Visual reflection library 185

Fig. 4 Type representations for Java.lang.Integer and
java.awt.Color

Listing 4 Circle class

class Circle {

public int radius

public Circle (Integer radius) {
this . radius = radius

}
}

Thus, except from basic understanding of the Swing frame-
work, only problem specific knowledge is required.

An overview of different type representations for
java.lang.Integer andjava.awt.Color is shown
in Fig. 4.

We now discuss these features with the help of an example.
Listing 4 shows a sample class we want to provide a type
representation for.

If VRL visualizes an object that uses the Circle class
from Listing 4, it uses a default type representation that only
shows the class name. Defining a custom type representation
enables VRL to use an improved visualization.

Listing 5 shows a possible implementation of a type rep-
resentation for the class defined in Listing 4. The constructor
defines the class to visualize and defines the name to use
(we use an empty name). The setViewValue(Object
o) method defines how to visualize an object. For every
class that uses the Circle class in its public interface VRL
will use the type representation defined in Listing 5 unless
requested otherwise. The getViewValue() method can
be used to create an object based on the current visualiza-
tion, e.g., user input. In our case we do not provide an inter-
active visualization. Thus, the value that is currently visual-

Fig. 5 Class that uses the Circle class in its public interface

ized will be returned. In many cases it is sufficient to imple-
ment a constructor, the setViewValue(Object o)
and getViewValue() methods. Thus, no special knowl-
edge of the internal implementation is required.

Listing 6 shows a class that creates an instance of the circle
class and returns it. The corresponding VRL visualization is
shown in Fig. 5.

3 Visual programming

3.1 Data dependencies

Each visual programming environment needs a method to
define data dependencies. Therefore, VRL components can
be connected via wires (see Fig. 6). Defining dependencies
by connecting components is a technique that is used by sev-
eral tools such as the Visualization Data Explorer from IBM
[8]. We define data dependencies by connecting return val-
ues and parameters of methods. VRL connections are type-
safe. To evaluate data dependencies it is necessary to define
a sequence of method calls, i.e., to determine which methods
have to be called to compute the requested result.

Interactive type representations notice every value change.
All dependent type representations will be emptied to prevent
data inconsistencies. The return value type representations of
all dependent methods are marked as out of date. If the user
invokes a method VRL will compute the dependencies and
call all required methods.

However, determining the sequence of method calls by
evaluating the data dependencies limits the user in sev-
eral ways. It is not possible to freely define a deterministic
algorithm. In common programming languages method call
sequences can be defined independently from data depen-
dencies.

3.2 Codeblocks

To enable the feature of defining method call sequences, VRL
supports codeblocks. A VRL codeblock is equivalent to a
block in C++ or Java. VRL contains code generators that can
map a sequence of method calls to Groovy code (see Fig. 7).
This sequence is defined by selecting method representations
via mouse gestures. The corresponding Java object can be
visualized like any other object. Hence, VRL provides mech-

123

186 M. Hoffer et al.

Listing 5 type representation for the Circle class

class CircleType extends BufferedImageType {

public CircleType(){
setType(Circle . class)
setValueName(‘ ‘ ’ ’)

}

public void setViewValue(Object o) {
def circle = o as CirclePathProvider : :
def image = ImageUtils . createCompatibleImage(300,300)
def g2 = image. createGraphics ()

g2. setColor(Color . green)
def thickness = 5
g2. setStroke (new BasicStroke(thickness))

int centerX=image.getWidth()/2
int centerY=image. getHeight ()/2

int x = centerX + thickness /2 − circle . radius
int y = centerY + thickness /2 − circle . radius

int width = 2 ∗ circle . radius−thickness /2 − 1
int height = 2 ∗ circle . radius−thickness /2 − 1

g2.drawOval(x,y,width , height)
g2. dispose ()

super . setViewValue(image)
}

public Object getViewValue() {
return this .@value

}
}

Listing 6 Class that uses the Circle class in its public interface

class CircleCreator {

public Circle createCircle (
@ParamInfo(name=‘‘Radius’ ’) Integer radius) {
return new Circle (radius)

}
}

Fig. 6 Data dependency between two objects Fig. 7 Custom sequence of method calls via codeblocks

123

Visual reflection library 187

anisms for defining custom method call sequences. This is
important to enable the definition of complex workflows. For
UG this feature is essential, as it is necessary to allow cus-
tom computation workflows, like the current UG scripting
language does.

One problem with the current approach is that it is not eas-
ily possible to invoke a method multiple times, each time with
different parameters. We addressed this issue by supporting
multiple object visualizations. These visualizations can be
used to invoke the same method with different parameters.

3.3 IDE features

As the Java VM allows dynamic class loading [6] it is also
possible to define the functionality as Java class and visual-
ize it with VRL at run-time. In addition to that VRL provides
Groovy support. An integrated editor enables the user to write
custom components. Even type representations can be devel-
oped at run-time. This allows interactive GUI development
and extends the visual programming features. The Groovy
code does not have to be added via the editor. It can also be
retrieved from a code generator such as the codeblock gen-
erator described in Sect. 3.2. To simplify the development
process, we created VRL-Studio, a small VRL based IDE.
VRL-Studio is also used to create the UG frontend.

3.4 Persistence

VRL uses a XML based persistence model. It stores canvas
properties, objects (instances of classes) and the state of their
visualization. The source code of classes defined with the
Groovy editor is stored as well. Such a configuration is called
a session.

Most VRL based programs are based on a session file. To
ensure that the final program can be deployed, VRL sessions
can be exported. The exported file contains the session file
and the VRL run-time system, including external dependen-
cies.

3.5 Creating applications

3.5.1 Problem definition

Even though we have seen several features that improve the
creation of user interfaces, we have not yet answered the
question whether application development is possible. Cre-
ating the workflow is done by connecting objects (some of
their type representations) and creating codeblocks. But what
about the application itself? In many cases it is necessary to
create a reduced user interface, designed for a specific pur-
pose. This is what defines the application from a user point
of view. VRL provides several features to achieve this (see
Sects. 3.5.2 and 3.5.3).

3.5.2 Parameter groups

After defining the workflow of an application we usually
want to group the most important parameter visualizations to
simplify the user interface. With the methods we have seen
so far, the only choice is to change the classes that define
the application functionality or to add classes specifically
designed to group selected parameters.

But in some cases this is either impossible or impractical as
we do not want to change our code only to achieve a specific
grouping of object parameters. This leads to code that is only
used to create the GUI itself. However, this is exactly what
we try to avoid.

Thus, VRL provides a feature called Parameter Groups.
This means that, parameters from object visualizations can
be selected and grouped in a separate window. This is shown
in Fig. 8 and 9.

3.5.3 Window groups

The problem now is that we still see all the objects, whether
important or not. Therefore VRL allows the definition of
Window Groups. A window group defines the location and

Fig. 8 Parameter groups
(Selection)

123

188 M. Hoffer et al.

Fig. 9 Parameter groups
(Result)

Fig. 10 Function plotter

the visibility of each window that is part of the group. This
enables the user to hide all objects that shall not be part of
the reduced user interface.

3.5.4 Example

Combining both features, an application workflow can be
simplified significantly. Figure 10 shows a simple function
plotter. It provides objects for defining the function that shall
be plotted, properties that define the function variables and
the visual appearance of the output. Finally, it shows the out-
put itself. It is an interactive 3D visualization of the evaluated
function.

We assume that the only important task is the definition
of the function and their parameters. The final application
interface is shown in Fig. 11.

3.5.5 Multiple views

As we have seen in Sect. 3.5.4, VRL enables the definition
of a task specific view. However, it is also possible to define
multiple window groups. This enables the definition of mul-
tiple task specific views. In the function-plotter-example this
could be a separate view for changing the appearance of the
visualization.

3.5.6 Limitations

Currently, the definition of a reduced user interface has some
limitations. When grouping parameters it is not possible to
choose between different component layouts and a parameter
cannot be grouped twice. As we think that this is an important
feature we plan to integrate advanced layout support in the
near future.

123

Visual reflection library 189

Fig. 11 Reduced interface for the function plotter (see Fig. 10)

4 VRL applications

Now we show some real examples to demonstrate the current
state of VRL.

4.1 BasicMath

BasicMath is an extension for VRL. BasicMath provides sev-
eral mathematical objects such as scalar, vector and matrix
and corresponding functions such as vector norm or matrix
vector multiplication etc. The mathematical objects are rep-
resented as visual instances. BasicMath enables visual for-
mulation of mathematical expression. Object names can be
displayed as mathematical expressions, i.e., special charac-
ters such as integral, norm are supported.

To render mathematical expressions BasicMath integrates
the MathML[16] renderer JEuclid [1].

However, it is not necessary to use MathML code for
object names. Plain text is also supported. All functions/-
operators can automatically create the name of their result.
By combining several functions/operators the name of the
last result consists of the complete expression. But the result
name can be overridden with an arbitrary expression.

Functions can be added from a popup menu to the canvas
of VRL-Studio. Objects like e.g. a matrix will be created and
added to canvas by a so called MatrixGenerator.

In addition to Functions/Operators and data elements,
BasicMath provides so called generators, one for each ele-
ment type (matrix, vector, etc.).

We illustrate the usage of generators and functions/oper-
ators with the help of the following example.

After creating two vector objects and one matrix object
via corresponding generators, we use the objects for calcula-
tions. In Fig. 12 objects for vector addition and matrix-vector
multiplication are used.

In Sect. 4.3.2 we describe a component that uses the data
objects shown in the example to interact with UG. In Fig. 13
we see a scalar, matrix and a vector object. They are used by
the component that interacts with UG.

It is possible to visually access data elements in differ-
ent ways, e.g., the data of a matrix object can be accessed
by a vector. An example is the manipulation of the matrix
diagonal. To enable this feature, BasicMath uses so called
mappings, i.e., bijective mappings between two index sets.
Visual changes of the data elements affect all visualizations
that use these data elements.

4.2 UG 3

In the following part of this article we want to show which
graphical components have been created for the current ver-
sion of UG. Furthermore, we describe their functionality and
how they can be used to simplify the UG workflow. We
make the assumption that a common user does not want to
implement the mathematical algorithms himself. That is, the
user wants to use the existing functionally to solve a specific
problem without deeper understanding of the workflow inter-
nals. The workflow itself is rather static. But the parameters

123

190 M. Hoffer et al.

Fig. 12 BasicMath sample session

Fig. 13 UGInput with three BasicMath elements

are subject to change and depend on the specific problem.
Therefore, all components allow one to interactively specify
selected parameters.

Additional type representations and components allow
the visualization and interactive manipulation of mathemat-
ical objects such as matrices, vectors and scalars. The exis-
tence/availability of these visualizations and corresponding
data structures enable the visual formulation of mathematical
contents/relations/subjects. This functionality is part of the
VRL extension BasicMath.

4.3 Line of action

4.3.1 Creating a VRL based graphical frontend

The development process of a VRL module that integrates a
specific UG workflow could be classified as follows:

– identify the problem specific parameters
– create custom type representations for special parameter

types

123

Visual reflection library 191

– create the Java classes that implement the necessary func-
tionality (will be visualized by VRL)

– create custom script files to store the user-specified para-
meters

– include the custom script files into the existing UG scripts

4.3.2 Components for the diffusion-convection-equation

To improve the handling of the UG components for the dif-
fusion convection equation

d

dt
(c ∗ u) − div(A ∗ ∇u + β ∗ u) = 0

and the results they create, special components were created.

UGInput shown in Fig. 13 on the right side allows one to
set the parameters of the diffusion convection equation and
visualizes the equation with user defined parameter names.
The equation is based on automatic generated MathML code.
This allows a flexible adaption of the visualization of the
equation.

Timesteps and geometry can be set by typing the number
respectively the path to the desired geometry file.

LivePlotter allows one to observe the evolution of the geom-
etry over time during the calculation. Furthermore, the geom-
etry can be freely translated, rotated and zoomed. With this
component we tried to enable the user to evaluate the current
solution.

LivePlotter was developed to valuate an intensive calcula-
tion in nearly real time, if the evolution of the corresponding
geometry is known or estimated to be of a special kind. So
the calculation can be aborted if the development did not fit
the desired progress.

SolutionPlotter shown in Fig. 14 was created to visualize
the evolution of the geometry after the competition is fin-
ished. SolutionPlotter allows the same interaction with the
geometry as LivePlotter but he can additionally replay the
development or visualize the geometry at a specific timestep.

The application area of the SolutionPlotter are e.g. iter-
ative processes where a big interest in the evolution of the
geometry and or the visual presentation of it.

PickPlotter shown in Fig. 15 allows different operation
states and actions. They are represented by buttons that are
shown on the left side of the visualization area.

In the translation-rotation mode it is possible to define a
custom rotation point on the geometry surface. When defin-
ing the rotation center the geometry will be translated. That
is, the rotation point will be moved to the center of the visu-
alization area.

Fig. 14 The SolutionPlotter component visualizing a calculated geom-
etry

Fig. 15 The PickPlotter component with a loaded geometry and two
selected areas

Additionally, there is the possibility to define boundary
conditions on the visualized geometry, which are also graph-
ically represented. There is one state to select all triangles
along the deep axis in a selection rectangle and one state to
select only the first visible triangle under the mouse pointer.

The type of the boundary condition can be selected by
pressing one of the three smaller buttons on the left lower
corner of the visualization area.

To notify UG about the selection this component can write
the custom information to a script file.

4.3.3 Components for the skin-model

The ”skin model” is a diffusion model where the diffusion
behavior of medical ointments and cosmetic creams can be
observed, which were applied on a piece of human skin.

123

192 M. Hoffer et al.

Fig. 16 All components of the user interface for the skin model

Based on the structure of the involved UG scripts which
are necessary for the calculation of the skin model we created
certain frontends.

All frontends which are necessary for starting the calcu-
lation of the skin model are shown in Fig. 16.

5 Conclusion

By directly using the public interface of Java objects it is
possible to highly increase the degree of automation in GUI
development. This leads to more development productivity
and efficiency. Automation is not fully possible for the defi-
nition of the problem domain and the visualization types that
are to be used. The VRL based extensions contain several
new type representations in addition to the already exist-
ing ones. Generally, visual programming will be improved
by adding new GUI elements that augment the support for
drag&drop and simplify the development by custom editor
styles.

Our intention is to allow the development of high quality
interfaces for simulation tools with minimal effort. We think
that this is an important step. It does reduce the probability
for program errors and the time-to-discovery. Finally it opens
the software to a wider range of users.

Acknowledgments We would like to thank Alexander Heusel, Daniel
Jungblut and Alfio Grillo for useful discussions during the preparation
of this paper.

References

1. Jeuclid. http://jeuclid.sourceforge.net (2010)
2. ProSTEP iViP Association, D.G.: Integration of simulation and

computation in a pdm environment, white paper. (2008).
3. Codehaus Foundation: Groovy 1.7. http://groovy.codehaus.org

(2009)
4. Eclipse Foundation: Eclipse 3.6.1. http://www.eclipse.org (2010)
5. Gamma, Erich, Helm, Richard, Johnson, Ralph, Vlissides, John:

Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston (1995)

6. Halloway, S.D.: Component Development for the Java Platform.
Addison-Wesley, Boston (2002)

7. Hoffer, M.: Methoden zur visuellen programmierung. Master’s the-
sis, Heidelberg, Univ., Diplomarb. (2009).

8. IBM: Visualization Data Explorer. http://www.opendx.org (1991)
9. Kolling, M., Quig, B., Patterson, A., Rosenberg, J.: The BlueJ sys-

tem and its pedagogy. Journal of Computer Science Education,
Special issue on Learning and Teaching Object Technology 13(4),
249–268 (2003). http://www.cs.kent.ac.uk/pubs/2003/2190

10. Lang, S., Wittum, G.: Large-scale density-driven flow simulations
using parallel unstructured grid adaptation and local multigrid
methods. Concurrency - Practice and Experience.

11. Loy, M., Eckstein, R., Wood, D., Elliot, J., Cole, B.: Java Swing,
2nd edn. O’Reilly, California (2002)

12. Nokia, Qt Development Frameworks: Qt 4.6. http://qt.nokia.com
(2009)

13. Oracle, formally Sun Microsystems: Java. http://www.oracle.com/
us/technologies/java/index.html (1996)

14. Oracle, formally Sun Microsystems: Javafx 1.3. http://javafx.com
(2010)

15. Oracle, formally Sun Microsystems: Netbeans ide 6.9.1. http://
www.netbeans.com (2010)

16. World Wide Web Consortium: MathML. http://www.w3.org/1999/
07/REC-MathML-19990707 (1999)

123

http://jeuclid.sourceforge.net
http://groovy.codehaus.org
http://www.eclipse.org
http://www.opendx.org
http://www.cs.kent.ac.uk/pubs/2003/2190
http://qt.nokia.com
http://www.oracle.com/us/technologies/java/index.html
http://www.oracle.com/us/technologies/java/index.html
http://javafx.com
http://www.netbeans.com
http://www.netbeans.com
http://www.w3.org/1999/07/REC-MathML-19990707
http://www.w3.org/1999/07/REC-MathML-19990707

	Visual reflection library: a framework for declarative GUI programming on the Java platform
	Abstract
	1 Introduction
	2 Declarative GUI development
	2.1 Definition
	2.2 VRL component types
	2.3 Object visualization
	2.4 Domain specific GUI elements
	2.5 Custom type representations

	3 Visual programming
	3.1 Data dependencies
	3.2 Codeblocks
	3.3 IDE features
	3.4 Persistence
	3.5 Creating applications
	3.5.1 Problem definition
	3.5.2 Parameter groups
	3.5.3 Window groups
	3.5.4 Example
	3.5.5 Multiple views
	3.5.6 Limitations

	4 VRL applications
	4.1 BasicMath
	4.2 UG 3
	4.3 Line of action
	4.3.1 Creating a VRL based graphical frontend
	4.3.2 Components for the diffusion-convection-equation
	4.3.3 Components for the skin-model

	5 Conclusion
	Acknowledgments
	References

