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Abstract We introduce a new composite adaptive Alge-
braic Multigrid (composite αAMG) method to solve systems
of linear equations without a-priori knowledge or assump-
tion on characteristics of near-null components of the AMG
preconditioned problem referred to as algebraic smoothness.
Our version of αAMG is a composite solver built through a
bootstrap strategy aimed to obtain a desired convergence rate.
The coarsening process employed to build each new solver
component relies on a pairwise aggregation scheme based
on weighted matching in a graph, successfully exploited for
reordering algorithms in sparse direct methods to enhance
diagonal dominance, and compatible relaxation. The pro-
posed compatible matching process replaces the commonly
used characterization of strength of connection in both the
coarse space selection and in the interpolation scheme. The
goal is to design a method leading to scalable AMG for a
wide class of problems that go beyond the standard elliptic
Partial Differential Equations (PDEs). In the present work,
we introduce the method and demonstrate its potential when
applied to symmetric positive definite linear systems aris-
ing from finite element discretization of highly anisotropic
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elliptic PDEs on structured and unstructured meshes. We
also report on some preliminary tests for 2D and 3D elas-
ticity problems as well as on problems from the University
of Florida Sparse Matrix Collection.
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1 Introduction

We are interested in solving large and sparse linear systems
of equations

Ax = b,

where A ∈ R
n×n is assumed symmetric positive definite

(s.p.d.), by algebraic multigrid (AMG) and more specifically
by aggregation based AMG. The AMG methods, originated
in [5], together with the smoothed aggregation AMG (or SA
AMG) [29], have become a powerful tool for solving prob-
lems of linear algebraic equations that typically arise from
discretization of elliptic PDEs. In recent years substantial
progress has been made to extend the applicability of AMG
to more general sparse linear systems by developing methods
that use appropriate adaptive strategies (cf., [3,4,8,9,20,23],
etc.) aimed at capturing the near-null components of the error
(sometimes referred to as algebraically smooth components)
that the current solver cannot efficiently handle so that they
are then used to improve the solver by modifying its hierarchy
of coarse spaces.

The approach that we utilize builds upon the adaptive
AMG ideas however presents several new features. It is also
fairly general in the sense that we do not assume any spe-
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60 P. D’Ambra, P. S. Vassilevski

cific knowledge of the near-nullspace of A (or of a precon-
ditioned version of A, such as B−1 A). The main philosophy
is the same as in the original adaptive AMG papers (cited
above); namely we test the current method (represented by
an operator B) applied to the trivial system Ax = 0 start-
ing with a nonzero random initial iterate x, by computing
x := (I − B−1 A)x, which effectively provides an approx-
imation to the eigenvector of B−1 A corresponding to the
minimal eigenvalue of B−1 A. If during this process a slow
convergence is encountered, we use the most recent iterate to
build a new coarse hierarchy. This is the first main difference
with the previously studied adaptive AMG methods. As a
result, we end up with a composite AMG solver B, given by
the product formula

I − B−1 A =
∏

j

(I − B−1
j A),

where each B j corresponds to a separate hierarchy con-
structed driven by a particular algebraically smooth vector.

Another difference in our approach is in the coarsening
process employed to obtain a multilevel hierarchy. We con-
sider coarsening by pairwise aggregation based on a weighted
matching (for definitions, see Sect. 2) applied to the matrix
adjacency graph. At each level of the hierarchy, starting from
a maximum product matching of the graph associated with
the current matrix, we generate two complementary coarser
vector spaces by simple piecewise constant interpolation of a
given algebraically smooth vector. We select the coarse space
based on the principles of compatible relaxation (originated
in [2]), i.e., we test the convergence of a pointwise smoother
on homogeneous systems associated to the two available
coarser matrices and choose as new coarse matrix and new
algebraically smooth vector those for which slower conver-
gence is observed. In fact, if we use matching so that the
aggregates gather together pairs of fine degrees of freedom
(or dofs) that are “strongly connected” the complementary
space gives rise to a hierarchically complement matrix that
is well-conditioned (when preconditioned by the smoother).
In general, the procedure can end up building a binary tree
of multiple coarse spaces by matching-based aggregation
where, at each level, selection of coarsening branch is based
on compatible relaxation of a given vector. We use both opti-
mal solution for maximum product matching and an approx-
imation algorithm and demonstrate the performance of our
adaptive AMG on the difficult (for multigrid) s.p.d. linear
systems arising from discretization of anisotropic PDEs on
structured and unstructured meshes. In particular, we demon-
strate that our coarsening strategy clearly detects the direction
of anisotropy in both structured and unstructured mesh cases.
We also include some preliminary tests of the method on (2D
and 3D) elasticity problems as well as on some matrices from
the University of Florida Sparse Matrix Collection.

The remainder of the paper is organized as follows. In Sect.
2, we recall the notion of graph associated to a sparse matrix
and remind the relation between maximum product bipartite
matching and linear algebra applications. Then we describe
the algorithm for pairwise aggregation based on weighted
matching. In Sect. 3, we introduce two algebraic coarsening
processes based on the pairwise aggregation, depending on
the weights we used for matching. The actual coarse vector
space is chosen based on compatible relaxation principles.
In Sect. 4, we outline the bootstrap strategy employed to
build a composite αAMG with a prescribed convergence rate,
whereas in Sect. 5 we present an extensive set of numerical
results illustrating our approach. Finally, some remarks and
future work are included in Sect. 6.

2 Pairwise aggregation based on weighted matching

To find matching in a graph is a classical problem in combi-
natorial optimization which has wide range of applications
in Sparse Linear Algebra [13]. The starting point is the rep-
resentation of the sparse matrices in terms of graphs [27]. Let
A = (ai j )i, j=1,...,n be a sparse matrix, the graph associated
with A is the pair GU = (V, E), where the vertex set V
correspond to the row/column indices of A and the edge set
E corresponds to the set of nonzeros of the matrix A so that
(i, j) ∈ E iff ai j �= 0. For matrices with symmetric sparsity
pattern, the edges (i, j) are undirected pairs of vertices, i.e.
(i, j) = ( j, i) ∈ E iff ai j �= 0 and a ji �= 0, and GU is called
undirected graph. In the case of a graph G P = {Vr ∪ Vc, E},
where the vertex set has a partition to two subsets Vr and
Vc (for example the rows and the columns of A), such that
(i, j) ∈ E connects i ∈ Vr and j ∈ Vc, the graph is called
bipartite [10]. A matching M ⊆ E in a graph (GU or G P )
is a set of edges such that no two edges share the same ver-
tex. The number of edges in M is called the cardinality of
the matching and a matching for GU or G P is referred to as
perfect one if its edges touch all vertices. We refer to [13]
and the reference herein for conditions which guarantee the
existence of perfect matching. A perfect matching M for GU

or G P corresponds to n nonzeros no two of which are in the
same row or column and can be represented in terms of a
column permutation

π j i =
{

1, if (i, j) ∈ M
0, otherwise

such that the matrix Aπ has a zero-free diagonal. Gen-
erally, in linear algebra applications, we are interested in
finding matching that controls the size of the diagonal ele-
ments of Aπ , and such a requirement is formulated in terms
of a maximum weighted matching problem, i.e. in finding
a matching M ⊆ E such that C(M) = ∑

(i, j)∈M ci j
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Adaptive AMG with coarsening based on compatible weighted matching 61

= maxM′ C(M′
), with M′

matching of GU /G P and ci j ≥
0 edge weights. In particular, matrices with larger entries on
the diagonal can be obtained by solving the following opti-
mization problem [12,13].

– Maximum Product Bipartite Matching Problem: Given
a graph G P corresponding to a sparse matrix A, find a
matching M that maximizes the product of the matched
entries, i.e., find a permutation matrix π such that∏

abs((Aπ)i i ) is maximum among all permutations.

Therefore, if row i is matched to column j in a maxi-
mum product bipartite matching problem, we can reasonably
assume that |ai j | ≈ maxk �=i |aik |, which in terms of the clas-
sical AMG characterization of the strength of matrix connec-
tions is equivalent to say that index i is strongly connected to
index j . The difference is that the maximum product bipar-
tite matching problem optimizes a global measure, whereas
in classical AMG the strength of connection is a local notion.
We demonstrate in the present paper that this global match-
ing is able to capture very accurately the direction of strong
anisotropy for difficult AMG test problems with anisotropy
that is not grid-aligned. We note however that the maximum
product bipartite matching problem if implemented exactly
can become too costly, on the other hand a similar match-
ing problem can be described for undirected graphs, so in
practice we use an approximation of the maximum product
matching problem in undirected graph to end up with setup
cost of order O(n) and still be able to capture the direction of
strong anisotropy as in the more expensive accurate solution
of the maximum product bipartite matching problem.

Starting from the above considerations, we propose
a coarsening process based on the pairwise aggregation
described in Algorithm 1. It builds a partition ak, k =
1, . . . , nc of the index set {1, . . . , n}, where each aggre-
gate ak is generally a pair of matched indices. In the gen-
eral case of possible unmatched indices, i.e., in the case of
non-perfect matchings (structurally rank-deficient matrices)
or sub-optimal solutions, we can obtain a partition with pos-
sible singletons.

We observe that Algorithm 1 is an automatic aggrega-
tion procedure once the matching is being constructed; it
only uses information on the matrix entries and no additional
information is needed. We note that to use pairwise aggrega-
tion for coarsening is not a new concept; it has been used pre-
viously, e.g., in the widely used partitioner METIS [18] and it
seems to be a common practice nowadays, cf., e.g., [7] and the
references therein. Our pairwise aggregation does not depend
on any user-defined threshold for strong/weakly connection
or coarse-grid quality measure, as in the case of pairwise
aggregations proposed in [24,25]. A main novelty in our pro-
cedure is the connection which we recognized between the
aggregation based on weighted matching and the algorithms

Algorithm 1: Pairwise aggregation based on weighted
matching

Data: sparse matrix A of dimension n
Result: n p , ns , nc and sets of aggregates a1, . . . anc

compute M weighted matching for A;
nc = 0, n p = 0, ns = 0;
U = [1, . . . , n];
while U �= ∅ do

Pick an i ∈ U ;
if ∃ j ∈ U \ {i} such that (i, j) ∈ M then

n p = n p + 1;
nc = nc + 1;
anc = {i, j};
U = U \ {i, j};

else
ns = ns + 1;
nc = nc + 1;
anc = {i};
U = U \ {i};

end
end

and software developed by the sparse direct solvers commu-
nity that utilizes matchings to reorder the sparse matrix with
the goal to improve its diagonal dominance [13]. In the fol-
lowing Sect. 3, we employ the aggregation procedure within
an adaptive method exploiting the relation between aggrega-
tion based on maximum product matching and the compatible
relaxation methods investigated previously [2,6,21].

Computation of a maximum product matching in a graph is
a challenging problem in terms of computational complexity,
indeed classical algorithms require a running time of O(n3)

[11]. On the other hand, the problem can be solved for bipar-
tite graphs with the widely used algorithm described in [12]
and implemented in the HSL-MC64 subroutine [16], whose
computational complexity is O(n(nnz+n) log n), where nnz
is the number of nonzeros of the matrix. The latter cost is a
worst case estimate. At any rate, from AMG perspective the
latter cost is still unacceptable since our ultimate goal is aim-
ing at O(n) algorithm. For that reason, we also use an approx-
imate version of a maximum product matching algorithm in
an undirected graph that uses O(n) operations. We demon-
strated that, although in the case of approximate matching,
the coarsening ratio of our approach is reduced with respect
to the coarsening by a factor of two in the exact matching, the
overall performance of the adaptive process does not deteri-
orate substantially.

3 Coarsening based on compatible weighted matching

3.1 Main ingredients for coarsening

Given a set of aggregates a1, . . . anc , built by Algorithm 1,
and a starting (arbitrary) vector w, per each pair al =
{i, j}, l = 1, . . . , n p, let
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wal = 1√
w2

i + w2
j

[
wi

w j

]
, w⊥

al
= 1√

w2
i + w2

j

[−w j

wi

]

be the normalized restrictions of w to the set al and its ortho-
normal complement. We then define the following matrices:

P̃c = blockdiag(wa1 , . . . , wan p
) ∈ R

2n p×n p ,

P̃ f = blockdiag(w⊥
a1

, . . . , w⊥
an p

) ∈ R
2n p×n p .

For the singletons al = {k}, l = 1, . . . , ns , (nc = n p + ns ,
n = 2n p + ns), we introduce the diagonal matrix:

W = diag(wk/|wk |) ∈ R
ns×ns .

From the above matrices, we obtain two prolongation matri-
ces corresponding to two complementary coarse index sets:

Pc =
(

P̃c 0
0 W

)
∈ R

n×nc , Pf =
(

P̃ f

0

)
∈ R

n×n p . (3.1)

The n × nc matrix Pc, referred to as tentative prolon-
gator, maps vectors associated with the coarse index set
{1, 2, . . . , nc} on the original fine-grid set {1, 2, . . . , n},
whereas Pf , referred to as complementary tentative prolon-
gator, is an n ×n p matrix which transfers vectors associated
with the complementary coarse index set {1, 2, . . . , n p}
also on the fine-grid index set {1, 2, . . . , n}. We recall that
nc = n p + ns and n = 2n p + ns , where n p is the number of
pairwise aggregates and ns is the number of singletons. Note
that R

n = Range(Pc)⊕⊥Range(Pf ), where Range(Pc) 
 w
and Range(Pf ) 
 w⊥ form an orthogonal decomposition of
R

n . In other words, we have that the matrix P = [
Pf , Pc

]

has orthogonal columns.
After proper reordering of A, the following two coarser

matrices can be formed via Galerkin triple matrix product

Ac = PT
c APc ∈ R

nc×nc ,

A f = PT
f APf ∈ R

n p×n p . (3.2)

These are the diagonal blocks of the transformed fine-grid
matrix PT AP under the orthogonal transformation P , i.e.,
we have

PT AP =
[

A f A f c

Acf Ac

]
.

The off-diagonal blocks read: A f c = PT
f APc and Acf =

PT
c APf .

The choice of the best coarse matrix Ac for a multilevel
hierarchy can be driven by the basic principle of compati-
ble relaxation first introduced by Brandt in [2] and extended
in [14] (see also [30]). The compatible relaxation is defined
as a relaxation scheme which is able to keep coarse-level
variables invariant. It gives a practical way to measure the
quality of a set of coarse variables, indeed, since in an effi-
cient multigrid method relaxation scheme has to be effective

on the fine variables, the convergence rate of a compatible
relaxation scheme can be used as a measure of the quality of
a set of coarse variables. This basic idea was used in different
approaches to select coarse grids [6,21]. Here, we apply the
principle of compatible relaxation to choose the best coarse
matrix from the two available matrices in (3.2), and the cor-
responding coarse index set, by applying a simple point-wise
relaxation scheme to the homogeneous systems associated to
each of the matrices, starting from a random initial guess and
then relaxing on the two complementary vector spaces sepa-
rately. If the vector w is chosen based on a relaxation scheme
applied to the original matrix A so that it is in the near-null
space of A, it is natural to expect that A f will be better condi-
tioned than Ac. For a more general iterative process, we allow
the option to choose between A f and Ac when selecting the
coarse-level variables.

3.2 The multilevel adaptive coarsening schemes

Our overall adaptive multilevel coarsening strategy can be
described as follows. We propose two versions. The first one,
referred to as coarsening based on compatible matching (ver-
sion 1) is sketched in Algorithm 2. We start with the given
system matrix and a given smooth vector, for example the
unitary vector. Then, we apply Algorithm 1 for building the
two complementary coarse matrices in (3.2). After that, we
test the convergence of a simple smoother on homogeneous
systems associated to the two available matrices and choose
as new coarse matrix and new algebraically smooth vector
those for which slower convergence is observed. The process
can be applied in a recursive way until a desired small size
of the coarse matrix is obtained. Therefore, our procedure
builds a binary tree of multiple coarse spaces by matching-
based aggregation, where, at each level, selection of the new
coarsening branch is based on compatible relaxation of a
given vector.

Note that, as shown in [26], in the case of strongly diag-
onally dominant or s.p.d. matrices maximum product (per-
fect) matching produces permutation matrices equal to the
identity matrices, i.e. it produces a set of n self-aggregated
indices. Therefore, in order to obtain an effective pairwise
aggregation, in Algorithm 2, we apply the maximum prod-
uct matching to the matrix Ak − diag(Ak), where diag(Ak)

is the diagonal matrix obtained by the diagonal elements of
Ak . We also observe that in Algorithm 2, when we build the
two complementary coarse matrices Ac and A f , we need to
compute the normalized restriction of the smooth vector w
on each set of the partition computed by Algorithm 1. It may
happen that during the coarsening process, the smooth vec-
tor components corresponding to some set of the partition are
very small, i.e. the corresponding error components are suffi-
ciently damped by the smoother. In these cases we associate
the corresponding unknowns to the vector space Range(Pf ).
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Adaptive AMG with coarsening based on compatible weighted matching 63

Algorithm 2: Coarsening based on compatible match-
ing (version 1)

Data: A matrix, w (smooth) vector, maxsi ze maximum size for
the coarsest matrix

Result: hierarchy of coarse matrices Ak (and intergrid operators)
A1 = A, k = 1;
relax ν1 times on A1w1 = 0 starting with w;
while size(Ak) > maxsize do

compute partition al by Algorithm 1 applied to
Ak − diag(Ak);
build Pk

c , Rk
c = (Pk

c )T , Ak
c and Pk

f , Rk
f = (Pk

f )
T , Ak

f from al

and wk ;
relax ν1 times on Ak

cwc = 0 and on Ak
f w f = 0 starting with

a random guess;
estimate convergence rates ρ f and ρc;
if ρ f < ρc then

Ak+1 = Ak
c , wk+1 = wc;

else
Ak+1 = Ak

f , wk+1 = w f ;

end
k = k + 1;

end

More specifically, if al = {i, j} is a pair of matched indices

such that
√

w2
i + w2

j < TOL, we consider the corresponding

indices as unpaired. Furthermore, per each index i such that
|wi | < TOL, we consider i as only fine-grid index and we
modify operators in (3.1) including a zero row in the diag-
onal matrix W for Pc, while the complementary tentative
prolongator appears as in the following:

Pf =
(

P̃ f 0
0 I

)
∈ R

n×(n p+n f ),

where I ∈ R
n f ×n f is the identity matrix and n f is the number

of only fine-grid indices. In our experiments we choose TOL
as the machine epsilon.

Convergence rates in Algorithm 2 can be estimated as
the ratios of the A-norm of two successive iterates, that is
ρc/ f = ‖wk

c/ f ‖Ac/ f /‖wk−1
c/ f ‖Ac/ f .

There is an alternative to Algorithm 2 that we consider,
still using both the orthogonal decomposition of R

n defined
by the matrices in (3.1) and the principles of compatible
relaxation to build an effective coarsening process. Indeed,
after we have built the matrices in (3.2), we accept Ac as
coarse matrix if the corresponding complementary matrix
A f is as diagonally-dominant as possible, i.e., if A f has the
compatible relaxation fast to converge. We observe that given
the original matrix A, its associated graph GU or G P , and a
vector w, the diagonal entries of the resulting A f are a subset
of the following values:

âi, j = 1

w2
j + w2

i

[−w j

wi

]T (
ai,i ai, j

a j,i a j, j

) [−w j

wi

]
,

(i, j) ∈ E . (3.3)

Consider the thus modified symmetric matrix Â = (
âi, j

)

having a null diagonal and the same sparsity pattern as A.
Note that building Â has a computational cost of O(nnz).
Therefore, if we compute a maximum product weighted
matching M ⊆ E from Â and build the corresponding aggre-
gates, we see that the complementary tentative prolongator
Pf in (3.1) produces a matrix A f which has on its diag-
onal entries âi, j , (i, j) ∈ M with maximal product. The
latter can be seen as an approximation to the notion of diag-
onal dominance giving rise to a fast convergent compatible
relaxation. The process can be applied in a recursive way to
define a new adaptive coarsening algorithm which we refer
to as coarsening based on compatible matching (version 2).
It is sketched in Algorithm 3. Note that also in this algo-
rithm, at each level possible small smooth vector entries are
associated to only-fine grid indices.

Algorithm 3: Coarsening based on compatible match-
ing (version 2)

Data: A matrix, w (smooth) vector, maxsi ze maximum size for
the coarsest matrix

Result: hierarchy of coarse matrices Ak (and intergrid operators)
A1 = A, k = 1;
relax ν1 times on A1w1 = 0 starting with w;
while size(Ak) > maxsize do

build Âk from Ak and wk ;
compute partition al by Algorithm 1 applied to Âk ;
build Pk

c , Rk
c = (Pk

c )T and Ak
c from al and wk ;

relax ν1 times on Ak
cwc = 0 starting with a random guess;

Ak+1 = Ak
c , wk+1 = wc;

k = k + 1;
end

The above two compatible matching-based coarsening
algorithms can be used to define a hierarchy of coarse vec-
tor spaces and matrices from which a multilevel method B
can be designed. In the following we describe an adaptive
strategy to improve the efficiency of an initial multilevel
method, obtained with compatible matching-based coarsen-
ing, by successively building a composite method with a pre-
scribed convergence rate.

4 Composite AMG with prescribed convergence rate

Following the αAMG principle, once an algebraic multilevel
solver B has been constructed, we test its performance by
solving the homogeneous problem Ax = 0, i.e. by perform-
ing the following iterations:

xk = (I − B−1 A)xk−1, k = 1, 2, . . . ,

starting with a random initial iterate x0 and monitoring con-
vergence through two successive values of the A-norm of the
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error (which is equal to the respective iterate, since the exact
solution is zero). The above iterates provide approximation to
the lowest eigenmode of B−1 A, which is commonly referred
to as algebraic smooth vectors with respect to the current
AMG method. If the convergence factor of the method is
close to one, we can select w = xk/‖xk‖A and apply one of
the coarsening algorithms described in the preceding section
to generate a new method B1 based on this new vector w.
Assuming that we have constructed two (or more) methods
Br , r = 0, 1, . . . , m via the above bootstrap scheme aimed
at improving the initial AMG, we consider the homogeneous
system and monitor the convergence of the following com-
posite method, starting with a random initial guess x0,

xk =
m∏

r=1

(I − B−1
r A)xk−1, k = 1, 2, . . . , (4.1)

or of its symmetrized version:

xk =
2m+1∏

r=0

(I − B−1
r A)xk−1, k = 1, 2, . . . , (4.2)

where Bm+r = Bm+1−r , r = 1, . . . , m + 1. The process
may be repeated by computing at each stage a new multilevel
method until the convergence rate of the composite AMG
is acceptable. The final adaptive procedure is sketched in
Algorithm 4.

Algorithm 4: Composite αAMG - Setup Phase
Building Phase: build a new AMG component

1. let m = 1 and w1 (be an initial vector,
e.g. w1 = 1);

2. apply Algorithm 2 or Algorithm 3 to A and wm

for building hierarchy of coarser matrices Ak and
prolongators Pk ;

3. define Bm as a standard (V, W, or FM)-cycle
based on the new hierarchy;

Testing Phase: apply the composite AMG and expose (further)
smooth errors

3. let x0 a random vector;
4. apply iterations (4.1) or (4.2) for ν2 times

on Ax = 0;
5. estimate convergence rate ρ of the

composite AMG;
6. if ρ > ρdesired , set wm+1 = xν2 /‖xν2‖A,

m = m + 1, go to 2.

5 Results

In this section we illustrate the performance of our composite
αAMG in terms of the cost of the setup phase described in

Algorithm 4 and the ability of the coarsening procedures
based on maximum product matching to obtain effective
coarse grids.

We considered the following anisotropic PDE posed in the
unit square, when homogeneous Dirichlet boundary condi-
tions are considered:

−div(K ∇u) = f,

where K is the coefficient matrix

K =
[

a c
c b

]
, with

⎧
⎨

⎩

a = ε + cos2(θ)

b = ε + sin2(θ)

c = cos(θ) sin(θ)

The parameter 0 < ε ≤ 1 defines the strength of
anisotropy in the problem, while the parameter θ specifies the
direction of anisotropy. In the following we discuss results
related to ε = 0.001 and θ = 0, π/8, π/4, π/3, π/2 for a
total of 5 test cases, which we refer to as Test Case 1 to 5,
respectively. The above problem was discretized by the Mat-
lab PDE toolbox, using bilinear finite elements on triangular
and rectangular meshes.

We measure the setup cost in terms of AMG components
(nstages) built by the adaptive process in Algorithm 4, both
in the case of the coarsening described in Algorithm 2 and
in the case of Algorithm 3. In addition to the number of the
components, we also report, per each test case and per each
mesh, the convergence factor (ρ) of the composite solver, the
average number of levels (nlev) of all built solver components
and the average of their operator complexity (cmpx). This last
parameter is commonly defined as the ratio between the sum
of nonzero entries of the matrices of all levels and the num-
ber of nonzero entries of the fine matrix; it gives an estimate
of the cost of application of a cycle. Many algorithmic and
parameter choices are possible to test our method; here we
discuss results related to the following particular choices. The
desired convergence factor required for the composite AMG
was set to ρdesired = 0.7 and a symmetrized multiplicative
composition of the AMG components as in (4.2) was applied.
The number of iterations used to estimate solver convergence
rates at each stage was set to ν2 = 15. Weighted Jacobi (with
weight ω = 1/3 for triangular meshes and ω = 1/4 for rec-
tangular meshes) was applied as relaxation scheme in Algo-
rithms 2 and 3, where we have fixed the number of iterations
equal to ν1 = 20. We stop the coarsening process when the
size of the coarsest matrix was at most maxsize = 100. Note
that we did various experiments with increased values of ν1

and ν2 but estimated values of the obtained convergence rates
did not differ significantly.

We developed a Matlab implementation of the compos-
ite αAMG and we analyze its behavior when the coars-
ening algorithm is based on algorithm HSL-MC64 (Sect.
5.1), or based on a Matlab implementation of the half-
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approximation maximum weighted matching algorithm for
undirected graphs described in [28] (Sect. 5.2).

5.1 Composite AMG based on exact matching

Here we discuss results obtained using the HSL-MC64 rou-
tine which, for non-singular matrices, is able to compute a
perfect weighted matching for bipartite sparse matrix graphs.
In this case, Algorithm 1 has a coarsening factor less but close
to two, since it can produce a (small) number of singletons
(unaggregated DOFs), essentially due to possible unsymmet-
ric matching (e.g. row i is matched at column j and row j
is matched at column k, with k �= i). Since the cost for
application of exact matching is about O(n2 log n), i.e. it is
super-linear, in the following we analyze the setup cost of our
bootstrap strategy for building a composite multigrid of type
(4.2), when each AMG component was a W-cycle, which has
a super-linear complexity for coarsening factor less than two,
as in our case. Later on, we relax this cycle to a hybrid V–W
one (cf., e.g., [30]) in order to ensure order O(n) cost of the
cycle. One sweep of symmetric Gauss-Seidel was used as
both pre/post smoother and as coarsest level solver.

5.1.1 Unstructured mesh

In this section we present results for matrices correspond-
ing to discretization of our test cases on unstructured
triangular meshes with a total number of nodes n =
2705, 10657, 42305, that correspond to three different mesh
sizes. We report, in Tables 1 and 2, all parameters leading to
the setup cost of the composite AMG achieving convergence
rate not larger than the prescribed one, ρdesired = 0.7.

We can see that in all the cases our method, for both coars-
ening algorithms (Algorithms 2 and 3), shows very similar
results and it is able to achieve a convergence factor less than
the desired one with an acceptable number of components
(denoted as nstages in the tables). This demonstrates feasi-
bility and robustness of our approach. If we look closer at
the convergence behavior in the different test cases, we can
observe that the method shows very good efficiency and scal-
ability on Test Case 2, where a convergence rate much lower
than the required one is obtained, for all mesh sizes, by build-
ing only 1 AMG component. An increase in the number of
coarsening levels corresponding to increased mesh size pro-
duces only a slight degradation in the convergence rate of
the solver. In all other test cases, the convergence behavior
appears mesh dependent, showing an increase of the number
of solver components when the mesh gets refined. Indeed, in
all cases with the exception of Test Case 2, we need 5 or 6
components to get the desired convergence rate for the finest
mesh versus 1 or 2 components needed in the case of the
smallest mesh size. In all cases the average operator com-
plexity over all constructed solver components is about two,

Table 1 Setup cost for different mesh sizes when exact bipartite match-
ing is used for aggregation.

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 2

Test Case 1 2705 1 0.69 6 1.96

10675 3 0.63 8 1.98

42305 6 0.66 10 1.99

Test Case 2 2705 1 0.29 6 1.96

10675 1 0.38 8 1.99

42305 1 0.50 10 2.00

Test Case 3 2705 1 0.69 6 1.93

10675 3 0.68 8 1.98

42305 6 0.68 10 2.00

Test Case 4 2705 1 0.70 6 1.95

10675 3 0.63 8 1.99

42305 6 0.65 10 2.00

Test Case 5 2705 1 0.70 6 1.96

10675 2 0.70 8 1.99

42305 5 0.67 10 2.00

Table 2 Setup cost for different mesh sizes when exact bipartite match-
ing is used for aggregation.

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 3

Test Case 1 2705 1 0.69 6 1.94

10657 3 0.64 8 1.98

42305 5 0.69 11 2.00

Test Case 2 2705 1 0.29 6 1.95

10657 1 0.36 8 1.99

42305 1 0.50 10 2.00

Test Case 3 2705 2 0.58 6 1.94

10657 3 0.67 8 1.98

42305 5 0.70 10 2.00

Test Case 4 2705 2 0.51 6 1.94

10657 3 0.63 8 1.98

42305 6 0.70 10 2.00

Test Case 5 2705 1 0.70 6 1.95

10657 3 0.59 8 1.99

42305 5 0.69 10 2.00

with a slight increase (in most cases about 2%, up to 15 %
in the 3D elasticity test presented later on when the matrix
dimension increases).

Concerning the performance of the coarsening process,
we observe that both versions of the compatible weighted
bipartite matching generate similar coarsening trees. More
specifically, we see that Algorithm 2 based on an adaptive
choice of the coarsening tree branch which depends on the
convergence behavior of the relaxation scheme applied to
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Table 3 Setup cost for different mesh sizes when exact bipartite match-
ing is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 2

Test Case 1 64 × 64 1 0.63 7 2.00

128 × 128 1 0.70 9 2.10

256 × 256 2 0.61 11 2.10

Test Case 2 64 × 64 3 0.59 7 1.98

128 × 128 4 0.62 9 2.00

256 × 256 6 0.67 11 2.00

Test Case 3 64 × 64 1 0.36 7 1.95

128 × 128 1 0.55 9 1.97

256 × 256 2 0.56 11 1.98

Test Case 4 64 × 64 2 0.66 7 1.97

128 × 128 4 0.68 9 2.00

256 × 256 8 0.67 11 2.00

Table 4 Setup cost for different mesh sizes when exact bipartite match-
ing is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 3

Test Case 1 64 × 64 1 0.40 7 2.00

128 × 128 1 0.63 9 2.10

256 × 256 2 0.61 11 2.10

Test Case 2 64 × 64 2 0.64 7 1.99

128 × 128 4 0.57 9 2.00

256 × 256 5 0.70 11 2.01

Test Case 3 64 × 64 1 0.28 7 1.95

128 × 128 1 0.53 9 1.97

256 × 256 2 0.56 11 1.99

Test Case 4 64 × 64 2 0.62 7 1.96

128 × 128 4 0.64 8 1.98

256 × 256 7 0.67 11 1.99

two orthogonal vector spaces always chooses (at each level)
the tree branch associated with the matrix Ac. This shows
that the pairwise aggregation algorithm based on maximum
product matching of the original system matrix (that is A, not
the modified one, Â) is able to detect strong matrix connec-
tions (since then A f has faster to converge compatible relax-
ation) for our test cases. In Figs. 1 and 2, we can see that the
estimated convergence factors ρc and ρ f of the compatible
relaxation applied to the matrices Ac and A f respectively
produced by our two coarsening schemes, Algorithm 2 and
Algorithm 3, have very similar pattern. The coarsening trees
depicted in Figs. 1 and 2 are representative of the behavior
of the coarsening process for each component of the com-
posite αAMG solvers built for all considered test cases and
various mesh sizes. More specifically, we observe that the

Fig. 1 Test Case 5 (θ = π/2), n = 2705. Coarsening tree based on
Algorithm 2 and exact bipartite matching

Fig. 2 Test Case 5 (θ = π/2), n = 2705. Coarsening tree based on
Algorithm 3 and exact bipartite matching

estimated convergence factor of the compatible relaxation,
that is, of the weighted Jacobi applied to the homogeneous
system associated with A f built at each coarsening level,
decreases fairly when the number of levels increases and
stays within the range [0.85, 0.71] for all tested mesh sizes.
Such bounded convergence rates of the compatible relaxation
when the number of levels and the problem size increase are
good indication that our two coarsening schemes are capable
of producing scalable AMG. In the following figures, Figs. 3
and 4, we show illustration of the pattern of the aggregates (or
sparsity of the interpolation matrices) built by our two coars-
ening algorithms for two different test cases corresponding to
the smallest problem size. Note that points corresponding to
fine grid are represented in the figures by symbol + in black,
while orange lines and boxes represent aggregates built at
the coarsest level. The number of aggregates at the coarsest
level is nc = 93 for both pictures in Fig. 3, while in Fig. 4
we have nc = 92 for the picture on the top, corresponding
to Algorithm 2, and nc = 91 and nc = 92, for the pictures
in the middle and on the bottom, respectively, corresponding
to the 2-stages AMG built when Algorithm 3 is applied. In
Figs. 3 and 4 we can clearly see that both coarsening algo-
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Fig. 3 Test case 1 (θ = 0), n = 2705. Coarsest interpolation matrices
pattern built by Algorithm 2 (top) and Algorithm 3 (bottom) with exact
bipartite matching

rithms were able to produce semi-coarsening which detects
the direction of anisotropy by building aggregates aligned
with the x−direction for Test Case 1 and with the main diag-
onal for Test Case 3.

5.1.2 Structured mesh

In this subsection we report results for linear systems arising
from the test cases presented in the previous subsection, cor-
responding to θ = 0, π/8, π/4 and π/3, now using rectangu-
lar mesh with increasing number of nodes in the discretiza-
tion. The goal is to demonstrate that our coarsening algo-
rithms can easily detect grid-aligned anisotropy (π/4) and
after some additional work, the adaptive procedure can pro-
duce semi-coarsening also in the non-grid aligned anisotropic
case (π/3). This is indeed the case and is illustrated in Figs.
7 and 8 for a mesh with 40 internal nodes per each direc-
tion, where the number of aggregates at the coarsest level
are nc = 63 and nc = 60 for the pictures at the top and the
bottom of Fig. 7, respectively and nc = 56 and nc = 58 for
the pictures at the top and the bottom of Fig. 8, respectively.
Note that in Fig. 7, at the top left and bottom right, black
bullets correspond to nodes not aggregated due to near zero
smooth error at these points obtained after relaxation.

Fig. 4 Test case 3 (θ = π/4), n = 2705. Coarsest interpolation matri-
ces pattern built by Algorithm 2 (top) and Algorithm 3 (center and
bottom) with exact bipartite matching

The parameter setting to construct the solver, the smoother
and the algorithmic choices are the same as in the previous
unstructured mesh case (Table 3).

We first note that, as in the case of unstructured meshes,
the two coarsening processes give similar results for all the
test cases. In terms of setup cost, we observe that in the easy
case of grid-aligned anisotropy, Test Case 1 and Test Case 3,
only 1 or at most 2 components are needed to achieve conver-
gence factor not greater than the desired one showing a very
good scalability of the method. On the other hand, as in the
unstructured grid case, for Test Case 2 and Test Case 4 when
the anisotropy is not grid-aligned, we observe a degrada-
tion of the scalability, i.e., the number of components needed
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Fig. 5 Test case 4 (θ = π/3), n = 64 × 64. Coarsening tree based on
Algorithm 2 and exact bipartite matching.

Fig. 6 Test case 4 (θ = π/3), n = 64 × 64. Coarsening tree based on
Algorithm 3 and exact bipartite matching.

to reach the desired convergence factor increases when the
mesh is refined. Also for these test cases the average operator
complexity is about two for each mesh size similarly to the
unstructured mesh case. As in the unstructured mesh case
described in the previous section, we observe that the behav-
ior of the coarsening process is very similar per each AMG
component of the composite solver. It also appears compa-
rable to that obtained for the same test cases arising from
discretization on unstructured grids and discussed before,
although here we observed almost constant convergence rate
of the compatible relaxation (≈ 0.8) at each level of the
coarsening tree, for all test cases and each mesh. As repre-
sentatives of the general behavior, we draw in Figs. 5 and 6
the coarsening trees built by two versions of our matching-
based coarsening methods for the first component of the 2-
stage composite AMG for Test case 4 using the smallest size
structured mesh (Table 4).

Fig. 7 Test Case 3 (θ = π/4), n = 40 × 40. Coarsest interpolation
matrices pattern built by Algorithm 2 (top) and Algorithm 3 (bottom)
with exact bipartite matching

5.2 Composite AMG based on approximate matching

As we remark at the end of Sect. 2, theHSL-MC64 subroutine
used for computing a maximum product matching in a bipar-
tite graph has a non-optimal computational complexity. This
is not desirable if used in multigrid context, where we aim to
obtain optimal O(n) computational complexity method. In
order to overcome the super-linear computational complex-
ity of the algorithms for exact weighted matching, we tested
an algorithm which allows to obtain a matching in a general
graph with weight about 1/2 of the maximum, also known as
half-approximate matching, with O(n) computational com-
plexity [28].

Motivated by the wide range of applications, to obtain
linear-time approximate algorithms with increasing perfor-
mance ratio as well as effective parallel implementations
of such approximate algorithms is currently an active area
of research (see for example, [11,15,22]) Our aim here is
to assess the impact of using half-approximate matching
in Algorithm 1 during the coarsening process described in
Sect. 3 as well as its impact on the convergence behavior and
setup cost of our composite αAMG. All results discussed in
what follows are obtained using our Matlab implementation
of the adaptive AMG where the HSL-MC64 subroutine was
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Fig. 8 Test Case 4 (θ = π/3), n = 40 × 40. Coarsest interpolation
matrices pattern built by Algorithm 2 (top) and 3 (bottom) with exact
bipartite matching.

substituted by a Matlab function implementing the matching
algorithm described in [28].

We report tables that contain the parameters describing
the setup cost of the composite AMG for the same test
cases introduced in Sect. 5 for both unstructured and struc-
tured meshes. Algorithmic choices and parameter settings
are the same as before, however now instead of using W
cycle, in order to have optimal multigrid components cou-
pled with linear complexity matching, we apply a hybrid
V–W cycle which allows to obtain a O(n) linear complexity
cycle. Again, we use one sweep of symmetric Gauss-Seidel
both as pre/post smoother and coarsest level solver.

5.2.1 Unstructured mesh

As, in the case of exact bipartite matching, we first discuss
results obtained on triangular meshes with a total number of
nodes n = 2,705, 10,657, 42,305, respectively, correspond-
ing to three different mesh sizes and all five test cases (with
angle of anisotropy θ = 0, π/8, π/3, π/4, π/2). We report
in Tables 5 and 6 the characteristics of the setup cost of the
composite AMG needed to achieve pre-selected convergence
factor ρdesired = 0.7, for both coarsening algorithms.

Table 5 Setup cost for different mesh sizes when approximate graph
matching is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 2

Test Case 1 2705 3 0.49 7 2.13

10675 4 0.62 9 2.16

42305 6 0.67 12 2.17

Test Case 2 2705 1 0.47 7 2.12

10675 1 0.63 9 2.15

42305 2 0.54 11 2.16

Test Case 3 2705 3 0.59 7 2.12

10675 5 0.58 9 2.15

42305 7 0.65 12 2.16

Test Case 4 2705 3 0.46 7 2.12

10675 4 0.65 9 2.16

42305 6 0.70 12 2.17

Test Case 5 2705 3 0.55 7 2.12

10675 4 0.57 9 2.16

42305 6 0.67 12 2.17

Table 6 Setup cost for different mesh sizes when approximate graph
matching is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 3

Test Case 1 2705 3 0.54 7 2.12

10657 5 0.59 9 2.16

42305 6 0.68 12 2.17

Test Case 2 2705 1 0.49 7 2.14

10657 1 0.64 9 2.17

42305 2 0.56 11 2.17

Test Case 3 2705 3 0.54 7 2.12

10657 4 0.69 9 2.16

42305 8 0.70 12 2.17

Test Case 4 2705 3 0.45 7 2.13

10657 5 0.57 9 2.16

42305 7 0.70 12 2.17

Test Case 5 2705 2 0.67 7 2.12

10657 4 0.62 9 2.16

42305 6 0.68 12 2.17

A general observation is that as in the case of exact bipar-
tite matching, the two coarsening algorithms give similar
convergence behavior also in the case of approximate match-
ing. Indeed, looking at the coarsening trees obtained per
each AMG component (see Figs. 9, 10) we observe the same
behavior showed in Sect. 5.1. On the other hand, using half-
approximate matchings produces coarsening with factor less
than two due to a larger number of singletons than in the
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Fig. 9 Test Case 5 (θ = π/2), n = 2705. Coarsening tree based on
Algorithm 2 and approximate graph matching.

case of aggregation based on exact matching. This happens
because, while the exact weighted matching implemented in
HSL-MC64 computes weighted matching with maximum
cardinality (perfect matchings for non-singular matrices),
the approximate algorithm from [28] computes a maximal
weighted matching, not necessarily of maximum cardinality.
The reduced coarsening factor affects the number of coars-
ening levels (on average by one), and as a result leads to a
slight increase of the average operator complexity. We recall,
that we stop the coarsening process when the size of the
coarse problem reaches certain threshold. On the other hand,
as expected, the use of the hybrid V–W cycle generally affects
the scalability of the composite AMG. Indeed in all test cases,
we observe a slight increase in the number of components (1
or 2 additional components, except for Test Case 3 with the
largest mesh and Algorithm 3, which requires 3 additional
components) needed to reach the desired convergence fac-
tor. In Figs. 11 and 12 we show the pattern of the aggregates
built by the two coarsening algorithms for the first compo-
nent of the composite AMG solvers built for Test Case 1 and
Test Case 3 with the smallest mesh. In these cases the num-
ber of aggregates at the coarsest level is nc = 72 (top) and
nc = 69 (bottom) in Fig. 11, nc = 74 (top) and nc = 67
(bottom) in Fig. 12. The figures in both cases show that both
coarsening algorithms are able to fairly detect the direction
of anisotropy however not as accurately as the aggregates
obtained using exact matching (see Figs. 3; 4). The latter
appear better aligned with the direction of anisotropy than
the ones obtained using half-approximate matching.

5.2.2 Structured mesh

In the following we report the same results as in the previous
subsection corresponding to the construction of composite
AMG with a desired convergence rate, now on structured
meshes, using half-approximate matching for aggregation.

Fig. 10 Test Case 5 (θ = π/2), n = 2705. Coarsening tree based on
Algorithm 3 and approximate graph matching

Fig. 11 Test case 1 (θ = 0), n = 2705. Coarsest interpolation matrices
pattern built by Algorithms 2 (top) and 3 (bottom) with approximate
graph matching

Also, in order to have optimal O(n) setup complexity for
each solver component, we apply the hybrid V–W cycle (to
compensate for the coarsening factor less than two). All other
algorithmic choices are the same as in Sect. 5.1.2.

We observe from Tables 7 and 8 that using half-
approximate matching coupled with the hybrid V–W does
not affect in a significant way the convergence behavior of
the constructed composite αAMG. We generally see, and not
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Fig. 12 Test case 3 (θ = π/4), n = 2705. Coarsest interpolation
matrices pattern built by Algorithms 2 and 3 (bottom) with approximate
graph matching

Table 7 Setup cost for different mesh sizes when approximate graph
matching is used for aggregation.

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 2

Test Case 1 64 × 64 1 0.62 7 2.12

128 × 128 2 0.59 10 2.17

256 × 256 3 0.66 12 2.19

Test Case 2 64 × 64 3 0.60 7 2.00

128 × 128 5 0.57 10 2.03

256 × 256 8 0.67 12 2.04

Test Case 3 64 × 64 1 0.58 8 2.00

128 × 128 2 0.47 10 2.02

256 × 256 3 0.62 12 2.04

Test Case 4 64 × 64 3 0.57 8 2.04

128 × 128 4 0.61 10 2.06

256 × 256 8 0.62 12 2.07

in all cases, an increase of one additional solver component
versus the counterpart results discussed in Sect. 5.1.2, except
for Test Case 2 where in the case of the largest mesh Algo-
rithm 2 requires two more components than the counterpart in
Table 3.

Table 8 Setup cost for different mesh sizes when approximate graph
matching is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 3

Test Case 1 64 × 64 2 0.59 8 2.23

128 × 128 3 0.67 10 2.30

256 × 256 5 0.63 12 2.36

Test Case 2 64 × 64 2 0.63 8 2.10

128 × 128 3 0.69 10 2.13

256 × 256 6 0.65 12 2.10

Test Case 3 64 × 64 2 0.60 8 2.00

128 × 128 2 0.57 10 2.05

256 × 256 3 0.62 12 2.07

Test Case 4 64 × 64 3 0.62 8 2.08

128 × 128 5 0.56 10 2.11

256 × 256 8 0.65 12 2.12

Fig. 13 Test Case 3 (θ = π/4), n = 40 × 40. Coarsest interpola-
tion matrices pattern built by Algorithms 2 (top) and 3 (bottom) with
approximate graph matching.

In Figs. 13 and 14 we show the pattern of the interpolation
matrices built by our two coarsening processes for 40 × 40
rectangular fine mesh.

The last figures also show that using half-approxima-
te matching produces aggregates with fairly similar quality
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Fig. 14 Test Case 4 (θ = π/3), n = 40 × 40. Coarsest interpolation
matrices pattern built by Algorithm 2 and 3 (bottom) with approximate
graph matching

compared with the aggregates obtained by the exact matching
displayed in Figs. 7 and 8.

5.3 Further results

In order to assess the influence of the strength of ani-
sotropy we have run some additional tests varying ε =
1, 0.1, 0.01, in the case of the most difficult anisotropic
angle θ = π/3 (Test Case 4), when the unstructured mesh
is employed.In Tables 9 and 10 we show results obtained
by using exact matching coupled with W cycle, while in
Tables 11 and 12 results obtained by using half-approximate
matching coupled with hybrid V–W cycle are presented.
All the parameters and algorithmic choices are the same
as in the above sections. We observe that, as expected, for
decreasing value of ε, i.e. when we increase the strength
of anisotropy, there is some moderate increase of the setup
cost. On the other hand, in the case of ε = 1, only
1 component is needed to reach the desired convergence
rate, both in the case of exact matching and in the case
of approximate one, per each one of the considered mesh
sizes.

Table 9 Test Case 4 varying ε: Setup cost for different mesh sizes when
exact bipartite matching is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 2

ε = 1 2705 1 0.27 6 1.96

10657 1 0.34 8 1.99

42305 1 0.46 10 2.00

ε = 0.1 2705 1 0.37 6 1.95

10657 1 0.49 8 1.99

42305 1 0.63 10 2.00

ε = 0.01 2705 1 0.64 6 1.95

10657 3 0.54 8 1.99

42305 3 0.69 11 2.00

Table 10 Test Case 4 varying ε: Setup cost for different mesh sizes
when exact bipartite matching is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 3

ε = 1 2705 1 0.23 6 1.98

10657 1 0.30 8 2.00

42305 1 0.43 10 2.00

ε = 0.1 2705 1 0.27 6 1.97

10657 1 0.39 8 2.00

42305 1 0.52 10 2.00

ε = 0.01 2705 1 0.58 6 1.97

10657 2 0.63 8 2.00

42305 3 0.58 11 2.00

Table 11 Test Case 4 varying ε: Setup cost for different mesh sizes
when approximate graph matching is used for aggregation.

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 2

ε = 1 2705 1 0.49 7 2.13

10657 1 0.63 9 2.15

42305 2 0.49 12 2.16

ε = 0.1 2705 1 0.51 7 2.13

10657 1 0.65 9 2.15

42305 2 0.56 12 2.16

ε = 0.01 2705 2 0.65 7 2.12

10657 3 0.66 9 2.15

42305 4 0.66 11 2.16

5.4 Results with Algorithms 2 and 3 with random initial
guess replaced by the restricted smooth vector from
previous level

In the following we summarize results obtained by using
Algorithm 3, when we transport the current smooth vector
used in the definition of the interpolation operator from fine
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Table 12 Test Case 4 varying ε: Setup cost for different mesh sizes
when approximate graph matching is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 3

ε = 1 2705 1 0.23 7 2.12

10657 1 0.36 9 2.15

42305 1 0.53 12 2.16

ε = 0.1 2705 1 0.29 7 2.11

10657 1 0.43 9 2.15

42305 1 0.61 11 2.15

ε = 0.01 2705 1 0.60 7 2.11

10657 2 0.68 9 2.12

42305 3 0.60 12 2.11

to coarse grid through restriction. The new version of the
algorithm is sketched in Algorithm 5.

Algorithm 5: Coarsening based on compatible match-
ing (Algorithm 3 with restriction of smooth vector)

Data: A matrix, w (smooth) vector, maxsi ze maximum size for
the coarsest matrix

Result: hierarchy of coarse matrices Ak (and intergrid operators)
A1 = A, k = 1;
relax ν1 times on A1w1 = 0 starting with w;
while size(Ak) > maxsize do

build Âk from Ak and wk ;
compute partition al by Algorithm 1 applied to Âk ;
build Pk

c , Rk
c = (Pk

c )T , and Ak
c from al and wk ;

Ak+1 = Ak
c , wc = Rk

c wk ;
relax ν1 times on Ak

cwk+1 = 0 starting with wc; k = k + 1;
end

Results in Table 13 refer to linear systems arising from dis-
cretization of linear elasticity problems describing a multi-
material cantilever beam in 2D and 3D. Problems were dis-
cretized by linear finite elements; triangular meshes of three
different sizes (4386, 16962 and 66690) were employed for
2D problems, while tetrahedral meshes of different sizes
(2475, 15795, 111843) were used in 3D. We refer to the above
problems as LE2D and LE3D, respectively. We obtained
the system matrices and right-hand sides using the soft-
ware MFEM available at http://mfem.googlecode.com. The
desired convergence factor for the composite AMG was set
to ρdesired = 0.7 and a symmetrized multiplicative com-
position of the AMG components was applied. The num-
ber of iterations used to estimate solver convergence rates at
each stage was set to ν2 = 15. Half approximate matching
was used for aggregation and each component is an hybrid
V–W cycle where symmetric Gauss-Seidel was applied as
pre/post smoother (one sweep); ν1 sweeps of symmetric

Table 13 Setup cost for different mesh sizes when approximate graph
matching is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 5

LE2D 4386 4 0.52 7 2.12

16962 4 0.62 9 2.18

66690 7 0.24 12 2.20

LE3D 2475 4 0.63 6 2.55

15795 5 0.70 9 2.82

111843 7 0.66 12 2.98

Table 14 Setup cost for different mesh sizes when approximate graph
matching is used for aggregation

n nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on modified Algorithm 2

LE2D 4386 5 0.48 7 2.16

16962 5 0.58 9 2.19

66690 8 0.42 12 2.22

LE3D 2475 6 0.35 6 2.55

15795 6 0.60 9 2.84

111843 9 0.50 12 3.03

Gauss-Seidel are also applied to the coarse smooth vector
on homogeneous coarse system at each level. At the coars-
est level an LU factorization is applied. We stopped the
coarsening process when the size of the coarsest matrix was
at most maxsize = 100. Note that the unitary vector was
considered as first smooth vector and no information about
rigid body modes is used in the method. In the following
Table 14, we report also results obtained on linear elastic-
ity by a modification of Algorithm 2 when restriction of
the smooth vector is considered at each level. We use the
same parameters as in the previous experiments with Algo-
rithm 5. Also in this case we use hybrid V–W cycle with
1 sweep of symmetric Gauss-Seidel for pre/post smoothing
and LU factorization on the coarsest system. Each compo-
nent is built by using half approximate matching and 	1–
smoother is employed in compatible relaxation to choose
the coarsening branch at each level. We recall that for a
matrix A = (ai j ), the 	1-smoother is defined as the diagonal
matrix diag(dk) with dk = ∑

j
|akj |wk

w j
for any given positive

weights {wi }. Common choices are wi = 1 or wi = √
aii .

We used the latter in our experiments. Variants of the 	1-
smoother are defaults choices in the parallel solvers library
[17]. It has been first used in [19], see also [1]. Its high
level of intrinsic parallelism and guaranteed convergence
properties make it a viable alternative to the scaled Jacobi
one.
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Table 15 Main Features of
Selected Matrices Matrix Name Group Application Field n nnz cond

PDE problems

crystm03 Boeing material pb. 24696 583770 264.003

sts4098 Cannizzo structural eng. 4098 72356 2.17 × 108

qa8fm Cunningham acoustics pb. 66127 1660579 109.601

thread DNVS structural eng. 29736 4444880 2.57 × 1010

crankseg_1 GHS_psedef structural eng. 52804 10614510 2.23 × 108

ldoor GHS_psedef structural eng. 952203 42493817 2.46 × 108

non PDE problems

obstclae GHS_psedef quadratic obstacle pb. 40000 197608 40.997

chem97ztz Bates statistical pb. 2541 7361 247.219

bundle1 Lourakis computer graphycs 10581 770811 1004.24

g2cyrcuit AMD circuit simulation 150102 726674 1.98 × 107

cvxbqp1 GHS_psedef optimization 50000 349968 9.31 × 106

gridgena GHS_psedef optimization 48962 512084 7.11 × 105

We see a minor difference in the performance of the two
versions, with Algorithm 5 being somewhat superior.

5.5 Results on S.P.D. Matrices arising from UF Sparse
Matrix Collection

To assess the potential of our composite αAMG strategy,
we have performed some preliminary tests on s.p.d. matri-
ces, coming from different application fields (including non-
PDE modeling), from the University of Florida (UF) Sparse
Matrix Collection available at http://cise.ufl.edu/research/
sparse/matrices.

We summarize in Table 15 the main features of the selected
matrices.

For sake of brevity, we report only results obtained
applying Algorithm 5 when aggregation is based on half-
approximate matching and each AMG component is an
hybrid V–W cycle. The desired convergence factor for the
composite AMG was set to ρdesired = 0.7 and a symmetrized
multiplicative composition of the AMG components was
applied. A maximum number of 10 components are allowed
to reach the desired convergence rate (i.e. if the desired con-
vergence rate is not obtained with 10 AMG components, the
bootstrap process is stopped). The number of iterations used
to estimate solver convergence rates at each stage was set
to ν2 = 15. Symmetric Gauss-Seidel was applied both for
relaxation on coarse homogeneous system for the restricted
coarse vector, where we have fixed the number of iterations
equal to ν1 = 20, and in each solver as pre/post smoother (1
sweep). LU factorization is applied on the coarsest system.
We stop the coarsening process when the size of the coarsest
matrix was at most maxsize = 100 or when during the aggre-
gation process all the indices appear as only-fine indices. The
results are summarized in Table 16,

Table 16 Matrices from UF Sparse Matrix Collection. Setup cost when
Algorithm (5) coupled with half-approximate matching is used

Matrix Name nstages ρ nlev cmpx

Composite αAMG Setup, coarsening based on Algorithm 5

PDE problems

crystm03 1 0.29 3 1.51

sts4098 3 0.35 8 2.07

qa8fm 1 0.22 3 1.59

thread 10 0.94 10 1.80

crankseg_1 3 0.58 11 1.81

ldoor 8 0.70 19 1.70

non PDE problems

obstclae 1 0.40 6 2.28

chem97ztz 1 0.21 4 2.24

bundle1 1 0.10 5 1.81

g2cyrcuit 1 0.38 16 2.52

cvxbqp1 10 0.97 16 2.48

gridgena 10 0.82 11 2.18

We observe that for a large portion of the considered matri-
ces, both in the case of PDE and non-PDE problems, our
method obtains the desired convergence rate by only 1 com-
ponent. On the other hand in three cases, related to structural
engineering problems more components (3 for sts4098 and
crankseg_1; 8 for ldoor) are needed to get the desired con-
vergence rate. In three cases, one coming from PDE problems
(structural engineering) and two coming from non PDE prob-
lems (optimization), we observe a slow convergence behav-
ior; indeed our method was not able to get the desired con-
vergence rate with a number of components less or equal
to 10.
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6 Concluding remarks

In this paper we have performed a preliminary study of a
new composite adaptive AMG method. It relies on coarsen-
ing algorithms based on the principle of compatible relax-
ation combined with exact or approximate maximum prod-
uct matching in graphs. The latter is a strategy successfully
exploited in reordering algorithms for sparse direct meth-
ods to enhance diagonal dominance. By performing a large
set of experiments on difficult for AMG non-grid aligned
finite element 2nd order anisotropic elliptic equations, we
demonstrated that our approach can lead to semi-coarsening
and to overall composite αAMG solver with desired pre-
set convergence factor. The composite solver can become
expensive since the number of components that are built
generally increase when refining the mesh. This is perhaps
to be expected for AMG solvers for such non-grid aligned
anisotropic problems when standard (pointwise) smoothers
are employed. Note also, that we use very simple interpola-
tion matrices (block-diagonal, with 	2-orthogonal columns)
which are not energy stable. The reason to choose this strat-
egy is to minimize the overall setup of the adaptive AMG
methods. Other ways to alleviate the setup cost could be to
combine several components in one cycle by using larger
aggregates and several algebraically smooth vectors to build
one tentative interpolation matrix. The setup cost of all pro-
posed adaptive/bootstrap AMG methods tends to be expen-
sive since they typically use several cycles to compute the
final AMG hierarchy. Among all of them, the one in [4]
exploits one or two setup cycles applied to multiple test vec-
tors and hence has the potential to have cost comparable to
the more traditional non-adaptive AMG methods. To make
a definite conclusion about this is not easy, since the exper-
iments reported in [4] are only two-level; they are applied
to the simple Laplace equation and a more difficult and non-
standard gauge-Laplacian arising in quantum chromodynam-
ics (QCD).

We also presented preliminary tests to assess the potential
of the method on systems of PDEs (2D/3D elasticity) and
more general sparse matrices not necessarily coming from
PDEs which was successful for many of the examples with
very few exceptions. The latter cases most likely can be han-
dled if more powerful smoother (like block-Gauss–Seidel or
overlapping Schwarz) is employed.

Finally, parallel versions of (approximate) matching algo-
rithms can be exploited to construct AMG solvers suit-
able for large-scale computations. One way to exploit par-
allelism that we envision is after the (multiplicative) setup
to build the components B j , we could run the composite
solver in an additive form (i.e., use B−1

additive = ∑
j B−1

j
as a preconditioner in CG). In this way the cycles cor-
responding to each component B j can be run in paral-
lel.

Acknowledgments We wish to thank Bora Uçar for stimulating dis-
cussions and his advice on available algorithms and software for com-
puting weighted matching in bipartite and general graphs. We also thank
one of the authors of MFEM, Tzanio Kolev for his kind help in installing
and using MFEM. Finally, we thank one of the reviewers for motivating
us to run more examples and use one more version of coarsening that
demonstrated better the potential of the proposed composite αAMG
solver.

References

1. Baker, A.H., Falgout, R.D., Kolev, T.V., Yang, U.M.: Multigrid
smoothers for ultra-parallel computing. SIAM J. Sci. Comput. 33,
2864–2887 (2011)

2. Brandt, A.: General highly accurate algebraic coarsening. Elect.
Trans. Num. Anal. 10, 1–20 (2000)

3. Brandt, A.: Multiscale scientific computation: review 2001. In:
Barth, T.J., Chan, T.F., Haimes, R. (eds.) Multiscale and Multires-
olution Methods: Theory and Applications, pp. 1–96. Springer,
Heidelberg (2001)

4. Brandt, A., Brannick, J., Kahl, K., Livshitz, I.: Bootstrap AMG.
SIAM J. Sci. Comput. 33, 612–632 (2011)

5. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG)
for sparse matrix equations. In: D. J. Evans (ed.) Sparsity and its
Applications (1984)

6. Brannick, J., Falgout, R.D.: Compatible relaxation and coarsening
in algebraic multigrid. SIAM J. Sci. Comput. 32, 1393–1416 (2010)

7. Brannick, J., Chen, Y., Kraus, J., Zikatanov, L.: Algebraic multi-
level preconditioners for the graph Laplacian based on matching
in graphs. SIAM J. Num. Anal. 51, 1805–1827 (2013)

8. Brezina, M., Falgout, R.D., MacLachlan, S., Manteuffel, T.,
McCormick, S., Ruge, J.: Adaptive smoothed aggregation α SA
multigrid. SIAM Rev. 47, 317–346 (2005)

9. Brezina, M., Falgout, R.D., MacLachlan, S., Manteuffel, T.,
McCormick, S., Ruge, J.: Adaptive algebraic multigrid. SIAM J.
Sci. Comput. 27, 1261–1286 (2006)

10. Diestel R.: Graph Theory. Springer, Heidelberg, GTM 173, 4th ed.
(2010)

11. Drake, D.E., Hougardy, S.: A linear time approximation algorithm
for weighted matchings in graphs. ACM Trans. Algorit. 11, 107–
122 (2005)

12. Duff, I.S., Koster, J.: On algorithms for permuting large entries to
the diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl. 22,
973–996 (2001)

13. Duff, I.S., Uçar, B.: Combinatorial Problems in Solving Linear
Systems, Rutherford Appleton Laboratory Technical Report RAL-
TR-2008-014 and TR/PA/08/26, CERFACS, Toulouse

14. Falgout, R.D., Vassilevski, P.S.: On generalizing the AMG frame-
work. SIAM J. Num. Anal. 42, 1669–1693 (2004)

15. Halappanavar, M., Feo, J., Villa, O., Tumeo, A., Pothen, A.:
Approximate weighted matching on emerging manycore and mul-
tithreaded architectures. Int. J. High Perform. Comput. Appl. first
published on August 9, 2012 as doi:10.1177/1094342012452893

16. HSL(2011). A Collection of Fortran Codes for Large Scale Scien-
tific Computation. http://www.hsl.rl.ac.uk

17. hypre: High Performance Preconditioners. http://www.llnl.gov/
CASC/hypre/

18. Karypis, G.: METIS: A Software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices, Ver. 5.1.0, University of Minnesota,
(2013)

19. Kolev, T. V., Vassilevski, P. S.: Parallel Auxiliary Space AMG for
H(curl) problem. J. Comput. Math. 27, 604–623 (2009). Special

123

http://dx.doi.org/10.1177/1094342012452893
http://www.hsl.rl.ac.uk
http://www.llnl.gov/CASC/hypre/
http://www.llnl.gov/CASC/hypre/


76 P. D’Ambra, P. S. Vassilevski

issue on Adaptive and Multilevel Methods in Electromagnetics.
UCRL-JRNL-237306

20. Lashuk, I., Vassilevski, P.S.: On some versions of the element
agglomeration AMGe method. Num. Linear Alg. Appl. 15, 595–
620 (2008)

21. Livne, O.E.: Coarsening by compatible relaxation. Num. Linear
Alg. Appl. 11, 205–227 (2004)

22. Manne, F., Bisseling, R.H.: A Parallel Approximation Algorithm
for the Weighted Maximum Matching Problem, in PPAM 2007,
LNCS, vol. 4967, pp. 708–717. Springer, Berlin (2008)

23. Nägel, A., Falgout, R.D., Wittum, G.: Filtering algebraic multigrid
and adaptive strategies. Comput. Vis. Sci. 11, 150–167 (2008)

24. Notay, Y.: An aggregation-based algebraic multigrid method. Elect.
Trans. Num. Anal. 37, 123–146 (2010)

25. Napov, A., Notay, Y.: An algebraic multigrid method with guaran-
teed convergence rate. SIAM J. Sci. Comput. 34, A1079–A1109
(2012)

26. Olschowka, M., Neumaier, A.: A new pivoting strategy for
Gaussian elimination. Linear Alg. Appl. 240, 131–151 (1996)

27. Parter, S.: The use of linear graphs in Gaussian elimination. SIAM
Rev. 3, 119–130 (1961)

28. Preis, R.: Linear Time 1/2-Approximation Algorithm for Maxi-
mum Weighted Matching in General Graphs, in STACS’99. LNCS
vol. 1563, pp 259–269. Springer, Berlin (1999)
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