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Abstract The extracellular space (ECS) consists of the
narrow channels between brain cells together with their
geometrical configuration and contents. Despite being only
20–60 nm in width, the ECS typically occupies 20 % of the
brain volume. Numerous experiments over the last 50 years
have established that molecules moving through the ECS
obey the laws of diffusion but with an effective diffusion
coefficient reduced by a factor of about 2.6 compared to
free diffusion. This review considers the origins of the dif-
fusion barrier arising from the ECS and its properties. The
paper presents a brief overview of software for implementing
two point-source paradigms for measurements of localized
diffusion properties: the real-time iontophoresis or pressure
method for small ions and the integrative optical imaging
method for macromolecules. Selected results are presented.
This is followed by a discussion of the application of the
MCell Monte Carlo simulation program to determining the
importance of geometrical constraints, especially dead-space
microdomains, and the possible role of interaction with the
extracellular matrix. It is concluded that we can predict
the impediment to diffusion of many molecules of practical
importance and also use studies of the diffusion of selected
molecular probes to reveal the barrier properties of the ECS.

1 Extracellular space

The vast numbers of cells that compose the brain fall into
two classes: neurons and glia. Neurons process information
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and signal to each other predominantly by fast electrical sig-
nals whereas the glial cells are more enigmatic in function
but may be broadly described as supporting the neurons. The
two types of cells occur in similar numbers and have complex
shapes. They are closely packed but, crucially, every cell is
separated from its neighbor by a small gap and the multiply
connected space comprising all these gaps is known as the
extracellular space (ECS; Fig. 1a). One may think of each
cell as being enveloped in an ‘atmosphere’ of ECS and, in-
deed, the totality of the ECS has been likened to the water
phase of a soap film.

The ECS is vital to the function of brain cells. It pro-
vides a reservoir of ions, most importantly, Na+, K+, Ca2+
and Cl− that are essential to maintain neuronal electri-
cal activity. It allows metabolic substrates and products to
move to and from the network of blood vessels that per-
meate the brain and it also allows other substances, act-
ing as chemical signals, to travel between cells. It is this
aspect of the ECS, as a conduit for the movement of
molecules, which will be the focus of this brief review.
Not only may the ECS be viewed as a passage way, it
may also be seen as a barrier to molecular movement.
From an applied perspective, the ECS is a crucial route
for the delivery of drugs to brain cells—in cancer chemo-
therapy for example—and this provides further impetus for
study.

There have been two reviews of diffusion in the ECS that
are much more extensive than that provided here. The review
by Nicholson [14] was written for a physics audience and
the more recent and comprehensive paper by Syková and
Nicholson [27] contains an outline of theory with more phys-
iological data and extensive references. A shorter review [16]
has been popular as an introduction to the topic. Because of
these prior reviews only a few illustrative references will be
cited here.
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Fig. 1 ECS geometry. a shows electron micrograph of a region of rat
cortex with several nerve fibers, together with other neuronal and glia
extensions, surrounding a dendritic profile containing mitochondria.
The ECS has been outlined in red but the true width is likely underes-
timated because of shrinkage during the fixation and processing of the
tissue. Note that some fibers form bundles; this may produce anisotropic

diffusion in some brain regions. Scale bar approximately 1µm. Micro-
graph courtesy of Dr. C. B. Jaeger. b shows simplified schematic of a
small region of ECS between a group of neurons (green) and glia (red).
The ECS may harbor dead-space microdomains in the form of local
expansions, or voids (V), or invaginations (I) of cellular elements or
glial wrapping around cells

1.1 Definitions and equations

Together the ECS and the cells may be viewed as a two-
phase porous medium; the ECS is the highly connected phase
whereas individual cells are isolated from each other. Sub-
stances are confined to move in the ECS because cell mem-
branes are either impermeable or only permeable to certain
molecules. The medium within the ECS is mainly water with
the addition of approximately 150 mM of NaCl and many
other ions and substances present at much smaller concen-
trations. The average width of the ECS is estimated to be
between 20 and 60 nm [34], nevertheless the ECS typically
occupies 20 % of the brain. This is formally represented by
the volume fraction, α, defined as

α = VECS/VTissue (1)

where the subscripts on V denote the respective volume of
ECS and the volume of the whole tissue both measured in a
small region of brain that is sometimes referred to as a rep-
resentative elementary volume (REV). Volume fraction is
written as a decimal and in an unhindered or ‘free’ medium,
such as an aqueous solution or very dilute gel, α = 1. In
other disciplines, volume fraction may be called ‘porosity’.
If the average volume of a cell or cellular element is VC and
the associated cell surface area is SC then, regarding the cell
surface as having a layer of ECS of thickness d, so that 2d

is the average width of the ECS, it follows that the average
volume-to-surface ratio for the cellular element, P , is given
by

P = VC

SC

∼=
(

1

α
− 1

)
d. (2)

Later in this review we will make the gross simplification
that the brain is composed of cubical cells, each with a side
of length 2a, so P = a/3 then, if α = 0.2 and the ECS width
is taken as 2d = 60 nm, we obtain from the approximation
in Eq. (2) that 2a = 0.72 µm as the side of a ‘typical’ cell
(a precise calculation based on cubic geometry would yield
2a = 0.78 µm because the diagonal space where edges of
cubes are adjacent is widened by a factor of

√
2).

Substances released into the ECS move predominately by
diffusion. Using volume averaging techniques appropriate
for porous media [14,15] the classical diffusion equation can
be derived:

∂C

∂t
= D∗∇2C + Q

α
− f (C)

α
. (3)

Here C is concentration in the ECS, Q is the strength of a
source of released substance and f (C) is a term representing
loss of diffusing material by a variety of processes and kinet-
ics. Note that neuroscientists usually define the concentration
C with respect to the ECS while others may favor defin-
ing concentration with respect to the whole tissue; these two
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concentrations differ by the factor α. The reason that neuro-
scientists prefer their definition is because the receptors on
the surfaces of cells sense the local concentration in the ECS
so this is the physiologically relevant variable.

A crucial parameter appearing in Eq. (3) is the effective
diffusion coefficient, D∗, measured in the brain. We assume
that D∗ is constant within a brain region where the anatomical
structure is homogeneous (e.g. neocortex). This conclusion is
supported by experimental measurements which essentially
perform a random sampling. Note that over very small dis-
tances of a few micrometers there will be local fluctuation in
D∗ but all our equations assume volume averaging over an
appropriate REV so local fluctuations are removed [15].

Because of the hindrance imposed by various factors,
D∗ < D where D is the diffusion coefficient measured in a
‘free’ medium (ideally water but in a neuroscience context,
a dilute salt solution). Hindrance to diffusion is captured in
the dimensionless tortuosity parameter, λ, where

λ = √
D/D∗. (4)

In certain tissues (e.g. corpus callosum or molecular layer of
the cerebellum) diffusion is inherently anisotropic and both
D∗ and λ become tensors rather than scalars. In some situa-
tions there may be an additional term in Eq. (3) representing
the contribution of bulk flow (hydrodynamic flow) that will
take the form of a scalar product of the flow velocity vec-
tor v and concentration gradient ∇C . The requirement for
this term is still debated and, in any event, bulk flow will
have little influence on short-term and near-distance diffu-
sion and is neglected in this review. Bulk flow does play
a role when drugs are infused into brain tissue under pres-
sure, a technique often called convection-enhanced delivery
(CED) [2].

1.2 Relevant solutions to diffusion equation

Here we describe some solutions to Eq. (3) that are of prac-
tical importance in research on diffusion in brain tissue. In
the following discussion the extracellular concentration, C ,
is understood to vary smoothly over space, despite the pres-
ence of vast numbers of boundaries and local discontinuities
(Fig. 1b) because volume averaging arguments have shown
this to be justified [15].

Probably the simplest case where the diffusion equation
has been applied in the brain is when a radiolabeled sub-
stance at concentration C0 has been perfused over a surface
for a long period and the subsequent radioactivity at time t
counted in small blocks of tissue to provide C as a function
of distance x from the perfused surface [5]. Then Eq. (3)
becomes one-dimensional with no source or loss terms and
the solution will be [4, Eq. 2.45]:

C(x) = C0erfc(xλ/2
√

Dt); (5)

here and elsewhere ‘erfc’ is the complementary error
function.

Typically, radiolabeled sucrose (D = 7.0×10−6 cm2 s−1

at 37 ◦C; Sect. 2.5) is used because it remains in the ECS.
Measurement times are typically t ∼ 1 h and x is measured in
mm or cm. Curve fitting extracts λ while α can be determined
by measuring the radioactivity per unit volume of tissue adja-
cent to the perfused surface. This method of measuring diffu-
sion was used extensively by Rall, Fenstermacher, Patlak and
others in the 1960’s and 1970’s (see [14] for references) but
is not in common use anymore. Equation (5) remains useful,
however, for estimating how a drug might penetrate the brain
when perfused into a ventricle (brain cavity).

Today, diffusion measurements in brain tissue usually
involve a ‘point-source paradigm’ where a probe substance is
released from a pseudo point-source, typically a micropipette
with a tip diameter of 2–5µm, and the ensuing concentra-
tion distribution sampled at a single location as a function
of time or at a sequence of times as a function of distance.
To obtain the basic point-source solution to Eq. (3) the tissue
is assumed homogeneous and the source Q is regarded as a
Dirac delta function in both space and time, i.e. instantaneous
release of a substance at the origin of a Cartesian coordinate
system. To give generality to the solution we can take the
medium as being anisotropic and assume that measurements
are made in the principal axes defined by the diffusion or
tortuosity tensor and that these axes coincide with the Carte-
sian coordinates. It is also useful to include a term for loss of
the diffusing substance and usually it is adequate to represent
this by a first order process, f (C)/α = k′C , then the solution
to Eq. (3) is [27]:

C (x, y, z, t) = Q

α

λxλyλz

(4Dtπ)3/2 exp

(
− R2

4Dt
− k′t

)
(6)

where R =
√

x2λ2
x + y2λ2

y + z2λ2
z . In an isotropic medium,

λx = λy = λz = λ and R = λ
√

x2 + y2 + z2 = λr .

In many instances it is desirable to release the substance
at a point-source in space but deliver it as a pulse of finite
duration tp, then by convolution in time of the solution with
a delta function source, Eq. (6), one obtains for 0 ≤ t ≤ tp

C(x, y, z, t) = Qλx λyλz

8π DαR

[
erfc

(
R

2
√

Dt
+ √

k′t
)

exp

(
R

√
k′
D

)

+ erfc

(
R

2
√

Dt
− √

k′t
)

exp

(
−R

√
k′
D

)]

(7)

and the concentration after the pulse ends, t > tp, is simply
given by

C = C(t) − C(t − tp), t > tp. (8)
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1.3 Barrier properties

Extensive experimental data (see Sect. 2.4) show that a typ-
ical value for λ in the nervous system is about 1.6, which
implies that D∗ is some 2.6 times smaller than D. This is
true only for molecules or ions that are much smaller than the
typical width of the ECS; for macromolecules λ is increased,
in part because of more frequent interaction with the walls
of the narrow channels through the ECS [34]. Furthermore,
the space accessible to the traveling molecule is restricted to
about 20 % of the whole tissue volume (i. e. α = 0.2). Thus
all molecules that diffuse through the ECS are substantially
hindered and the ECS acts as a barrier between the source
of the molecules and the target. The properties of this bar-
rier may change when the brain experiences trauma or during
growth and development [27]. There may even be much finer,
local, control of λ and α that our present techniques cannot
resolve.

What is the origin of the hindrance to diffusion in brain
tissue? There are two main contributions to tortuosity: geom-
etry and extracellular matrix. In discussing geometry it needs
to be recognized that the ECS is a well-connected region
in the sense that, between any two locations a few tens
of micrometers apart, there are multiple paths through the
ECS. Thus hindrance does not arise from an approach to a
percolation threshold, rather, the geometry impedes diffu-
sion by introducing delays into the diffusion process [7,8],
either by the necessity for diffusing molecules to travel
around cellular boundaries or because they encounter dead-
spaces.

It is obvious that the first geometrical effect will come
into play when molecules are forced to take a more circu-
itous route between two points, increasing the travel time
and resulting in a reduced D∗ and larger λ. There is a sec-
ond type of geometrical entity that can produce a further
increase in tortuosity, namely ‘dead-space microdomains’.
These may be introduced by invaginations (‘I’, Fig. 1b) in
cell membranes so the cells are no longer convex, through
the ECS enlarging locally to create ‘voids’ (‘V’, Fig. 1b) or
by partial enclosure of neurons by glia cells (Fig. 1b) to form
a local dead-end. The common feature of all theses dead-
spaces is that when particles enter these regions they lose a
certain amount of time inside before emerging and contin-
uing on through the highly connected ECS. The concept of
a dead-space affecting diffusion is well established in other
disciplines: for example dead-end pores were analyzed by
Goodknight et al. [6] while the influences of local changes
in size of the connected space were explored by Siegel and
Langer [24] and in our own study [3]. This topic will be
discussed in more detail in Sect. 3.2.

The extracellular matrix is largely composed of long-chain
molecules many of which carry fixed negative charges on
the predominant molecular species that include chondroitin

sulfate, heparan sulfate and hyaluronan [33,36]. The matrix
can assert a viscous drag on diffusing molecules and the neg-
ative charges may interact with mobile positively charged
ions or molecules or interact more specifically with the
mobile molecules. More will be said about the matrix in
Sect. 3.3.

1.4 Role of experiments and modeling

Experiments with small radiolabeled tracers some 50 years
ago established the approximate values of λ and α that we
use today [14]. To obtain parameter values, these early exper-
iments relied on a careful fitting of solutions to the diffusion
equation with the experimental data and the success of the
analysis not only provided parameter values but also con-
firmed that the diffusion equation was applicable to such a
complex medium as the brain. This symbiosis of experiment
and theory continued with the introduction by Nicholson and
Phillips [15] of the real-time iontophoresis (RTI), and the
closely related real-time pressure (RTP) injection, methods
that embody the point-source paradigm for diffusion anal-
ysis in the brain; these have now been used in more than
50 experimental studies [27]. While very successful in mea-
suring basic structural parameters, the RTI and RTP meth-
ods have mainly employed the cation tetramethylammonium
(TMA+) and are not suitable for studying the diffusion of
larger molecules. To overcome this restriction, the integrative
optical imaging (IOI) method was introduced by Nicholson
and Tao [17]. The RTI, RTP and IOI methods will be detailed
in Sect. 2.

As more and better data accumulated, there has been
increasing impetus for more sophisticated modeling to test
hypotheses about the factors responsible for the measured
values. Several models emerged, which are briefly surveyed
by Syková and Nicholson [27]. Here we will focus on the
Monte Carlo simulation approach (Sect. 3). As studies of dif-
fusion in the brain have progressed, a gradual paradigm shift
has occurred. Initially, especially with the radiotracer tech-
niques, the focus was on how particular molecules moved
through the brain, their effective diffusion coefficients, the
‘distribution space’ (molecules that permeate and accumu-
late in cells may have an apparent α > 1) and the loss char-
acteristics. These sorts of data are valuable for describing
drug delivery. Later, the emphasis shifted somewhat to using
molecules that were predominantly confined to the ECS and
whose diffusion behavior could enable them to probe the
structural constraints provided by their local environment.
Previously the ECS had been largely inaccessible to study
because the size of the channels is not accurately preserved
for electron microscopy [34] but the use of diffusion as a tool
for structural analysis has led to an increased understanding
of the microenvironment of the ECS.
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2 Experimental measurement techniques

This section briefly outlines the two point-source paradigms
in current use and describes the custom software that is avail-
able to control the experiments, acquire the data and fit the
data with the appropriate solutions of the diffusion equa-
tions. All the software is now written in Matlab (Mathworks,
Natick, MA, USA).

2.1 Real-time pressure (RTP) and real-time iontophoresis
(RTI) methods

The RTP and RTI methods both use two micropipettes, one
to release the diffusing substance and the other to measure
the concentration at a point (Fig. 2). In both techniques the
source micropipette is filled with a solution of the substance
of interest but the ejection methods differ. For RTP, a brief
pulse of nitrogen gas (∼0.1 s) is applied via a sealed tube
inserted in the back of the micropipette and this approxi-
mates a delta function in time and causes a brief release of
the substance of interest from the tip of the micropipette. The
subsequent spread of molecules in the ECS then follows Eq.
(6). The source term is given by Q = UCf , where U is the
volume ejected and Cf is the concentration of the ejected
substance. For RTI, a silver wire coated with AgCl is sealed
into the back of the micropipette and a pulse of current, of
appropriate polarity, applied for 10–60 s, causing iontopho-
retic release of a suitable substance, which must be charged.
Because of the finite pulse duration, Eqs. (7) and (8) now
describe the diffusion process. The source is Q = I nt/zF
where I is the applied current, nt is the transport number of
that source micropipette (i.e. the fraction of the applied cur-
rent that ejects the substance of interest), z is the substance
valency and F is Faraday’s electrochemical equivalent.

For both RPI and RTI methods, a sensing micropipette is
located 50–150µm away from the source; this sensor usually
is an ion-selective microelectrode (ISM), which is a special
type of micropipette that can measure the concentration of
an appropriate ion [13]. Other electrochemical microsensors
are occasionally used, such as carbon fiber microelectrodes
in conjunction with voltammetry [21]. The use of ISMs dic-
tates that both the RTP and RTI methods employ ions, the
most useful one for probing the ECS being TMA+ although
this ion has some limitations [12]. Details of ISM construc-
tion and use with the RTP and RTI techniques have been
described [11,13]; effective sensors only exist for a few ions
(see [13] and [15]). When feasible, the RTI method is pre-
ferred to the RTP because, with suitable calibration, nt can be
determined and this enables the source strength to be spec-
ified and consequently α can be measured. When the RTP
method is employed, the ejected volume U may vary and so
α cannot be determined. On the other hand, the RTP method
works with substances that cannot be reliably delivered by

iontophoresis (see [9]). Both methods yield measurements
of λ because that is determined from the time-course of the
diffusion curves, not the amplitude.

These methods may be used either with brain slices or
with an anesthetized in vivo animal. Figure 2 illustrates a
brain slice where the source and sensing micropipettes are
introduced with two independent micromanipulators under
microscopic visualization; when using in vivo preparations
the two micropipettes are usually glued together [27]. The
associated timing electronics for iontophoresis or pressure
injection, and devices for buffering and conditioning the sig-
nal from the ISM are all standard commercial items. The
equipment is controlled by an D/A converter and the signals
digitized with an A/D converter connected to a PC (see [11]
for technical details).

2.2 Software for RTP/RTI

We have developed two programs for the RTP/RTI tech-
niques, the first, called Wanda, is for data acquisition and
the second, called Walter, is used for data analysis. Wanda
writes a binary file for each diffusion curve and Walter reads
and processes these files. This makes the programs indepen-
dent, so that data acquired by other means may be analyzed
by Walter.

2.2.1 Wanda: the data acquisition program for RTP/RTI

The Wanda program controls the release of ions from a pres-
sure ejection or iontophoresis source and records the time
course of ionic concentration measured by the ISM along
with the parameters that define the experiment. The soft-
ware has a long history; the first program for the RTI tech-
nique, called VOLTORO, performed both the functions of
data acquisition and data analysis and was written in 1980’s
by Dr. Charles Nicholson using the Pascal programming
language and subsequently went through several iterations,
computers and operating systems and is still used in some lab-
oratories. The current version of Wanda was developed by
Dr. Lian Tao and completely re-written in Matlab to run in
Microsoft Windows. The major feature of the current incar-
nation is that it has a graphical user interface (GUI), which
has been developed using the GUIDE environment of Mat-
lab (Fig. 3). For data acquisition, Wanda employs the Matlab
Data Acquisition Toolbox to control a National Instruments
(Austin, TX, USA) A/D and D/A converter.

Figure 3 shows the Wanda main screen, which contains
most of the display and control objects of the program. The
objects on the main screen have been grouped into several
panels, with each panel controlling one aspect of the pro-
gram.

The top three panels define the Substance, e.g. TMA+,
the Medium, specifying whether the experiment is being
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Fig. 2 Setup for diffusion measurements using the real-time
iontophoretic or pressure (RTI/RTP) methods and integrative optical
imaging (IOI) method. A brain slice or dilute agarose gel is placed in a
chamber that is perfused with oxygenated physiological saline solution
on the stage of a compound microscope. For RTI/RTP, an extracellular
probe ion, most commonly TMA+, is released from a glass micropipette
and detected with an ion-selective microelectrode (TMA+-ISM), posi-
tioned about 100µm away. The resulting diffusion curves (concentra-
tion vs. time) are amplified, digitized and stored on a computer enabling
an appropriate diffusion equation to be fitted to the data. In dilute agarose

gel, the free diffusion coefficient, D, and transport number, nt , are mea-
sured. In the brain slice, the effective diffusion coefficient, D∗, volume
fraction, α and loss factor, k′, are measured. For IOI, a fluorescent mole-
cule, here dextran (3,000 Mr , i.e. 3 kDa) labeled with a fluorescent dye,
is briefly pressure injected and a time-series of images captured using
a CCD-equipped camera. An appropriate diffusion equation is fitted to
the intensity profiles measured along selected image axes enabling D
or D∗, to be extracted in agarose gel or brain slice, respectively. Also
note that the methods are not confined to brain slices but also may be
used in vivo (modified from [10])

carried out in dilute agarose gel to represent a ‘free’ medium
or in brain tissue and the Technique panel specifying whether
the experiment employs an ISM or ECM (Electrochemical
Microsensor e.g. a carbon fiber microelectrode used in con-
junction with fast-scan cyclic voltammetry).

The Diffusion Source panel allows choice of an iontopho-
resis (RTI) or a pressure (RTP) source. For RTI, the panel
controls the strength and duration of the main current pulse
and a constant bias current that maintains the concentration of
TMA+ or other ion in the tip of the iontophoresis microelec-
trode. The transport number (nt) is also entered after being
determined from measurements on the source micropipette
in agarose. When a pressure source is chosen, the panel is
populated with another set of appropriate parameters.

The Measuring Electrode panel specifies the A/D config-
uration and the distance between the diffusion source and
the sensing microelectrode together with the temperature at
which the experiment is carried out and D for the diffusing
substance; these are important parameters for subsequent cal-
culation of λ.

The Acquisition Batch and Data File panels define how
records are taken and stored. A set of command buttons at the
bottom right of the GUI controls the experiment. Finally, the
acquired data is displayed as a voltage in real time in the large
panel in the upper right of the GUI. In Fig. 3 a typical record

from the hippocampus CA3 region of the brain is shown. The
source and ISM are separated by 110µm and the voltage on
the ISM rises during the 50 s long iontophoretic pulse and
then falls at its cessation. The start and finish of the pulse are
indicated by fast voltage transients that are artifacts gener-
ated by the electronic switch of the current source and the
ultra high impedance of the ISM (typically >1 G�).

2.2.2 Walter: the data analysis program for RTI

Walter is a command-line driven program that accepts the
voltage data and parameters acquired by Wanda, converts
the voltage to a concentration, and applies non-linear curve
fitting to extract α, λ and k′ from the diffusion curve. The
present version was written in Matlab by Dr. Nicholson. The
overall design philosophy of Walter is to allow all the records
in a given experiment to be read in and displayed together
so that anomalies may be easily seen. Selected records then
can be analyzed by either fitting Eq. (6) if the RTP method
is used or Eqs. (7) or (8) for RTI. The fitting makes use
of the Nelder–Mead non-linear simplex algorithm (available
in Matlab). This is a relatively simple and very robust fitting
algorithm. To guard against getting stuck in a local minimum,
a set of randomized starting points are generated and the best
fits selected from the resulting ensemble. Original and fitted
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Fig. 3 Graphical user interface (GUI) for the Wanda software. This program is responsible for instrument control and data acquisition under the
RTI/RTP paradigm. See text for further details

curves are displayed in various ways and all the incoming
data as well as the fitting parameters for all the analyzed
records may be output to an Excel spreadsheet. The spread-
sheet can be used for further statistical analyses or as a means
of transferring to a specialized plotting program, or as a new
input to Walter. In other words, all the data and analysis cap-
tured in an experiment may be stored in a spreadsheet if
desired.

2.3 Integrative optical imaging (IOI)

The RTP and RTI methods use specialized point sensors that
can only be constructed for a very limited set of substances,
mostly small ions. To extend the point-source paradigm to
a wider range of substances, especially macromolecules that
are likely to form a significant component of the chemical
traffic in the ECS, we introduced the IOI method [17]. This
method can be used to measure the diffusion of almost any
molecule, as long as a fluorescent label can be attached to
it. For example, the IOI technique has been used to study
the synthetic drug-carrier PHPMA [20] with sizes up to

106 Mr and the physiologically significant substance, epi-
dermal growth factor (EGF; [32]). Recently, the IOI method
has been used with quantum dot nanocrystals to explore the
size of the actual spaces between brain cells [34].

The IOI technique is quite simple: fluorescent molecules
are released from a micropipette just as in the RTP method
but now the 3D cloud of diffusing molecules is visualized
using epi-fluorescence microscopy (Fig. 2) and a sequence
of 2D images registered with a cooled CCD camera. Each
image is essentially an integral of the projected cloud of mol-
ecules weighted by the defocused point-spread function of
the microscope objective. The justification and derivation of
the theoretical expression has been given [17,29], and here
we only restate the derived expression for image intensity on
the image plane of the camera:

I ′(x ′, y′, t
) = E(γ ) exp

(
− x ′2 + y′2

M2γ 2

)
(9)

where x ′ and y′ denote the coordinates on the image plane.
The constant M is the magnification of the optical sys-
tem. The variable γ is a function of the effective diffusion
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coefficient and time: γ = √
4D∗t . The amplitude term E(γ )

is a complicated function of γ but independent of x ′ and
y′, so the image intensity at any given time is simply a 2D
Gaussian function of x ′ and y′. Consequently γ , and hence
D∗, may be extracted by suitable curve fitting of Eq. (9) at
each of a sequence of times ti .

The equipment necessary to carry out the IOI method is
again readily available from commercial sources. An upright
epi-fluorescence microscope with a large fixed stage is used
and either brain slices or an in vivo rat or mouse may be
accommodated. A cooled CCD camera is mounted on the
microscope and both camera and microscope are controlled
by a PC (see [11] for details). One limitation of the IOI
method is that imaging can only be done effectively down
to a depth of ∼400µm (i.e. the microscope is focused on a
plane not more than 200µm below the slice or brain surface).

2.4 Software for the IOI method

Two programs are used for the IOI technique: the first, called
Devida, is for data acquisition and the second, called Ida,
performs data analysis. They follow a similar philosophy to
Wanda and Walter in that Devida has a comprehensive GUI
and writes output files that are then read and analyzed by Ida,
which again is a command-line program.

2.4.1 Devida: the data acquisition program for IOI

This program controls the release of fluorescent molecules
from a pressure ejection source into agarose gel or brain tis-
sue. Then the program records a sequence of images of the
diffusing molecules with a Photometrics CCD-based cam-
era (Photometrics, Tucson, AZ, USA) mounted on a fluores-
cence microscope. The timing sequences for the camera are
controlled by a programmable multi-channel pulse generator
under the control of the Devida program.

The first program developed for IOI, called DIF, was
developed in the early 1990s by Dr. Tao. The program was
written in the Microsoft C language. In the early 2000’s,
Dr. Nicholson completely re-wrote DIF as two programs
in Matlab. The programs were named Devida and Ida, and
used for data acquisition and data analysis, respectively. For
the actual data acquisition and camera control, Devida was
run simultaneously with a third-party program, V++ (Digital
Optics, Auckland, New Zealand). In the last decade, all
the IOI data were acquired and analyzed with these two
programs.

The current version of the Devida program has been
re-written in Matlab by Dr. Tao, and it runs under the Micro-
soft Windows operating system and, like Wanda, it has a
GUI. For data acquisition, the new Devida employs the PV-
CAM (Photometrics Virtual Camera Access Method) library,
which eliminates the need for a third-party program. By using

Matlab and PVCAM, Devida can be used in other labs with
different Photometrics cameras.

Figure 4 shows the Devida main screen, which contains
all the display and control objects of the program. In a sim-
ilar way to the Wanda GUI, the objects on the main screen
have been grouped into several panels, with each panel con-
trolling one aspect of the program. Thus the Medium panel
specifies whether the experiment is carried out in agarose
gel or brain tissue, as well as the temperature of the medium.
The Diffusion Source panel selects the molecule in use from a
drop-down list and specifies the duration of the pressure pulse
applied to the micropipette to eject the molecule. The Light
Source panel controls the behavior of the protective shutter on
the light source. This is normally closed when measurements
are not being made to reduce photo-bleaching of the fluores-
cent molecule. This panel also selects the fluorescent filter
cube in the microscope to match the excitation and emitting
wavelengths of the fluorescent molecule in use. The Camera
panel specifies all the operating parameters of the Photomet-
rics CCD camera. The Image Sequences panel allows two
time sequences to be defined for image capture: a fast initial
sequence and a subsequent slower one. This enables both
the early and late behavior of the diffusing cloud to be cap-
tured while reducing the image storage requirements. The
Data File panel handles the location and labeling of the data
files. Data are written as two files, the first is a plain text file
that captures all the setup parameters from the GUI, along
with other fixed parameters specific to a given camera and
microscope. The second is a binary file containing the raw
image data for the sequences specified. The unlabeled image
display panel (the largest panel at the top right) shows the
real-time images during focusing and data acquisition or dis-
plays images retrieved from data files. The image intensities,
representing concentration of the diffusing molecule, may be
displayed in pseudo-color or monochrome. This panel also
has objects that control image display and for focusing the
microscope.

2.4.2 Ida: the data analysis program for IOI

The Ida program was written by Dr. Nicholson and is again
similar in function to Walter i.e. it is a command-line driven
program, written in Matlab, that uses curve-fitting to extract
D∗ and consequently λ from the data acquired by Devida.
Because of the complicated amplitude term in Eq. (9), as well
as the fact that the exact amount of substance injected is not
known, and the integrative nature of the method, α cannot
be determined from an IOI experiment. It is assumed that
there is no loss of the large molecules typically used with
the IOI method and that none enter cells or are otherwise
immobilized.

Ida enables the entire sequence of images to be displayed,
subtracts an initial control image to remove any background
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Fig. 4 Graphical user interface (GUI) for the Devida software. This program is responsible for microscope and associated instrument control and
image acquisition under the IOI paradigm. See text for further details

features and determines the center of each injection. Curve
fitting is again accomplished using the Nelder–Mead simplex
algorithm. Curves are fitted along the x- and y-axes and along
two other diagonal axes. In an anisotropic medium, images
will be elliptical and the effective diffusion coefficients are
determined along the major and minor axes (see [35]). The
fitting results, along with all relevant parameters, can again
be output to an Excel spreadsheet; however the original data
cannot be contained in the spreadsheet because of the size of
the image files.

2.5 Brief survey of diffusion parameter values

This part will discuss a few representative results obtained
with three experimental techniques: radiotracers, the
RTI/RTP methods and IOI. A more comprehensive survey
is provided by Syková and Nicholson [27]); that review also
discusses some other methods that have been used to mea-
sure ECS diffusion parameters. The rest of this section refers
to the data presented in Table 1.

Radiolabeled sucrose provided very representative values
of α and λ when used in the rabbit caudate nucleus. In con-
trast, measurements with the anti-cancer drug, methotrexate,
indicated a larger than normal ‘distribution space’ suggesting
that a significant amount of the substance was entering cells
and the kinetics of this process may have contributed to the
large value of λ.

The results with the monovalent cation TMA+ using RTI
indicate ‘normal’ α and λ in the rat and mouse cortex that
are comparable with the results obtained with the uncharged
sucrose in rabbit caudate nucleus. The TMA+ results in
turtle cerebellar molecular layer show distinct anisotropy
(later confirmed with IOI, see [35]) accompanied by a larger
than normal α-value. The early result using α-naphthalene-
sulfonate (α-NS−) failed to reveal anisotropy in rat cere-
bellar molecular layer, possibly for technical reasons, but
did show that anions could be used as probes of diffusion
properties.

The divalent cation Ca2+ does not release well by ionto-
phoresis from a glass micropipette so the RTP method was
used (consequently no estimate of α was available); the value
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Table 1 Selected values of α and λ obtained with radiolabel, RTI, RTP and IOI methods

Molecule Mr dH D ◦C Species Region α λ Method Ref.

Sucrose 342 1.0 7.0 37 Rabbit Caudate 0.21 1.60 radio [5]

Methotrexate 508 1.3 5.3 37 Monkey Caudate 0.28 2.43 radio [5]

TMA+ 74 < 1.0 11.1 37 Rat Cortex 0.18–0.22 1.54–1.65 RTI [27]

TMA+ 74 < 1.0 11.1 37 Mouse Cortex 0.23 1.67 RTI [1]

TMA+ 74 < 1.0 9.82 21–23 Turtle cb. ml 0.31 1.44, 1.95, 1.58 RTI [22]

α-NS− 174 < 1.0 7.60 37 Rat cb. ml 0.18 1.54 RTI [15]

Ca2+ 40 < 1.0 9.4 34 Rat Cortex n/a 2.05 RTP [9]

AF488 547 1.2 5.19 34 Rat Cortex n/a 1.54 IOI [9]

Dex3 3,000 3 2.2 37 Rat Cortex n/a 2.04 IOI [34]

Dex70 70,000 14 0.47 37 Rat Cortex n/a 2.69 IOI [34]

EGF 6,600 3.7 1.7 34 Rat Cortex n/a 1.79 IOI [32]

BSA 66,000 7.4 0.83 34 Rat Cortex n/a 2.26 IOI [30]

Lactoferrin 80,000 9.3 0.71 37 Rat Cortex n/a 3.50 IOI [33]

Molecule: TMA+ tetramethylammonium, α−NS− α naphthalenesulfonate, AF488 Alexa Fluor 488 hydrazide (Molecular Probes, Invitrogen,
Carlsbad, CA, USA), Dex3 dextran 3,000 Mr , Dex70 dextran 70,000 Mr , EGF epidermal growth factor, BSA bovine serum albumin
Mr Relative molecular weight
dH Hydrodynamic diameter (units: nm). Estimated from Stokes–Einstein equation
D Free diffusion coefficient (units: ×106 cm2 s−1)
◦C Temperature at which D was measured (units: degrees Celsius)
Species animal species in which measurements were made
Region brain region where measurements were made, caudate caudate nucleus, cortex various areas of neocortex, cb. ml. cerebellum, molecular
layer
α volume fraction of ECS (units: non-dimensional)
λ tortuosity of ECS (units: non-dimensional)
Method diffusion method employed, radio radiolabel, RTI real-time iontophoresis, RTP real-time pressure, IOI integrative optical imaging
Ref. reference

of λ obtained in the cortex with this ion was much higher than
normal and application of an enzyme that removed part of
the extracellular matrix revealed that the increased hindrance
was caused largely by interaction with the matrix ([9], see
Section 3.4).

The use of the IOI technique has provided tortuosity data
on a wide ranging set of molecules. The smallest, AF488, a
dye molecule, gave a similar λ-value to that obtained with
TMA+ but substantially larger molecules gave tortuosities
that increased with size. Dextrans are randomly coiled poly-
mers with a roughly spherical shape. They are polydisperse
(so Mr is only approximate) that are capable of deformation
whereas EGF, BSA and lactoferrin are rigid proteins. For
a given Mr, the loosely coiled dextrans are larger than the
proteins but have similar tortuosities possibly because their
deformability aids passage through the ECS. This conjecture
is supported by extensive data on PHPMA polymer diffusion
[20]. Lactoferrin interacts with the heparan sulfate compo-
nent of the extracellular matrix and, like the finding with
Ca2+, this may account for some of the increased tortuosity
[33].

3 Modeling the ECS with MCell

In this section we illustrate how Monte Carlo modeling,
using the MCell (‘Monte Carlo Simulation of Cellular Micro-
physiology’) program, may be applied to further understand
the properties of the ECS. MCell ([25], www.mcell.psc.edu;
www.mcell.cnl.salk.edu) has been developed at the Univer-
sity of Pittsburg and at the Salk Institute in California and is a
highly optimized Monte Carlo program designed for study-
ing diffusion of molecules in sub-cellular and extracellular
microenvironments. The original impetus for the develop-
ment of MCell came from a need to model the diffusion
of acetylcholine molecules in the complex synaptic cleft of
the neuromuscular junction, after the molecules had been
released from synaptic vesicles, and their subsequent reaction
with postsynaptic receptors [26]. In the initial work, realistic
geometry on the micrometer scale was captured by digitizing
serial electron micrographs.

The MCell program works at a more coarse-grained level
than a typical molecular dynamics simulation but is suffi-
ciently detailed to capture cellular physiology and may be
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said to represent mesoscale modeling. In addition to the usual
Monte Carlo capacity to handle complex geometry, MCell
incorporates sophisticated reaction kinetics between mole-
culesand is sufficientlyoptimized thatuseful simulationsmay
be carried out on a high-end personal computer. All these fea-
tures make MCell an appropriate tool to model diffusion and
interaction with complex ECS geometries and with the inter-
stitial matrix. These features enable MCell to be employed to
test different hypotheses raised by experimental observations
and to assess the consistency of experimental data.

All applications of MCell go through four steps: model-
ing, simulation, visualization and analysis. Modeling uses a
script written in the Model Description Language (MDL).
This defines and instantiates the parameters that describe
the problem, comprising number of molecules, their release
sites, diffusion coefficients, reactions, and geometry, includ-
ing behavior of molecules at each surface. Simulation takes
place when the MCell program runs the MDL script on a
Linux-based machine. The MDL file also defines output
options at specified intervals that generate files that may
be read by the visualization program DReAMM (‘Design,
Render, and Animate MCell Models’; www.mcell.psc.edu/
DReAMM). DReAMM has been developed at the Univer-
sity of Pittsburg using the open source program OpenDX
(Visualization Data Explorer software originally written by
IBM) and has an extensive GUI that displays MCell outputs
in flexible and sophisticated 3D graphics and even can make
movies. The final analysis phase is carried out with our own
custom software that computes D∗ and λ from the binary
output files.

Comparing the Monte Carlo paradigm of MCell to numer-
ical methods of solving explicit partial differential equations
(PDE’s) indicates the following relative merits. The major
advantage of MCell is its ability to handle very complex
geometries with thousands of different surface elements and
boundary conditions. A second advantage is the capacity to
employ realistic reaction schemes without concern about
stability or convergence. In contrast, numerical solutions
of PDE’s score well in multiphysics situations where, for
example, it is required to combine hydrodynamic flow or
electric fields with diffusion. When dealing with reactions,
the use of PDE’s also enables the use of arbitrary concen-
trations whereas the concentration available at any location
in MCell is dependent on the number of particles in use.
Even when exploring the implications of geometry, MCell
requires a minimum number of particles to reduce the error
to acceptable levels and the use of many particles may cause
the calculations to be excessively prolonged. Another factor
in running MCell is that periodic boundary conditions are not
implemented, requiring that the geometry be extended so that
particles remain within it; this may exceed the storage capac-
ity of the PC. Often these issues can be alleviated by using
analysis to transform the original problem or by making use

of inherent symmetry in the geometry. Users of both MCell
and numerical methods have to be mindful in choosing an
appropriate time-step to ensure an accurate solution. Finally,
for diffusion problems, MCell is an intuitive method of solu-
tion that is more readily grasped and visualized than typical
numerical methods.

3.1 Determination of D∗ from MCell simulation

Using MCell, the effective diffusion coefficient, D∗, for mol-
ecules moving in the ECS of a structured medium, after the
molecules have been released from a point-source at the
origin, may be calculated in at least two ways. In the first
approach, employed by Tao and Nicholson [31] and Tao et
al. [28], particles are counted at time t in a sequence of con-
centric sampling boxes centered on the source-point. In an
isotropic medium, for a cube-shaped sampling box of side
2A, integration of Eq. (6), leads to the expression:

N (A, t) = N0

[
erf

(
A

2
√

D∗t

)]3

. (10)

Here ‘erf’ is the error function, N0 is the initial number of
molecules and N (A, t) is the number in the sampling box.
Using appropriate curve fitting, D∗ may be estimated at a
sequence of times.

The sampling box method is less useful in an anisotropic
medium and here a second approach is used. Starting with the
standard definition of the diffusion coefficient in terms of the
mean square distances of an ensemble of particles with coor-
dinates x, y, z and r2 = x2 + y2 + z2, the required diffusion
coefficients may be calculated:

D∗
x =

〈
x2

〉
2t

; D∗
y =

〈
y2

〉
2t

; D∗
z =

〈
z2

〉
2t

; D∗ =
〈
r2

〉
6t

(11)

where D∗
x , D∗

y, D∗
z are the principal values of the diffusion

tensor and D∗ is the mean value. The components of the tor-
tuosity tensor are calculated immediately from Eq. (4). The
analysis described in Eq. (11) is realized by using a custom
program, Amco, written by Dr. Nicholson and running in
Matlab or Octave, to analyze the binary output files gener-
ated by MCell.

3.2 ECS modeled from an ensemble of packed cubes

The simplest way of representing the geometry of brain cells
together with their atmosphere of ECS is to assume that cells
are all similar in shape and size and pack together in a 3D
environment with a uniform spacing between them. Cubes,
truncated octahedral, a combination of three different types
of solids (a small rhombicuboctahedron, a cube and two tet-
rahedra) and random convex polyhedra have been used and
all give similar results [7,31], so here we confine ourselves to
cubes (Fig. 5). We use a sufficient number of cubes to ensure
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Fig. 5 Visualization, using DReAMM software, of ensembles of cubes
and associated ECS employed in MCell simulations. a shows a perspec-
tive view from the top of just the 4,096 voids in an entire 32 × 32 × 32
cubes and void geometry (equivalent to 32,768 cubes). As described
in the text, every eighth cube has been replaced by a void (here visu-
alized as extracellular matrix, colored green, see also Fig. 7). To aid
visualization, the remaining cubes are not shown but they fill most of
the gaps between the voids. Many simulations used 64 × 64 × 64 cubes
with voids (equivalent to 262,144 cubes). b shows an enlarged view of
a stack of just 4 × 4 × 4 cubes with all cubes present showing the loca-
tion of the voids. The stack is taken from the larger ensemble with ECS
conforming to α = 0.2, which is a typical value found in experiments.
A total of 10,000 molecules (shown in red) are shown at at t = 0.1 ms
after release diffusing from a point-source in the center through the
spaces between the cubes and also within the voids. Using flat projec-

tion, a view of the entire ensemble from the top is obtained showing that
diffusing molecules have explored the vicinity of several cubes by this
time. Using the DReAMM program the cube surfaces are displayed in
transparent gray in order to visualize the molecules that are moving in
the lower layers of the geometry. Note that the exaggerated size of the
red molecules is used as an aid to visualization and is not a feature of
the simulation (in MCell, molecules are regarded as point structures). c
shows the same diffusion paradigm as detailed for b in a geometry with
uniformly distributed cubes and no voids. d shows a larger region of the
geometry, with 8×8×8 cubes with voids, seen from a perspective that
emphasizes the 3D structure. As in a, to aid visualization, each void
is filled with extracellular matrix (shown in green). There are 1,300
matrix molecules in each void, giving a concentration of 10µM and
they forms the basis for reaction simulations depicted in Fig. 7

that the molecules remain in the geometry during the time
of the simulation and the molecules spread sufficiently far to
allow the estimated D∗ to attain a constant value.

For the cube problem and related geometries, Tao and
Nicholson [31] established that there is a simple relationship
between α and D∗, and hence between α and λ

D∗

D
= 2

3 − α
so λ =

√
3 − α

2
= λg. (12)

It follows from this relationship that the value of λ attrib-
utable to ‘pure geometry’, λg, cannot exceed 1.225 (i.e.
when α → 0) and for the typical α = 0.2 found in the
brain, λg = 1.18. It may be noted that Eq. (12) is directly
related to the expression derived by Maxwell for the

effective conductivity of a conductive medium containing
a sparse distribution of insulated spheres (see [31] for more
discussion).

Using Eq. (12) as a starting point we built the geometry
from cubes with side 2a = 0.6 µm and separation 2d =
0.0462 µm to give a value for α of 0.2 [see Eq. (2)]. We used
ensembles of 32 × 32 × 32 cubes or 64 × 64 × 64 cubes
(Fig. 5a). Figure 5c shows the distribution of 10,000 mole-
cules at a time of 0.1 ms after release from a source point in
an ensemble of cubes. The molecule here was chosen to be
Ca2+ (D = 7.4 × 10−6 cm2 s−1 at a temperature of 23 ◦C,
[9]) and the simulation did indeed yield a value of λ = 1.19
which compares well with the value of 1.18 predicted by
Eq. (12).
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Fig. 6 Tortuosity of ECS versus volume fraction with and without
voids. The solid line represents the plot of Eq. (13) with a value β =
2.91, obtained by a non-linear curve fit to the MCell simulation data
(filled circles) for a geometry with cubes and voids. Each cube had side
2a = 0.6 µm and 64 × 64 × 64 cubes were used. The spacing between
cubes was adjusted so that the total volume fraction corresponded to the
depicted values. Note that the minimum possible volume fraction was
α = 0.128 and this occurred when the spaces between cubes approached
zero and then α was determined only by the missing cube. The dashed
line corresponds to the case where no void is present, i.e. Eq. (12) with
the geometry made up of a uniform distribution of cubes

As noted earlier, in the real brain, λ ∼ 1.6 while both Eq.
(12) and simulation yield a much smaller value, so factors
other than ‘pure geometry’ must be in play. One class of
candidates is dead-spaces: regions where diffusing particles
become trapped for a period of time. Previous MCell mod-
els [7,10,28], backed by experimental data have shown that
invaginations of cellular membranes (cavities), local expan-
sions of the ECS (voids) and possibly glial wrapping, increase
λ substantially beyond that predicted by Eq. (12) (Fig. 1b).
A semi-empirical equation for the tortuosity value in a
medium containing dead-spaces was formulated by Tao et
al. [28]:

λ =
(

3 − α

2

)1/2 (
α

α − αc

)1/β

. (13)

where α is the total volume fraction, αc is the volume frac-
tion of the dead-spaces and β is an empirical ‘exit factor’ that
informally captures the probability that molecules leave the
dead-space. Mostly, 2 < β < 3 (see Table 1 in [28]).

For this review we have illustrated the effect of introduc-
ing dead-spaces by a new way of creating voids in the ECS;
we simply removed one cube in every eight from the ensem-
ble (Fig. 5b, d). To calculate αc, we define α0 as the volume
fraction in the absence of dead-spaces, here that would be
the case when all cubes were present, then

α = α0 + αc. (14)

Following Tao and Nicholson [31] we define l to be the side of
a cube so l = 2a, and L to be the side of the ‘bounding frame’
of the cube, which means that the new volume includes the
ECS associated with the cube, then L = 2(a + d). It follows
from Eq. (1) that α0 = 1 − (

l3/L3
)
. The volume fraction α

when M cubes are removed (0 ≤ M ≤ 8) is

α = 8(L3 − l3) + Ml3

8L3 = α0 + M(1 − α0)

8
. (15)

Consequently

αc = M (1 − α0)

8
= M (1 − α)

8 − M
. (16)

Then, setting M = 1 (one cube removed) and substituting
for αc in Eq. (13)

λ =
(

3 − α

2

)1/2 (
7α

8α − 1

)1/β

. (17)

It also follows that the minimum value of α is 1/8, which
occurs when α0 = 0.

Figure 6 shows that the tortuosity in media with voids
is much higher than in the uniform media. This is not just
an effect of moving the cubes closer to achieve the same
volume fraction, because from Eq. (12) the maximum value
that can be obtained from this maneuver is 1.225. Rather,
the increased value of λ may be attributed to the hold-up
of molecules in the voids (seen in Fig. 5b) combined with
the difficulty of escaping into the narrow interstitial spaces.
We expect that the tortuosity in the media with voids should
conform to Eqs. (13) and (17) and Fig. 6 shows the result-
ing plot with β = 2.91, which represented the best fit to the
simulation data.

3.3 Representation of molecular interaction with
extracellular matrix through reactions

The extracellular matrix interacts with diffusing molecules
through several potential mechanisms: viscosity or high den-
sity of polymeric molecules in the ECS which exert steric
hindrance [18], electrostatic interaction between negatively
charged components of the matrix and positively charged
mobile molecules [19], and specific binding interactions (ste-
ric attraction) [23]. Our laboratory has recently published
experimental evidence showing that lactoferrin interacts with
the matrix component heparan sulfate [33] and in a separate
study we showed that Ca2+ interacts with another matrix
component, chondroitin sulfate [9]. The transport process
itself continues to obey the diffusion equation suggesting
that interactions with matrix may be represented by a fast-
equilibrium reaction scheme [4, Chapter 14]. Here we focus
on the Ca2+ interaction, which manifests itself as a reduced
effective diffusion coefficient (i.e. increased tortuosity) com-
pared to that obtained with the monovalent cation TMA+.
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Fig. 7 Visualization of molecules interacting with matrix in voids.
Green molecules represent the matrix, the diffusing molecules are red
the molecular complex between the matrix and diffusing molecules is
represented in blue. A total of 10,000 molecules were released from
a point source (red dot in the middle of a) at the center of a geome-
try comprising 32 × 32 × 32 cubes with every eighth cube removed
to form voids. The matrix was concentrated the in voids at a value of
10µM and volume fraction was 0.28 (excluding the voids) and 0.37
(including the voids). Forward and backward rate constants for binding
and unbinding of diffusing molecules to the matrix were set (somewhat

arbitrarily) to kf = 5.6 × 108 M−1 s−1 and kb = 2.2 × 103 s−1; when
combined with the matrix concentration averaged over the whole ECS
this gave an R-value of 0.6 (see Eq. 20). The free diffusion coefficient
was D = 7.4 × 10−6 cm2 s−1, which is the value for Ca2+ at 23 ◦C.
Panels show a small region of the ensemble of cubes, looking down
through the semi transparent surfaces. They show molecules diffusing
from the source point at t = 0 (a) and then exploring their microenviron-
ment at successive times, t = 0.1 ms (b), t = 0.5 ms (c) and t = 1 ms
(d). As time passes an increasing amount of complex (blue) is formed.
Visualization with DReAMM

The formal development of this argument is as follows.
Let C represent concentration of Ca2+ in ECS, B, concen-
tration of binding sites of the matrix and S, concentration of
complex formed between Ca2+ and matrix, then the binding
and unbinding processes may be described by a second-order
(bimolecular) reaction scheme as:

C + B
kf→ S, (18a)

S
kb→ C + B, (18b)

where kf [M−1 s−1] is the forward rate constant for complex
formation and kb [s−1] the backward rate constant for com-
plex dissociation. Assuming that, locally, the reaction process
is much faster than the diffusion process and there is equi-
librium between the mobile and complexed molecules, the
Law of Mass Action states that

kf BC = kbS. (19)

Making the additional assumption that B 
 C , so that B
may be regarded as constant, then the second-order reaction
scheme will be reduced to a first-order

S = kf B

kb
C = RC, (20)

with the dimensionless parameter R = kf B/kb = B/KD

where KD = kb/kf [M] is the equilibrium dissociation
constant.

Following Crank [4, Chapter 14], the diffusion equation
with a loss term representing the reaction process is given
by:

∂C

∂t
= D∗∇2C − ∂S

∂t
, (21)

substituting for S in Eq. (21) using Eq. (20) results in

∂C

∂t
= D∗

1 + R
∇2C = D

λ2 ∇2C, (22)
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and the basic diffusion equation is recovered so D∗/(1 +
R) can be defined as the new effective diffusion coefficient.
Note that D∗ is the effective diffusion coefficient arising from
geometry. This gives a final tortuosity as the product of the
tortuosity arising purely from geometry (which may include
dead-spaces), λg, multiplied by the tortuosity arising from
interaction with the matrix, λm:

λ =
√

D

D∗
√

1 + R = λg × λm. (23)

Figure 7 shows four successive snapshots representing Ca2+
(C; red molecules) diffusing from a point source and
interacting with ‘matrix’ molecules (B; green molecules)
positioned in the voids that were the topic of the previous
calculations discussed in Sect. 3.2 (see also Fig. 5). A pop-
ulation of the complex (S; blue molecules) is progressively
generated through the diffusion-reaction process in the ECS.
Note that Fig. 7 represents a view looking down through the
stack of translucent cellular cubes so the diffusing red mol-
ecules appear with reduced intensity in the planes between
cells in the lower levels of the stack.

Equation (23) has been tested. Figure 8 shows three
curves, each represents an MCell simulation after release of
5,000 Ca2+ molecules from origin where the tortuosity has
been calculated using Eq. (11). The plot labeled ‘λg’ repre-
sents the result in a medium with cubes and voids (i.e. one
cube in eight removed) as a function of time. The plot labeled
‘λm’ shows the result in a medium containing only matrix at
a uniform concentration of 2.34µM (i.e. no geometry pres-
ent). The plot labeled ‘λ’ represents tortuosity calculated in
a medium with both cubes and voids but with the addition of
a quantity of matrix in the voids such that the matrix concen-
tration averaged over the whole ECS is also 2.34µM. Note
that other simulations where the matrix is uniformly distrib-
uted in both the voids and connecting space of the ECS at the
same concentration give similar results. Finally, ‘λc’ repre-
sents the product of the λg and λm curves. It is seen that λ

and λc are close in value (the λ-curve is still rising slowly and
by 50 ms it will coincide with λc) thus verifying the validity
of Eq. (23). It should be noted that the theory is only valid
when λ reaches a steady-state value because classic diffusion
theory assumes that D∗ is time-independent. It is clear from
these simulations, which are based on representative dimen-
sions for the cells and ECS in brain tissue, that a steady-state
is reached in <50 ms. Experimental measurements are typ-
ically taken at much longer time scales so the constancy of
D∗ under the point source paradigm is assured.

4 Conclusions

At first sight an electron micrograph of brain tissue suggests
that the intricate pathways that form the ECS are unlikely

Fig. 8 Multiplicative properties of tortuosities. Curve labeled ‘λg’ rep-
resents tortuosity computed, using Eq. (11), from an MCell simulation
in a medium with cubes and voids (i.e. one cube in eight removed)
as a function of time after release of 5,000 Ca2+ molecules from ori-
gin. Curve labeled ‘λm’ represent a similar tortuosity calculation in a
medium containing only matrix at a concentration of 2.34µM (i.e. no
geometry present). Curve labeled ‘λ’ represents tortuosity calculated
in a medium with cubes and voids but with a quantity of matrix in the
voids such that the matrix concentration averaged over the whole ECS
is also 2.34µM. Finally, ‘λc’ represents the product of the λg and λm
curves. It is seen that λ and λc are close in value. Parameters: kf , kb and
D as for Fig. 7; α = 0.2

to permit any recognizable form of diffusion to take place.
Yet 50 years of careful biophysical research, much of it with
the RTI and IOI methods, has revealed that many different
types of molecule do diffuse through the ECS according to
the basic laws laid down by Adolf Fick in 1855 (and it may be
remembered that Fick was a physician himself). Experiments
show that most small molecules that do not interact specifi-
cally with cells or the contents of the ECS have an effective
diffusion coefficient that is reduced from the free value by a
factor of about 2.6 and move in a space that occupies 20 %
of the brain volume. One suspects that these values are not
accidental but are constrained by the signaling and energetic
requirements of the brain.

It remains necessary to account for the magnitude of the
hindrance. Monte Carlo modeling has been useful here and
has shown that something more than simple geometrical fac-
tors must be involved. To date the most likely candidates are
dead-space microdomains and interaction with the extracel-
lular matrix. The first mechanism can account for the known
data and would affect all molecules but the anatomical sub-
strates have yet to be identified completely. Matrix inter-
action is known to occur for some molecules but not all
and is the most plausible candidate when abnormally large
tortuosities are encountered with small ions or molecules.
Macromolecules are inherently more hindered in their pas-
sage through the ECS and the hindrance increases with size,
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suggesting that both viscous drag and interaction with the
channel boundaries of the ECS are coming into play.

Diffusion studies, both experimental and theoretical have
provided two types of information. The first tells us how a
particular molecule is likely to distribute in the brain. This is
useful for discussing some types of signaling between cells
and for the important practical application of drug delivery.
The second type of information is the main topic of this brief
review: the study of diffusion can reveal properties of the
ECS that, because of its narrow width and fragile nature, can-
not be revealed by more direct means. Because the spaces
between cells are below the resolution of light microcopy
they cannot be visualized in living tissue whereas fixed tis-
sue, viewed in electron micrographs, often suffers from dis-
tortion of the ECS. This leaves diffusion analysis as the only
effective means of studying the ECS at the present time.
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32. Thorne, R.G., Hrabĕtová, S., Nicholson, C.: Diffusion of epidermal
growth factor in rat brain extracellular space measured by integra-
tive optical imaging. J. Neurophysiol. 92(6), 3471–3481 (2004)

123



Brain extracellular space as a diffusion barrier 325

33. Thorne, R.G., Lakkaraju, A., Rodriguez-Boulan, E., Nicholson,
C.: In vivo diffusion of lactoferrin in brain extracellular space is
regulated by interactions with heparan sulfate. Proc. Natl. Acad.
Sci. U.S.A. 105(24), 8416–8421 (2008)

34. Thorne, R.G., Nicholson, C.: In vivo diffusion analysis with quan-
tum dots and dextrans predicts the width of brain extracellular
space. Proc. Natl. Acad. Sci. U.S.A. 103(14), 5567–5572 (2006)

35. Xiao, F., Nicholson, C., Hrabe, J., Hrabĕtová, S.: Diffusion of
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