
Comput Visual Sci (2011) 14:249–256
DOI 10.1007/s00791-012-0180-1

A 2589 line topology optimization code written
for the graphics card

Stephan Schmidt · Volker Schulz

Received: 20 May 2009 / Accepted: 31 March 2012 / Published online: 14 August 2012
© Springer-Verlag 2012

Abstract We investigate topology optimization based on
the solid isotropic material with penalization approach on
compute unified device architecture enabled graphics cards
in three dimensions. Linear elasticity is solved entirely on
the GPU by a matrix-free conjugate gradient method using
finite elements. Due to the unique requirements of the single
instruction, multiple data stream processors, special attention
is given to the procedural generation of matrix–vector prod-
ucts entirely on the graphics card. The GPU code is found
to be extremely efficient, being faster than a 48 core shared
memory CPU system. CPU and GPU implementations show
different performance bottlenecks. The sources are available
at http://www.mathematik.uni-trier.de/~schmidt/gputop.

1 Introduction

Few areas are developing as quickly as the computational
power of microprocessors. However, the means to sustain
the exponential increase in processing speed as predicted by
Moore’s law appears to be shifting from making a single
processing unit faster to making it wider, i.e. increasing the
parallelism by switching to many processing cores and highly
parallel architectures. The gap between the processor’s com-
putational power and the memory’s ability to deliver data is
also further deteriorating. These developments can lead to

Communicated by Gabriel Wittum.

S. Schmidt
Imperial College London, London, UK
e-mail: s.schmidt@imperial.ac.uk

V. Schulz (B)
University of Trier, Trier, Germany
e-mail: Volker.Schulz@uni-trier.de

future systems which are very fast, highly parallel, but also
highly heterogeneous, requiring numerical algorithms which
are able to scale well to such systems.

One such system, which is designed for highly paral-
lel throughput, is the commodity graphics card. Originally
highly adapted to rendering three-dimensional polygonal
data, these graphics adapters now have reached such a flex-
ibility that they can well be used in scientific computing.
Although nowadays they offer a quite fine-grained program-
ming control, best performance still is achieved by a stream
processing approach with many processing cores of which
each can process many threads in a single instruction, mul-
tiple data (SIMD) fashion. Presently, NVIDIA’s Compute
Unified Device Architecture (CUDA) appears to be the most
widely used solution for using graphics cards in scientific
computing. Due to the ease of availability of commodity
graphics hardware and CUDA being an extension of the
C/C++ programming language, we chose to use CUDA for
the studies presented in this article, with other alternatives
being for example the OpenCL extension of C/C++.

The aim of this work is to study the applicability of this
novel hardware in the field of PDE constrained optimiza-
tion. With respect to solving problems involving PDEs, most
literature on stream computing is either focused on linear
algebra [7] or simulation alone [12,15], but not on optimiza-
tion. It is finite differences [10] that are almost always used.
The interest in computational fluid dynamics and finite vol-
ume methods is also particularly strong [6,9,13,18]. This
work focuses on topology optimization based on the power
law or “Solid Isotropic Material with Penalization (SIMP)”
approach using finite elements on a structured mesh in three
dimensions [2,21]. The SIMP approach for topology opti-
mization models the distribution of material and voids by
assuming constant material properties in each finite element.
The optimization variable is the material density in each

123

http://www.mathematik.uni-trier.de/~schmidt/gputop

250 S. Schmidt, V. Schulz

element raised to some power times the actual properties of
the solid material. This concept is important from an applica-
tional point of view and has been considered previously for
GPU implementation for a two dimensional heat conduction
problem in [20] with good results.

The problem size and computational time needed to solve
topology optimization problems is usually dominated by the
computational requirements of solving the linear elasticity
state equation. The optimization step, which is presented
in [19] and usually consists of the gradient computation, the
mesh independency filter, and the mass preserving density
update, is usually of limited computational complexity com-
pared to solving the state equation. Depending on the domain
size and the various input parameters, it may happen that
one design update follows thousand conjugate gradient iter-
ations for the state equation. In accordance with Amdahl’s
law, this work focuses more on the GPU acceleration of the
finite element linear elasticity state equation solver than on
the acceleration of the optimization overhead. GPU accel-
eration of solid mechanics solvers and linear elasticity has
been studied recently in [11], where the GPU is used as a
coprocessor. Here, however, we focus on using the GPU as
the complete state equation solver, and not as a mere acceler-
ator or coprocessor. This is done by solving the state equation
matrix-free, i.e. the matrix–vector products for the residuals
needed in the CG iteration are generated procedurally with-
out storing the matrix anywhere. In the literature, the graphics
card is mostly used as a coprocessor that computes matrix–
vector products by using a discretization matrix that is
pre-assembled by the CPU and explicitly stored on the graph-
ics card, which requires much more total memory and needs
many more costly accesses to the device memory. Because
some older GPUs do not have the ability of atomic memory
operations and because the standard finite element assem-
bly by looping over elements produces a lot more memory
accesses than necessary, we present a special “nodal” compu-
tation of the finite element matrix–vector product necessary
to achieve this procedural residual computation.

Unfortunately, optimization problems hardly allow over-
lapping GPU with CPU computations. A CPU-based design
update requires knowledge of the PDE state computed on the
graphics card and vice versa. Theoretically, a domain decom-
position approach could be used for the solution of the state
equation on CPU and GPU in a heterogenous parallel fash-
ion, but it can be quite difficult to find a correct partition of
the domain which accounts for the significant differences in
computational speed. The additional memory synchroniza-
tion steps between the CPU main memory and the graphics
card also greatly limit the expected increase in speed from
this approach.

The work is structured as follows: Sect. 2 briefly reca-
pitulates linear elasticity and topology optimization with the
SIMP approach. In the following Sect. 3, the programming

model of the GPU is discussed. Special attention is given to
the procedural matrix–vector product. In Sect. 4, we compare
the time needed by the GPU solver with different CPU imple-
mentations and study the performance of the most important
subroutines on both architectures. The GPU is found to per-
form better than a 48 core shared memory system.

2 Linear elasticity and topology optimization based on
the SIMP approach

2.1 Linear elasticity

We consider a three-dimensional body occupying a domain
� ⊂ R

3. The deformation of the body under body forces
f : � → R

3 and boundary tractions t : � → R is mod-
eled by linear elasticity in the displacement formulation. Let
u : �→ R

3 be the displacements of the material under load.
The linearized strain is given by

εi j := 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2.1)

and the load linear form by

L(v) :=
∫
�

f · v d A +
∫
∂�

t · v d S.

The displacements u can be computed as the solution of the
energy bilinear form

a(u, v) :=
∫
�

Ei jklε(u)i jε(v)kl d S = L(u) ∀v ∈ V, (2.2)

where Ei jkl is an a priori given constant elasticity tensor. In
homogeneous isotropic media, symmetry allows to reduce
the order of the elasticity tensor by using the Voigt notation.
Due to symmetry of (2.1), one can write

ε̃ := (ε11, ε22, ε33, ε12, ε13, ε23)
T =: Bu

and the Cauchy Stress Tensor σ is given by

σ = E

(1+ ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν

ν 1− ν ν

ν ν 1− ν

1− 2ν

1− 2ν

1− 2ν

⎤
⎥⎥⎥⎥⎥⎥⎦

ε̃

=: C Bu,

123

A 2589 line topology optimization code 251

where E is Young’s modulus and ν is Poisson’s ratio. Hence,
(2.2) can also be expressed as

a(u, v) =
∫
�

(Bv)T C Bu d S = L(u) ∀v ∈ V . (2.3)

In the following, we discretize (2.3) by using finite elements
with linear test and trail functions on 8-node cubes in three
dimensions, which results in a symmetric, positive definite
linear system

K u = f.

For more details on finite elements and elasticity theory, see
[5]. The compliance c of the structure is given by

c(u) = uT f = uT K u,

which is the objective function to be minimized.

2.2 SIMP approach

The SIMP approach in topology optimization models the dis-
tribution of solid material and voids by introducing a pseudo
density ρ ∈ [0, 1] into (2.3):

a(u, v) =
N∑

e=1

∫
�e

(Bv)T ρe
pC Bu d S = L(u) ∀v ∈ V .

(2.4)

The exponent p is used as a penalty factor enforcing a
0/1 density distribution as intermediate values are greatly
reduced in effectiveness. Here, N is the number of mesh ele-
ments and ρ is considered constant for each element. The
topology optimization problem is now given by

min
(u,ρ)

J (u, ρ) := uT K (ρ)u (2.5)

subject to

K (ρ)u = f (2.6)
N∑

e=1

ρe = v0 (2.7)

ρe ∈ {0, 1}. (2.8)

Equation (2.7) is a volume constraint, as otherwise the solu-
tion will be a solid body. Condition (2.8) is usually relaxed
to ρe ∈ [ρ0, 1], preventing the state equation from becoming
singular. More details on topology optimization in general
and the SIMP approach in particular can be found in [4]. Each
optimization step follows [19]: According to [3], a scheme

for updating the design variables is given by:

ρe =

⎧⎪⎪⎨
⎪⎪⎩

max(ρ0, ρe − m) if ρe Bη
e ≤ max(ρ0, ρe − m)

ρe Bη
e if max(ρ0, ρe − m) < ρe Bη

e

< min(1, ρe + m)

min(1, ρe + m) if min(1, ρe + m) ≤ ρe Bη
e

,

(2.9)

where m is a positive move-limit, η = 0.5 is a numerical
damping coefficient and Be is found from the optimality con-
dition as

Be =
− ∂c

∂ρe

λ ∂V
∂ρe

,

where λ is a Lagrangian multiplier that can be found by a bi-
sectioning algorithm. Alternatively, this scheme can also be
interpreted as a certain projected gradient descent method [1].
The sensitivity of the objective function is found as

∂c

∂ρe
= −pρ p−1

e uT
e Keue,

where Ke is the element stiffness matrix of which K is assem-
bled. In order to prevent checker boarding and arrive at a
mesh-independent structure, there is an additional mesh inde-
pendence filter. However, we would like to refer to [4,19]
instead of repeating the mesh filter here, too.

3 Implementation on the graphics processing unit

3.1 Overview

Thedomain� isdiscretizedbyusingacartesianmeshofcubic
mesh elements. We employ a matrix-free conjugate gradient
method to solve the state equation. The conjugate gradient
method can be interpreted as an iterative solver for the linear
equation K u = f , where K is a symmetric and positive-def-
inite matrix. For more details see [14,17]; however, the algo-
rithm can be summarized briefly as follows:

r0 ← f − K u0

p0 ← r0

k ← 0
loop

αk ← r T
k rk

pT
k K pk

uk+1 ← uk + αk pk

rk+1 ← rk − αk K pk

if rk+1 ≤ ε then
exit

end if
βk ← r T

k+1rk+1

r T
k rk

pk+1 ← rk+1 + βk pk

123

252 S. Schmidt, V. Schulz

k ← k + 1
end loop

For the discussions later on, it is worth noting that each step
of the CG method necessitates one matrix–vector product
for the computation of K pk , and two scalar products for the
computation of αk and βk . Fascinatingly, the computation of
the matrix–vector product will be the bottleneck of the CPU
implementation, while the computation of the scalar products
will be the bottleneck for the GPU implementation.

In order to further speed up the optimization, a design
update is conducted before the state is fully converged. Espe-
cially for the first steps of the optimization scheme, it is often
unnecessary to compute the “exact” gradient based on a fully
converged state equation residual. As the optimization pro-
gresses, the design updates become smaller and likewise the
defect in the state equation diminishes. In this sense the two-
loop approach, i.e. an outer optimization loop and an inner
loop for the state equation solver, is weakened and both the
state equation residual as well as the norm of the gradient
are driven to zero simultaneously. The system matrix K is
never created explicitly; instead, we generate the product K u
needed for the conjugate gradient method only procedurally,
which is—due to the cartesian mesh—an ideal task for the
SIMD graphics processor. Due to the effectiveness of the
optimality criteria update, only very few optimization itera-
tions are needed, compared to the number of CG iterations.
The mesh independency filter from [19] also requires an addi-
tional halo layer. Thus, these two steps are performed by the
CPU, as—in accordance with Amdahl’s law—their acceler-
ation would improve the total computational speed-up only
by an insignificant amount. However, porting these steps to
the GPU is canonical. Additionally, a flexible filter radius
during the mesh filter step of the OC update would require
an equally flexible caching strategy on the GPU.

The graphics card acts like an autonomous compute
device, meaning that after the data have been copied into the
device memory, the actual computation is conducted by the
GPU autonomously. It is therefore important to perform the
entire CG method on the graphics card, as copying data from
the system’s RAM to the device memory is rather slow. The
technical details of GPU performance tuning can be found
in [8]. This especially includes managing the GPU’s heter-
ogeneous memory hierarchy of device, shared, and constant
memory, and fulfilling the necessities for memory coalescing
as well as avoiding shared memory bank conflicts.

Due to the alignment requirements for coalesced device
memory access, storing three displacements for each node
is highly unfavorable. Therefore, we store the density ρe for
each element as part of the three nodal displacements compo-
nents ui in one “double4” variable. The overhead of storing
Nx ·Ny ·Nz displacements instead of (Nx−1)(Ny−1)(Nx−1)

is negligible. Similarly, this also means that for a two dimen-

sional cartesian mesh of size Nx × Ny , where Nx and Ny

are not a multiple of the GPU block size, the vector must
be padded with zeros, such that threads (0, 1), (0, 2), ... can
access aligned vector components v� where � = i + Nx · j .

3.2 Finite element matrix–vector product

3.2.1 Element based

The standard approach to compute K u is given by

unew = K u =
N∑

e=1

Keue, (3.1)

where ue refers to the restriction of u to the respective element
e. An outer loop over all the elements with two inner loops
testing each vertex of the element with each other results
in incrementing one value of the state vector for each ver-
tex. Processing one element results in 3 memory accesses
per vertex: loading u�

e, the value of ue at vertex � of node e,
loading u�

new, and writing back the incremented value. The
element based matrix–vector product computation is tempt-
ing, because no special treatment of nodes using the natural
boundary condition is necessary, which is very inline with
the SIMD requirement.

Unfortunately, we found the standard approach to be unfa-
vorable for the graphics processing unit for several reasons.
The maximum number of threads allowed per block is 512.
Thus, it is in general impossible to compute (3.1) by using
only one block, and there will be nodes belonging to sev-
eral blocks. Some GPUs lack atomic write operations to the
device memory and the correct value at these nodes belong-
ing to more than one block is not guaranteed. Besides, if
one thread per element is used, the update of only one ver-
tex fulfills the alignment requirement for a coalesced device
memory access, whereas the remaining seven other vertices
do not. Additionally, incrementing in the device memory this
often is highly undesirable. Alternatively, a possible storage
of intermediate values of unew in the shared memory cuts the
number of useable threads in half.

3.2.2 Nodal based

Instead of element-based finite element matrix–vector prod-
uct computation, we assume that there is one thread per test
function, i.e. per node. We use the built-in data type “float4”
or “double4” to store three displacements and the density
in each node, satisfying the GPU memory alignment. In
order to minimize device memory access, each thread loads
the state at its node into the shared memory, such that all
threads of the block can operate on shared memory when

123

A 2589 line topology optimization code 253

Fig. 1 16× 16 patch with one halo-layer in shared memory per block.
Green shows inner 16× 16 nodes loaded coalescently. Blue shows halo
nodes loaded coalescently. Red shows halo nodes loaded uncoalescently

accessing the values of neighbor nodes, thus minimizing
device memory access. A node generates a non-zero entry in
the finite element matrix for itself and each other node shar-
ing the same mesh element. For linear test and trial functions,
the nodal finite element matrix–vector product computation
therefore requires knowledge of one neighbor node. Hence,
some threads must also load halo values, which cannot be
done in an entirely coalesced way and which may also inter-
fere with the SIMD execution if the number of halo values
is not a multiple of the half-warp size.

Due to the limited amount of shared memory, we follow
the common strategy to extend a 2D computation into the
third dimension by loading three successive 2D slices into
the shared memory. Each thread then loops or “streams”
slice-wise into the third dimension by discarding the last
plane from the shared memory and loading one new plane.
This is similar to the single-pass approach discussed in [16].
However, we do not store the data for the slowest varying
dimension in the registers, but in the shared memory instead,
because this data is also needed multiple times due to the
larger support of our nodal finite element stencil. One such
plane is sketched in Fig. 1. The strategy of feeding the shared
memory is adapted from [10]. The central part of the code
without feeding the shared memory is shown in Listing 1
below. The complete sources are available at http://www.
mathematik.uni-trier.de/~schmidt/gputop.

Listing 1 Central Part of Computing K u Procedurally

1 for(int ek1=0;ek1<2;ek1++)
2 {
3 const int EIDK = k−ek1;
4 i f (EIDK >= 0 && EIDK < NZ−1)
5 {
6 for(int ej1=0;ej1<2;ej1++)
7 {
8 const int EIDJ = j−ej1 ;

9 i f (EIDJ >= 0 && EIDJ < NY−1)
10 {
11 for(int ei1=0;ei1<2;ei1++)
12 {
13 const int EIDI = i−ei1 ;
14 i f (EIDI >= 0 && EIDI < NX−1)
15 {
16 const REAL Dens =
17 pow(s_u[ind−ei1∗IOFF−ej1∗JOFF−ek1∗KOFF] .w,
18 gpupexp) ;
19 const int LID1 = ei1+ej1∗2+ek1∗4;
20 for(int ek2=0;ek2<2;ek2++)
21 {
22 for(int ej2=0;ej2<2;ej2++)
23 {
24 for(int ei2=0;ei2<2;ei2++)
25 {
26 const int LID2 = ei2+ej2∗2+ek2∗4;
27 const int id i f f = ei2−ei1 ;
28 const int jd i f f = ej2−ej1 ;
29 const int kdiff = ek2−ek1;
30 const REAL4 MyU =
31 s_u[ind+idif f∗IOFF+jdiff∗JOFF
32 +kdiff∗KOFF];
33 MyRes.x += Dens∗(GPU_EleStiff[LID1]
34 [LID2]∗MyU.x
35 + GPU_EleStiff[LID1][LID2+8]∗MyU.y
36 + GPU_EleStiff[LID1][LID2+16]∗MyU.z) ;
37 MyRes.y += Dens∗(GPU_EleStiff[LID1+8]
38 [LID2]∗MyU.x
39 + GPU_EleStiff[LID1+8][LID2+8]∗MyU.y
40 + GPU_EleStiff[LID1+8][LID2+16]∗MyU.z) ;
41 MyRes.z += Dens∗(GPU_EleStiff[LID1+16]
42 [LID2]∗MyU.x
43 + GPU_EleStiff[LID1+16][LID2+8]∗MyU.y
44 + GPU_EleStiff[LID1+16][LID2+16]∗MyU.z) ;
45 }
46 }
47 } / / end e2 loops
48 } / / i f i okay
49 } / / i−loop
50 } / / i f j okay
51 } / / j−loop
52 } / / i f k okay
53 } / / k−loop
54 } / / end i f not dirichlet
55 / / store results
56 res [indg_cur] = MyRes;
57 } / / end i f active
58 __syncthreads () ;

Lines 1–11 loop over all the elements that have node (i, j ,k)
associated with this thread as a vertex. The “if”-statements

123

http://www.mathematik.uni-trier.de/~schmidt/gputop
http://www.mathematik.uni-trier.de/~schmidt/gputop

254 S. Schmidt, V. Schulz

are needed for boundary nodes. The variables EID∗ hold
the global index of the element being processed. Line 16
loads the constant density for the element in computation.
The node/vector component with global index (i, j ,k) has
different local indices depending on the element it is a ver-
tex of. The loops starting in lines 19–23 iterate over local
indices which node (i, j ,k) has in adjacent elements. Line
25 computes the index of the trial function being tested
with, and needed to access the element stiffness stored in
GPU_Ele\−Stiff[24][24], residing in the constant memory.
Lines 26–28 compute the same indices for accessing the
states in the shared memory. The following computation for
the matrix–vector product is straight forward and the kernel
ends with a single store to the device memory per component
of the vector u. Consequently, this is also one perfectly coa-
lesced write operation per thread, completely avoiding the
problems with atomic increment instructions.

3.3 Single precision

Although nowadays GPUs are competitive by using double
precision floating point numbers, the desire to remain back-
wards compatible with 1.x compute capability devices means
that we must also address some issues raising from the use of
a single precision number representation. Consequently, this
will also enable us to conduct performance studies between
single and double precision GPU and CPU computations later
on.

Apparently, the optimality criteria update is sensitive
towards round-off errors. In order to find the Lagrange multi-
plier λ of the volume constraint, we employ the same bi-sec-
tioning algorithm as in [19]. However, for the single precision
test runs, the termination criteria

N∑
e=1

ρe ∈ [v0 − ε, v0 + ε]

has to be relaxed to ε = 10−3, as the original termination
criterion is below single precision accuracy. This does not
lead to any problems with the volume fraction being notice-
ably violated. We also have to modify the actual optimality
criteria update scheme. In single precision, components vi of
the gradient vector v with |vi | < 10−5 can have an unreliable
sign. Although the relative error is insignificant, the updating
scheme (2.9) is quite sensitive to components of the gradient
being “−0” instead of “+0” due to the discontinuous nature
of max and min operators. Since the optimal solution without
constraints is completely filled and without voids, the sign of
the gradient can be corrected manually.

The single precision limit is especially problematic when
the problem size increases, as the condition number of the
system matrix becomes very large for problems with 106–107

Fig. 2 Final cantilever design on a 100× 100× 200 mesh

unknowns. The result usually is a poor convergence behav-
ior of the CG method for large domains, and highly uneven
material distributions.

4 Results and performance studies

4.1 Extruded cantilever beam

We test the GPU topology optimizer on a mesh with 100 ×
100× 200 points in three space dimensions by using a setup
such that a cantilever beam can be expected as the optimal
solution. This results in a problem with a moderate number
of unknowns: 6,000,000 nodal displacements and 1,950,399
cell densities, a total of 7,950,399 unknowns. The optimiza-
tion must find a design that fills at most 20 % of the mass.
The other constants are chosen as follows: Young’s modulus
E = 1, Poisson’s ratio μ = 3 × 10−1, penalty exponent
p = 3.0, filter radius 2.8, and minimum density ρ0 = 0.15.
The final cantilever is shown in Fig. 2, together with obvious
boundary conditions. The convergence rates for the single
and double precision implementations of the CG method for
the first optimization iteration can be seen in Fig. 3; they
show inferior performance as could be expected, when sin-
gle precision is used. It should be noted that we often need
less time to solve the linear elasticity equation when using
double precision over single precision, because—although
more computational time is needed per iteration—the faster
convergence rate more than compensates for this.

4.2 CPU implementation

Before discussing the GPU implementation, we will study
the performance of the CPU version first, such that the GPU
code is measured against a well-tuned alternative. For this

123

A 2589 line topology optimization code 255

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000

GPU 64 bit
GPU 32 bit

Fig. 3 Convergence rate of the CG method in single and double pre-
cision for the first optimization iteration

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 S
pe

ed
-U

p

Number of CPU Cores

Ideal speed-up
CG iteration
MatVec K*u

Res f-K*u
Gradient evaluation

Density update

Fig. 4 CPU scaling behavior of different subroutines during topology
optimization

purpose, we study the parallel performance and scaling, espe-
cially of the nodal finite element matrix–vector product, on
an AMD compute server consisting of AMD 6176 SE “Mag-
ny” cores with 512 KiB L2 cache each. The server consists
of four CPUs with 12 cores each. Furthermore, there is also
12 MiB of L3 cache per CPU. Thus, the machine has a total
of 48 shared memory cores communicating by AMD Hyper-
Transport at 1.8 GHz. The speed up of the different routines
of the topology optimization code is shown in Fig. 4. Due to
the nature of the HyperTransport system and the preferred
memory areas of each core, the scaling shows a step-wise
increase in parallel efficiency. This phenomenon has been
observed for a variety of other benchmarks before and can
be considered normal for this architecture, unless more effort
is invested by making the operating system manually pin
threads to cores with matching memory preference.

The scaling of the nodal matrix–vector product seems to
be very promising for the GPU implementation. However,
note that the CG iteration, the residual computation, and the

se
co

nd
s

Fig. 5 CPU and GPU time needed for different subroutines. Time is
averaged for each subroutine over one complete topology optimization

gradient evaluation both include the computation of norms
and inner products, which is implemented by using the Open-
MP tree reduction command. Unfortunately, the computation
of scalar values has a rather bad parallel scaling; this aspect
will be of considerable importance for the GPU implemen-
tation later on. The density and actual optimization update
shows very little parallel scaling and has therefore not been
implemented to the GPU.

4.3 GPU implementation

With four floating point numbers per mesh node, the prob-
lem of three dimensional linear elasticity is very data inten-
sive, especially when one considers that the actual multiplica-
tion with the element stiffness Ke is of very low algorithmic
intensity. Nevertheless, the GPU implementation running on
an NVIDA Tesla M2050 device can outperform the 48 core
AMD 6176 SE shared memory system. A detailed compari-
son of different architectures and floating point number rep-
resentations can be seen in Fig. 5. Considering the time spent
in each subroutine, the CPU and GPU have completely dif-
ferent bottlenecks. Note that for the CPU architectures, the
time needed for one CG iteration is almost completely spent
in either computing the matrix–vector product K (ρ)u or the
residuum f − K (ρ)u, not including the computation of any
vector norms. For the CPUs, the overhead of the CG method
is thus almost negligible compared to the computation of the
matrix–vector products.

For the graphics card, the computation of the matrix–vec-
tor product requires on average only 5.34 × 10−6 s in dou-
ble precision and 4.95 × 10−6 s in single precision, which
is negligible compared to the 0.0817 s of one CG iteration
in double precision or 0.0362 s in single precision. In direct
comparison, the 48 core AMD 6176 SE needs 0.1410 s per
CG iteration, which is slower by a factor of 1.726. Thus, the
graphics card spends a disproportional time on the additional

123

256 S. Schmidt, V. Schulz

calculations of inner products and norms needed by the CG
method, while still outperforming the shared memory sys-
tem. This suggests that the Richardson iteration would be
much better suited, but the very poor convergence behavior
makes using that method infeasible. However, a multi-grid
method with a smoothing step based on the Richardson iter-
ation could be very promising for future research.

The updating of the material density is not done on the
graphics card due to the bad scaling; therefore, each optimi-
zation step on the GPU also has to include copying the data
through the PCIe bus to the main memory, which in double
precision requires on average 0.0308 s for one upload and
0.0256 s for one download. This is less than a single CG iter-
ation and has therefore only very little impact on the overall
performance.

Summarizing the above, the GPU implementation can out-
perform a 48 core shared memory system, making the Tesla
device very cost efficient. The finite element matrix–vector
product on a structured mesh is very well suited for a GPU
implementation, but the overhead of the CG method should
be addressed as part of further research by using more itera-
tions of a Richardson type, perhaps as a multi-grid smoother.

5 Conclusions and outlook

We have investigated topology optimization on CUDA
enabled graphics cards. An optimization procedure very sim-
ilar to [19] in three dimensions has been conducted on the
graphics card and found to be able to outperform a CPU
implementation on a 48 core shared memory system. The
CPU code is found to perform and scale well on all 48
cores. Special attention is given to conduct a matrix-free
CG iteration on the device with procedural generation of
the matrix–vector product. Both CPU and GPU implementa-
tion show entirely different computational bottlenecks when
we measure the performance: The CPU implementation is
dominated by the time needed to compute a matrix–vector
product, whereas the GPU is dominated by inner products
and norms needed by the CG method.

References

1. Ananiev, S.: On equivalence between optimality criteria and pro-
jected gradient methods with application to topology optimization
problem. Multibody Syst. Dyn. 13(1), 25–38 (2003)

2. Bendsøe, M.P.: Optimal shape design as a material distribution
problem. Struct. Optim. 1, 193–202 (1989)

3. Bendsøe, M.P.: Methods for Optimization of Structural Topology,
Shape and Material. Springer, Berlin (1995)

4. Bendsøe, M.P., Sigmund, O.: Topology Optimization—Theory,
Methods and Applications, 2nd edn. Springer, Berlin (2004)

5. Braess, D.: Finite Elemente, Theorie, schnelle Löser und Anwend-
ungen in der Elastizitätstheorie, 2nd edn. Springer, Berlin (1997)

6. Brandvik, T., Pullan, G.: Acceleration of a 3d Euler solver using
commodity graphics hardware. In: Proceedings of the 46th AIAA
Aerospace Sciences Meeting, vol. AIAA 2008-607. AIAA (2008)

7. Buatois, L., Caumon, G., Lévy, B.: Concurrent number cruncher:
an efficient sparse linear solver on the GPU. In: Lecture Notes in
Computer Science, vol. 4782, pp. 358–371 (2007)

8. NVIDIA Coorperation.: NVIDIA CUDA C programming guide
4.0, May 2011

9. Elsen, E., LeGresley, P., Darve, E.: Large calculation of the
flow over a hypersonic vehicle using a GPU. J. Comput.
Phys. 227, 10148–10161 (2008)

10. Giles, M.B.: Using NVIDIA GPUs for computational finance.
http://people.maths.ox.ac.uk/~gilesm/hpc/

11. Göddeke, D., Wobker, H., Strzodka, R., Mohd-Yusof, J.,
McCormick, P., Turek, S.: Co-processor acceleration of an unmod-
ified parallel solid mechanics code with FEASTGPU. Int. J. Com-
put. Sci. Eng. 4(4), 254–269 (2009)

12. Goodnight, N., Woolley, C., Lewin, G., Luebke, D., Humphreys,
G.: A multigrid solver for boundary value problems using pro-
grammable graphics hardware. In: HWWS ’03: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Conference on Graph-
ics Hardware, pp. 102–111, Aire-la-Ville, Switzerland, Switzer-
land, Eurographics Association (2003)

13. Hagen, T.R., Lie, K.A., Natvig, J.R.: Solving the Euler equations on
graphics processing units. In: Lecture Notes in Computer Science,
vol. 3994, pp. 220–227 (2006)

14. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for
solving linear systems. J. Res. Natl. Bureau Stand. 49(6), 409–
436 (1952)

15. Komatitsch, D., Michéa, D., Erlebacher, G.: Porting a high-
order finite-element earthquake modeling application to NVIDIA
graphics cards using CUDA. J. Parallel Distrib. Comput. 69(5),
451–460 (2009)

16. Micikevicius, P.: 3D finite-difference computation on GPUs
using CUDA. In: GPGPU-2 Proceedings of 2nd Workshop on
General Purpose Processing on Graphics Processing Units, pp. 79–
84 (2009)

17. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series
in Operations Research. Springer, Berlin (1999)

18. Phillips, E.H., Zhang, Y., Davis, R.L., Owens, J.D.: Rapid aerody-
namic performance prediction on a cluster of graphics processing
units. In: Proceedings of the 47th AIAA Aerospace Sciences Meet-
ing, vol. AIAA 2009-565. AIAA (2009)

19. Sigmund, O.: A 99 line topology optimization code written in mat-
lab. Struct. Multidiscip. Optim. 21(2), 120–127 (2001)

20. Wadbro, E., Berggren, M.: Megapixel topology optimization on a
graphics processing unit. SIAM Rev. 51(4), 707–721 (2009)

21. Zhou, M., Rozvany, G.I.N.: The COC algorithm, part II: topo-
logical, geometry and generalized shape optimization. Comput.
Methods Appl. Mech. Eng. 89, 197–224 (1991)

123

http://people.maths.ox.ac.uk/~gilesm/hpc/

	A 2589 line topology optimization code written for the graphics card
	Abstract
	1 Introduction
	2 Linear elasticity and topology optimization based on the SIMP approach
	2.1 Linear elasticity
	2.2 SIMP approach

	3 Implementation on the graphics processing unit
	3.1 Overview
	3.2 Finite element matrix--vector product
	3.2.1 Element based
	3.2.2 Nodal based

	3.3 Single precision

	4 Results and performance studies
	4.1 Extruded cantilever beam
	4.2 CPU implementation
	4.3 GPU implementation

	5 Conclusions and outlook
	References

