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Abstract In this paper we solve linear parabolic problems
using the three stage noble algorithms. First, the time dis-
cretization is approximated using the Laplace transforma-
tion method, which is both parallel in time (and can be in
space, too) and extremely high order convergent. Second,
higher-order compact schemes of order four and six are used
for the the spatial discretization. Finally, the discretized lin-
ear algebraic systems are solved using multigrid to show the
actual convergence rate for numerical examples, which are
compared to other numerical solution methods.
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1 Introduction

In the effective and efficient numerical approximation of
parabolic problems, there are three major issues to be con-
sidered: (1) the discretization in the time variable, (2) the dis-
cretization in the spatial variables, and (3) the linear solver
at each time step. The first issue is usually resolved using
backward Euler, forward Euler, Crank–Nicolson, or Runge–
Kutta type time-marching algorithms. The second and third
issues are pretty common in many numerical approximation
problems, e.g., in obtaining numerical solutions of elliptic
problems.

In this paper, based on efficient numerical schemes for the
Laplace inversion, we use the Laplace transformation method
instead of traditional time-marching algorithms in the dis-
cretization in the time axis. This method takes Laplace trans-
forms in time of the parabolic problems, resulting in a set of
independent complex-valued elliptic problems on a suitably
chosen contour Γ . Each of the independent problems can be
solved in parallel. Further, each of the independent problems
can also be solved in parallel in the spatial domain, leading
to parallel in time-space solvers.

The parareal algorithm [14,23] is another parallel in time-
space method. It uses an additional coarse time mesh to solve
all of the time steps repeated in parallel on the two sets of time
meshes. The convergence of parareal has been shown to be at
worst the number of fine time mesh points, i.e., no improve-
ment over serial in time solvers. While parareal converges
for some problems in many fewer time steps than the worst
case, it is not guaranteed to be computationally beneficial
for all problems. The method in this paper uses a predictable
number of processors for any given problem based on the
number of points on the contour Γ and the number of pro-
cessors used to solve each spatial domain problem. Thus, it is
guaranteed to be computationally useful, similar to standard
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parallel parabolic solvers that only parallelize in the spatial
domain.

After solving the set of Laplace-transformed problems,
the time-domain solutions are obtained by discrete Laplace
inversion on the contour Γ . In order to approximate the
contour integration fast and accurately, there have been
numerous schemes [4,5,26,31,33,35] proposed to approx-
imate mainly the Laplace inversion precisely. More recently,
the idea of using the Laplace transformation to solve para-
bolic problems has been developed actively [27,28], which
emphasized the nature of parallelization as well as the
deformation of the contour Γ to improve stability and
convergence. Analysis and improvements can be found in
[15,21,22,24,25,32,34] and the references therein.

Since the time discretization by the Laplace transforma-
tion is of arbitrarily high order, it is desirable to employ a high
order scheme for the space discretization without unnecessar-
ily deteriorating the sparse structure. Hence, we apply 9-point
compact finite difference schemes for the approximation of
elliptic operators. Since Young and Dauwalter [36] have
developed higher-order compact schemes for general linear
elliptic equations in 1965, many researchers have extended
the idea in many directions to deal with variable coefficient
cases [1,2,17], convection-diffusion problems [16,37,38],
Helmholtz equations [29,30], and biharmonic equations [19],
and so on. In the present paper we follow the approaches by
Singer and Turkel [29,30] to solve Helmholtz-like problems
that arise from the Laplace transformation of parabolic prob-
lems.

The linear systems obtained by the Laplace transforma-
tion in time are complex-symmetric, but non-Hermitian. In
the discretization of Helmholtz-type equations several suc-
cessful numerical solvers have been developed. Among them
two fast ones were employed in our simulation: MADPACK,
which is a very efficient abstract multigrid solver [8], and
QMR [13]. Multigrid can be formulated as an algorithm for
an abstract problem that is independent of the partial differ-
ential equation, domain, discretization method, and number
of processors [6,7]. In such an abstract setting, problems
not arising from partial differential equations can be treated
also (c.f. aggregation-disaggregation methods) [8,10]. As it
is known that there is no CG-type algorithm which is as
fast as CG for non-Hermitian linear systems [11], other spe-
cial techniques are necessary for a fast solver. The QMR
algorithm, which is a Krylov subspace method with iterates
characterized by a quasi-minimal residual property, performs
very well for our problem [20]. We have tested our algorithm
with HOADI and parareal schemes.

In Sect. 2, we explain the Laplace transformation method
to discretize in the time direction. We use the deformation of
the contour introduced in [28], which gives an arbitrary high-
order convergence rate with a hyperbolic type deformation.
In Sect. 3, fourth-order and sixth-order compact schemes for

Dirichlet problems are given. Also, a fourth-order compact
scheme for a mixed boundary value problem is given where a
Neumann boundary condition is given on a part of boundary
and a Dirichlet boundary condition is given on the rest of it.
In Sect. 4 numerical examples are presented and compared
to the high order ADI scheme [18]. In Sect. 5 we make some
conclusions.

2 The Laplace transformation method

Consider a parabolic equation in an abstract setting that al-
lows the proposed scheme to be applied to numerous prob-
lems of interest. When u0 is a given initial function and A is
a spatial elliptic operator with its eigenvalues located in the
right half plane {z ∈ C : �z > λ0}, with some λ0 > 0, we
want to solve

∂u

∂t
+ Au = f, t ∈ (0, T ], (1)

u(0) = u0.

Given some z ∈ C and a function u(·, t), the Laplace
transform in time is given by

û(·, z) := L [u](z) =
∞

∫

0

u(·, t)e−zt dt.

The Laplace transform of (1) is

zû + Aû = u0 + f̂ (·, z), z ∈ Γ. (2)

We now have an elliptic problem (2), which we solve using
any reasonable elliptic solver. Formally, the solution û(z) =
û(·, z) of (2) for each z is given by

û(·, z) = (z I + A)−1(u0(·)+ f̂ (·, z)). (3)

We assume that the real parts of singular points of u0(·) +
f̂ (·, z) are bounded above by some positive number.

Let the integral contour Γ be a straight line parallel to the
imaginary axis written in the form

Γ := {z ∈ C : z(ω) = α + iω, where
ω ∈ R increases from − ∞ to + ∞}. (4)

The constant α ∈ R in the contour is called the Laplace con-
vergence abscissa and α is required to be greater than the real
part of any singularity of û(z). Then the Laplace inversion
formula [3] is

u(·, t) = 1

2π i

∫

Γ

û(·, z)ezt dz. (5)
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Higher-order schemes for the Laplace transformation method 41

2.1 Deformation of contour

Note that as |z| becomes large, if z ∈ Γ has negative real
parts, then the discretization error in numerically evaluating
the integrand in (5) is significantly reduced for all positive t .
Hence, we want to deform the contour to the left half plane
while keeping all the singularities to the left of it. This obser-
vation led the authors in [28] to propose the smooth contour
of hyperbola type by

Γ = {z ∈ C : z(ω) = ζ(ω)+ isω, ω ∈ R increasing},
where ζ(ω) = γ − √

ω2 + ν2.
(6)

The shape of a hyperbola contour Γ is determined by the
parameters ν, γ , and s. Note that γ and ν must be selected
such that γ − ν is larger than the negative of the smallest
eigenvalue of A and the real parts of singularities of f̂ (z)
since the contour cuts the real line at γ − ν.

Concrete mathematical analysis requires that we assume
that the deformed contour (6) lies in a region that we will
now determine. Assume that the spectrum of A, σ (A), lies
in a sector Σδ for some δ ∈ (0, π2 ) such that

σ(A) ⊂ Σδ = {z ∈ C : | arg z| ≤ δ, z �= 0)}, (7)

and that the resolvent (z I + A)−1 of −A satisfies

‖(z I + A)−1‖ ≤ M

1 + |z| for z ∈ Σπ−δ ∪ B, (8)

where M is a positive constant and B is a small ball about the
origin. We assume henceforth that our deformed contour (6)
lies in the region Σπ−δ ∪ B. The first restriction (7) avoids
the singular points of the integrand in (5) since the solution
of Problem (1) can be rewritten as

u(t) (= u(·, t)) = 1

2π i

∫

Γ

(

z I + A
)−1(

u0 + ̂f (z)
)

ezt dz.

(9)

The integral contour must be kept away from the spectrum
of −A and the singular points of f̂ (z) when we deform the
contour. This restriction is quite natural since all eigenvalues
of −A and the singularities of f̂ (z) have real parts bounded
by a positive number. The second restriction (8) is used in
the estimates of stability and errors.

Using the deformed contour (6), the inversion formula (5)
can be rewritten using a real variable ø as an infinite integral,

u(·, t) = 1

2π i

∞
∫

−∞
û(·, ζ(ω)+ isω)(ζ ′(ω)+ is) ·

e(ζ(ω)+isω)t dω.

We change the infinite range (−∞,∞) of the above integra-
tion into a finite region (−1, 1) by the change of variables

y(ω) = tanh
(

τω
2

)

and
ω(y) = 2

τ
tanh−1(y) = 1

τ
log 1+y

1−y
(10)

for a parameter τ > 0. Specifically, this change of variables
reduces the integral (10) on an infinite interval to an integral
on a finite interval:

u(·, t) = 1

2π i

1
∫

−1

û(·, ζ(ω(y))+ isω(y))(ζ ′(ω(y))+ is) ·

e(ζ(ω(y))+isω(y))tω′(y)dy. (11)

2.2 Semi-discrete approximation

Using a quadrature rule, (11) can be discretized in time. For

z j = z(ω j ), ω j = ω(y j ), and y j = j

Nz
, (12)

for − Nz < j < Nz,

the semi-discrete approximation of u(·, t) is explicitly given
by

UNz ,τ (·, t) = 1

2π iNz

Nz−1
∑

j=−Nz+1

û(·, z j )
dz

dω
(ω j )

dω

dy
(y j )e

z j t .

(13)

The quadrature scheme (13) was proven in [28] to have
an arbitrary high order spectral convergence rate when the
source term f has high order regularity. Formally this is
stated as follows:

Theorem 1 (Sheen-Sloan-Thomée) Let u(t) be the solution
of (1) and let UNz ,τ (t) be its approximation defined by (13).
Assume that ̂f (z) is analytic to the right of the contour Γ
and continuous ontoΓ , with ̂f ( j)(z) bounded onΓ for j ≤ r
and r an integer ≥ 1. Then for t > rτ ,

‖UNz ,τ (t)− u(t)‖ ≤ Cr,s
Nr

z

(

1 + tr + 1
τ r

)

·
eγ t

(

1 + log+ 1
t−rτ

)

·
(‖u0‖ + maxk≤r supz∈Γ ‖ ̂f (k)(z)‖).

(14)

2.3 Key features of the proposed algorithm

We summarize with three key features about the method.

Remark 1 The implication of the Theorem 1 is such that the
convergence of the proposed scheme is of order O(N−r

z )with
an arbitrary large r > 0 if f̂ ≡ 0 is analytic. This implies
that the discretization errors in the time direction using the
Laplace transformation method will be negligible compared
to those caused from the spatial discretization part in solving
parabolic problems with an analytic inhomogeneous term.
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Remark 2 In the summand part of (13) a critical observation
is that the

û(·, z j )
dz

dω
(ω j )

dω

dy
(y j ), j = 0, . . . , Nz,

are independent of t . Hence, we only have to approximate
û(·, z j ) once by solving the complex-valued elliptic problem
(2) for a set of z j , j = 0, 1, · · · , Nz , and save the results.
Then, if we need the solution at a different time t , the same set
of spatial solutions û(·, z j ), j = 0, 1, · · · , Nz , can be reused
in the evaluation of the summation (13). The only change are
the factors ez j t for the new time t .

Remark 3 Notice that each elliptic problem (2) for a z j from
the set of z j , j = 0, 1, · · · , Nz , is independent of other ellip-
tic problems for the remaining z j ’s, which suggests an embar-
rassingly parallel solution method. Communication times are
minimized in solving the elliptic problems (2) in parallel by
assigning each processor an independent elliptic problem to
solve without communicating with other processors while
solving its assigned problem. Unlike many other higher-
order schemes (e.g., [18]), ours is embarrassingly parallel
and scales well as Nz → ∞.

3 High order accurate schemes

We now restrict to the case of A = −aΔ in two dimensions
with f ≡ 0 and Ø = (0, 1)2. Let the domain Ø be discret-
ized into Nx × Nx uniform rectangles with sides h = 1

Nx
and

mesh points (x j , yk) = ( jh, kh) for j = 0, · · · , Nx, k =
0, · · · , Nx. Then (2) is of Helmholtz-type, for which fourth
and sixth order finite difference schemes have been derived
by Singer-Turkel [29,30]. So,

zû − a(̂uxx + û yy) = u0, (15)

where z ∈ Γ ⊂ C. Let û j,k be a numerical approximation
to û(xi , y j ) and (u0) j,k = u0(xi , y j ) the approximate initial
value. A 9-point compact finite difference scheme is written
in the form

A0û j,k + Asσs + Acσc = B0(u0) j,k + Bsψs + Bcψc,

j, k = 1, · · · , Nx − 1,

û j,k = 0 if jk( j − Nx)(k − Nx) = 0,

(16)

where

σs = û j,k+1 + û j+1,k + û j,k−1 + û j−1,k,

σc = û j+1,k+1 + û j+1,k−1 + û j−1,k−1 + û j−1,k+1,

ψs = (u0) j,k+1 + (u0) j+1,k + (u0) j,k−1 + (u0) j−1,k,

ψc = (u0) j+1,k+1 + (u0) j+1,k−1

+ (u0) j−1,k−1 + (u0) j−1,k+1.

With the following coefficients in (16),

A0 = 10a
3 + h2z(1 + h2z

12a ), As = − 2a
3 , Ac = − a

6 ,

B0 = h2( 2
3 + h2z

12a ), and Bs = h2

12 ,

(16) with Bc = 0 becomes a 4th-order approximation scheme
for the the homogeneous Dirichlet problem [30]. Instead of
Dirichlet boundary conditions imposed on all boundary parts,
let us consider a special case such that only the boundary con-
dition at the left-side boundary is replaced by the Neumann
boundary condition ∂ û

∂ν
(0, y) = ĝ(y), 0 < y < 1. In addition

to (16) again with Bc = 0, the following approximation for
j = 0 is added

A0û0,k+As (̂u0,k−1+2û1,k+û0,k+1)+2Aσ (̂u1,k−1+û1,k+1)

= B0(u0)0,k + Bsψs

+ a
(

1 − h2z

6a

)−1(

2hĝk + h3

3a
(u0x )0,k

)

. (17)

This scheme is still of 4th order, and furthermore the replace-
ment u0x with second-order discretization in (17) still pre-
serves the convergence [29].

Concerning a 6th-order convergent scheme for spatial
approximation, we have the following formula for the homo-
geneous Dirichlet problem:

A0 = 10a
3 + h2

(

46z
45 + h2

12
z2

a + h4

360
z3

a2

)

,

As = −
(

2a
3 + h2

90 z
)

, Ac = −
(

a
6 − h2

180 z
)

, and

B0 = h2
(

1 + h2

12
z
a + h4

360
z2

a2

)

.

(18)

Then, a compact 6th-order scheme is given [30] by (16) with
the right hand side replaced by

B0(u0) j,k +
(h4

12
+ h6

360

z

a

)

(u0xx + u0yy)

+ h6

360
(4u0xxyy + u0xxxx + u0yyyy).

Observe that the 4th-order schemes can be regarded as
shifted linear forms for which the special algorithm [12] can
be applied, while the 6th-order scheme is not a shifted linear
form since the coefficients As and Ac in the left hand side
depend on z. The linear systems for both cases, however, are
non-Hermitian and thus the usual CG algorithm are not appli-
cable. Instead, we can apply a multigrid or a QMR algorithm
for solving these non-Hermitian linear systems of the form
Ax = b.

4 Numerical examples

In this section, we consider two examples to demonstrate that
we have a high order convergence in both time and space.

We solve the elliptic problems using MADPACK [8–10],
which implements abstract multilevel algorithms. QMR [13]
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Table 1 Convergence of the
4th-order scheme using
MADPACK for Example 1

z ε10 ε20 ρ20 ε40 ρ40 ε80 ρ80

(10.57, 0.00) 0.170E-03 0.143E-04 3.57 0.960E-06 3.90 0.611E-07 3.97

(10.34, 3.21) 0.168E-03 0.141E-04 3.57 0.947E-06 3.90 0.603E-07 3.97

(9.62, 6.49) 0.162E-03 0.136E-04 3.57 0.909E-06 3.90 0.578E-07 3.98

(8.36, 9.90) 0.152E-03 0.127E-04 3.58 0.845E-06 3.91 0.536E-07 3.98

(6.47, 13.56) 0.138E-03 0.115E-04 3.58 0.759E-06 3.93 0.480E-07 3.98

(3.75, 17.58) 0.120E-03 0.101E-04 3.57 0.658E-06 3.95 0.414E-07 3.99

(−0.13, 22.18) 0.100E-03 0.864E-05 3.53 0.550E-06 3.97 0.344E-07 4.00

(−5.82, 27.75) 0.776E-04 0.714E-05 3.44 0.442E-06 4.01 0.273E-07 4.01

(−14.87, 35.16) 0.527E-04 0.570E-05 3.21 0.338E-06 4.08 0.206E-07 4.04

(−32.36, 47.11) 0.265E-04 0.425E-05 2.64 0.236E-06 4.17 0.139E-07 4.09

(−63.75, 65.24) 0.103E-04 0.289E-05 1.84 0.159E-06 4.18 0.884E-08 4.17

was also investigated as the linear equation solver. Since
QMR’s convergence rates were almost the same as those
for using multigrid, we leave these tables out of this paper
and refer the interested reader to [20].

Multigrid methods are well known to provide very fast,
including sometimes linear in time and space, solutions to
elliptic problems. It is natural to try such a solver. MAD-
PACK works either on a single processing core or many using
MPI to communicate with other cores.

Example 1 Consider the set of complex-valued elliptic prob-
lems:

zû− 1

5π2 (̂uxx + û yy) = e sin(2πx) sin(πy) in [0, 1]2,

u = 0 on ∂[0, 1]2. (19)

This example comes from the Laplace transformation of

ut − 1

5π2 (uxx + uyy) = 0, and u(x, y, 0)

= e sin(2πx) sin(πy),

whose exact solution is given by

u(x, y, t) = e1−t sin(2πx) sin(πy).

We adopt the contour representation in the form of (11).
Let

Γ = {z ∈ C : z(ω) = ζ(ω)+ isω,ω ∈ R, ω increasing},
ω(y) = 2

τ
tanh−1(y) = 1

τ
log

1 + y

1 − y
, and

ζ(ω) = γ −
√

ω2 + ν2.

The error ‖UNz ,τ (t)− u(t)‖ in (14) can be understood as the
summation of discretization error and the truncation error.
In [34], the authors suggest a way to find an optimal set
of parameters by balancing the discretization and truncation
errors. In our approach, we first transform the infinite inter-
val (−∞,∞) to a finite interval (−1, 1) with parameter τ
and choose the number Nz with which (−1, 1) is uniformly

partitioned into 2Nz − 1 subintervals. Therefore, the dis-
cretization and truncation parts are simultaneously affected
by the choice of τ and Nz . Although the optimal choice of
parameters in [34] does not fit quite to our case, we adopt
heuristically this approach. Recalling the formula in [34],

α = 1.1721, a(α) = cosh−1
(

2α

(4α − π) sin α

)

,

γ = 4πα − π2

a(α)

Nz

t
, ν = γ sin(α), s = cot(α), and

τ = log (2Nz − 1)

γ sin(α) sinh
(

a(α) Nz−1
Nz

) , (20)

the parameters are chosen as γ = 134.8, ν = 124.2, s =
0.4213 and τ = 0.02633. Tables 1–2 demonstrate clearly
that the spatial errors decay asymptotically at the rate of 4
and 6 orders for the chosen contour points z j ’s. Notice that

the set of eigenvalues of − 1
5π2 (∂

2
x + ∂2

y ) is { k2+l2

5 : k, l =
1, 2, · · · } = { 2

5 , 1, 8
5 , · · · }. Thus, instead of choosing the

parameters as above, any other reasonable contour Γ of the
form (6) which cuts the real axis at γ − ν > 0 will be suffi-
cient to be adopted for solving Problem (19).

We applied the 4th and 6th-order schemes for different
z’s and used these approximations for Laplace inversion at
time t = 1. For inversion we used Nz = 30 for the number
of points on the contour with Nx ∈ {10, 20, 40, 80} for the
number points in the spatial mesh discretization. We com-
pared the approximate solutions computed using our method
with the exact solution u(t, x, y) = e1−t sin(2πx) sin(πy).
For reference, the 30 contour points are depicted in Fig. 1.

We compare our method with the high order ADI method
(HOADI) in [18], a very fast time-marching scheme of sec-
ond order in time and fourth order in space. We used Karaa’s
code with our example in our comparisons. We discretize
the time interval [0, 1] by 1,000, 500, and 100 steps and the
space by meshes of size 10 × 10, 20 × 20, 40 × 40, and
80 × 80. The L2-errors and reduction rates at t = 1 are
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Table 2 Convergence of the
6th-order scheme using
MADPACK for Example 1

z ε10 ε20 ρ20 ε40 ρ40 ε80 ρ80

(10.57, 0.00) 0.138E-05 0.304E-07 5.50 0.513E-09 5.89 0.817E-11 5.97

(10.34, 3.21) 0.136E-05 0.299E-07 5.51 0.503E-09 5.89 0.801E-11 5.97

(9.62, 6.49) 0.131E-05 0.284E-07 5.53 0.475E-09 5.90 0.755E-11 5.98

(8.36, 9.90) 0.123E-05 0.260E-07 5.56 0.433E-09 5.91 0.686E-11 5.98

(6.47, 13.56) 0.113E-05 0.232E-07 5.61 0.380E-09 5.93 0.601E-11 5.98

(3.75, 17.58) 0.103E-05 0.201E-07 5.68 0.323E-09 5.96 0.509E-11 5.99

(−0.13, 22.18) 0.937E-06 0.171E-07 5.78 0.267E-09 6.00 0.416E-11 6.00

(−5.82, 27.75) 0.860E-06 0.142E-07 5.92 0.213E-09 6.06 0.328E-11 6.02

(−14.87, 35.16) 0.758E-06 0.116E-07 6.03 0.162E-09 6.16 0.246E-11 6.04

(−32.36, 47.11) 0.345E-06 0.941E-08 5.20 0.113E-09 6.38 0.167E-11 6.08

(−63.75, 65.24) 0.719E-07 0.909E-08 2.98 0.769E-10 6.89 0.110E-11 6.12

Fig. 1 Contour and z-points
used in Laplace inversion for
Example 1

0
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 20
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 40

 50

 60

 70

-70 -60 -50 -40 -30 -20 -10 0  10  20

ζ(ω)

sω

z(ω)=ζ(ω)+isω

reported in Table 4. Comparing these errors and reduction
rates for 1,000 and 500 time steps in Table 4 with those for
4th order scheme in Table 3, the results are similar. However,
we emphasize that only 30 elliptic solves are required for
our method while 500 to 1,000 elliptic solves are required
for the high order ADI method. If we reduce the time steps
to 100, we see that the time errors dominate in the high order
ADI scheme as shown in the last row of Table 4. Instead, our
method uses an arbitrarily high order scheme in time discret-
ization so that we can guarantee that the time error does not
dominate.

As we stressed in Sect. 2, each elliptic problem for z j , j =
0, 1, · · · , Nz is independent of each of the elliptic problems
for the remainining z j ’s. This property naturally results in a
parallelization method that assigns each elliptic problem to

a different processor (or core), which can be enhanced with
spatial parallelization.

Example 2 Consider the following parabolic problem with
the mixed boundary condition:

ut − 1

π2 − 1

(

uxx + uyy
) = 0

for (x, t) ∈ (0, 1)2 × (0, T ],
ux = π

z + 1
cos(πx) cosh(y)

for (x, t) ∈ {0} × (0, 1)× (0, T ], (21)

u = 1

z + 1
sin(πx) cosh(y)

for (x, t) ∈ ∂(0, 1)2 \ [{0} × (0, 1)] × (0, T ],
u(x, 0) = sin(πx) cosh(y) for (x, t) ∈ (0, 1)2.
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Table 3 Full convergence of
Laplace transformation method
using MADPACK for
Example 1

Type ε10 ε20 ρ20 ε40 ρ40 ε80 ρ80

4th order 0.304E-03 0.170E-04 4.16 0.102E-05 4.06 0.630E-07 4.01

6th order 0.122E-04 0.191E-06 6.00 0.295E-08 6.02 0.486E-10 5.92

Table 4 Full convergence of
higher order ADI method in [18]
for Example 1

Type ε10 ε20 ρ20 ε40 ρ40 ε80 ρ80

HOADI (1000 time steps) 0.268E-03 0.165E-04 4.02 0.101E-05 4.03 0.428E-07 4.56

HOADI (500 time steps) 0.268E-03 0.165E-04 4.02 0.945E-06 4.12 0.222E-07 5.41

HOADI (100 time steps) 0.266E-03 0.144E-04 4.21 0.114E-05 3.65 0.210E-05 −0.544

Table 5 Convergence of the
4th-order scheme using
MADPACK for Example 2

z ε10 ε20 ρ20 ε40 ρ40 ε80 ρ80

(10.57, 0.00) 0.596E-04 0.373E-05 4.00 0.234E-06 4.00 0.146E-07 4.00

(10.34, 3.21) 0.593E-04 0.372E-05 3.99 0.233E-06 3.99 0.146E-07 4.00

(9.62, 6.49) 0.582E-04 0.368E-05 3.99 0.231E-06 3.99 0.145E-07 4.00

(8.36, 9.90) 0.564E-04 0.361E-05 3.97 0.226E-06 3.99 0.142E-07 4.00

(6.47, 13.56) 0.535E-04 0.349E-05 3.94 0.219E-06 3.99 0.137E-07 4.00

(3.75, 17.58) 0.496E-04 0.331E-05 3.91 0.209E-06 3.98 0.131E-07 4.00

(−0.13, 22.18) 0.448E-04 0.311E-05 3.85 0.197E-06 3.98 0.123E-07 4.00

(−5.82, 27.75) 0.393E-04 0.286E-05 3.78 0.181E-06 3.98 0.114E-07 3.99

(−14.87, 35.16) 0.341E-04 0.253E-05 3.75 0.163E-06 3.96 0.102E-07 3.99

(−32.36, 47.11) 0.303E-04 0.218E-05 3.80 0.140E-06 3.96 0.878E-08 3.99

(−63.75, 65.24) 0.262E-04 0.163E-05 4.01 0.115E-06 3.82 0.728E-08 3.99

The Neumann and Dirichlet boundary condition are imposed
on the boundary portion {0}×(0, 1) and the rest of the bound-
ary ∂(0, 1)2 \ [{0} × (0, 1)], respectively. The exact solution
is given by

u(x, y, t) = e−t sin(πx) cosh(y).

By applying the Laplace transformation to (21), we have
the following:

zû − 1

π2 − 1
(̂uxx + û yy) = sin(πx) cosh(y)

for x ∈ (0, 1)2,

ûx = π

z + 1
cos(πx) cosh(y) for x ∈ {0} × (0, 1),

û = 1

z + 1
sin(πx) cosh(y)

for x ∈ ∂(0, 1)2 \ [{0} × (0, 1)] . (22)

We calculate the approximate solution of (22) using a 4th
order convergence scheme with Neumann boundary condi-
tion as in (17). MADPACK is used as the linear solver and

the solution is used in the Laplace inversion formula with the
same coefficients as in Example 1 for generating the contour.
The results are shown in Tables 5–6.

Example 3 We consider the parallel performance of our
algorithm for Problem (19). We have used the same param-
eters as in Example 1 except NZ = 32 and Nx × Nx =
160 × 160 in the spatial mesh. Computations were per-
formed on a cluster with 44 Intel Xeon Quad Core proces-
sors each of which has 2 Gbytes of RAM. Message Passing
was done with the MPI interface using 1 GHz Ethernet. We
have tested the parallel runs with 1, 2, 4, 8, 16, 32 number
of processors. The comparison of parallel performances be-
tween the Laplace transformation method and the parareal
method are shown in Table 7. In Table 7, one can observe
that the parallel Laplace transformation method is much bet-
ter than the parareal method in their parallel performance.
Indeed, our algorithm computes one spatial elliptic problem
of size Nx × Ny only once per each of required processors,
while the parareal algorithm computes spatial elliptic prob-
lems of the same size iteratively several times until conver-
gence to and from the fine grid and coarse grid with respect
to time.
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Table 6 Full convergence of
Laplace transformation method
using MADPACK for
Example 2

Solver ε10 ε20 ρ20 ε40 ρ40 ε80 ρ80

MADPACK 0.373E-04 0.241E-05 3.95 0.151E-06 3.99 0.944E-08 4.00

Table 7 Comparison of parallel performance between Laplace trans-
formation method (LTM) and parareal method for Example 1

np LTM Parareal method

Time Speedup Time Speedup

1 17.501 1 17.815 1

2 9.363 1.87 11.360 1.56

4 5.741 3.05 7.701 2.31

8 3.405 5.15 4.983 3.58

16 1.709 10.29 3.322 5.36

32 0.862 20.34 2.552 6.98

5 Conclusions

In this paper we applied the Laplace transform and the in-
verse Laplace transform to a class of parabolic problems. The
advantages include the following key points:

– The convergence rate associated with the time deriva-
tive can be made arbitrarily high order, which actually
appears in numerical examples that we gave in Sect. 4.

– We can vary the order of the spatial discretization so that
we can balance the time and space errors.

– The solution method becomes embarrassingly parallel,
so that time stepping is far faster than conventional meth-
ods such as high order ADI solvers.

– Comparing to higher order ADI schemes or parareal
algorithms, our method solves spatial problems only
once per each contour points while others solve spatial
problems iteratively several times until convergence with
respect to time.

– The number of processing cores can be optimized by
picking an ideal number of points Nz on the contour Γ .
Each of the Nz elliptic problems can be solved indepen-
dently of the other problems. Additionally, all Nz prob-
lems can be solved in parallel themselves using parallel
methods for the elliptic problems (e.g., parallel multigrid
or a domain decomposition method).

– The method clearly extends to three dimensional spa-
tial problems in a clean way that is still embarrassingly
parallel for the time stepping.

Acknowledgments We thank Prof. Karaa for providing the high order
ADI code used in [18].
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