
Comput Visual Sci (2009) 12:247–263
DOI 10.1007/s00791-008-0090-4

REGULAR ARTICLE

Stable free surface flows with the lattice Boltzmann method
on adaptively coarsened grids

Nils Thürey · Ulrich Rüde

Received: 30 May 2006 / Accepted: 19 November 2007 / Published online: 18 March 2008
© Springer-Verlag 2008

Abstract In this paper we will present an algorithm to
perform free surface flow simulations with the lattice
Boltzmann method on adaptive grids. This reduces the
required computational time by more than a factor of three
for simulations with large volumes of fluid. To achieve this,
the simulation of large fluid regions is performed with coarser
grid resolutions. We have developed a set of rules to dynami-
cally adapt the coarse regions to the movement of the free
surface, while ensuring the consistency of all grids. Further-
more, the free surface treatment is combined with a Sma-
gorinsky turbulence model and a technique for adaptive time
steps to ensure stable simulations. The method is validated by
comparing the position of the free surface with an uncoars-
ened simulation. It yields speedup factors of up to 3.85 for a
simulation with a resolution of 4803 cells and three coarser
grid levels, and thus enables efficient and stable simulations
of free surface flows, e.g. for highly detailed physically based
animations of fluids.

Keywords Free surface flows · Physically based
animation · Adaptive grids · Lattice Boltzmann method

Communicated by G. Wittum.

N. Thürey · U. Rüde (B)
Computer Science 10 - System Simulation (LSS),
University of Erlangen-Nuremberg, Cauerstr. 6,
91058 Erlangen, Germany
e-mail: Ulrich.Ruede@cs.fau.de

N. Thürey
e-mail: Nils.Thuerey@cs.fau.de

1 Introduction

Free surface flows are important for a variety of applications,
such as the optimization of production processes for foam-
ing or casting [23], the research of bubble formation regimes
[4] or for applications in civil engineering such as certain
types of fluid structure interactions [27]. It is furthermore
of importance for physically based animations in computer
graphics, as a realistic fluid motion is hard to achieve without
relying on the equations that govern its motion. However, for
all simulation problems that appear in these cases it is still
problematic to ensure stability and reasonable computation
times for complex flows.

Our fluid simulation uses the lattice Boltzmann method
(LBM) which can efficiently handle irregular fluid geo-
metries and topologies [11,32]. In contrast to solvers that
directly compute solutions for the discretized Navier-Stokes
equations, the LBM is a form of cellular automaton. It relaxes
the incompressibility criterion and thus does not require an
additional step to compute the pressure with an iterative
method such as a multi-grid solver [5,53], or a pressure pro-
jection step [26,37]. Free surface fluids can also be computed
with an approach known as smoothed particle hydrodynam-
ics [29,30], which does not require a fixed grid and computes
the fluid properties by computation kernels defined on par-
ticle neighborhoods. The LBM, however, is interesting due
to the simple nature of the basic algorithm and its high effi-
ciency. These properties of the algorithm make it possible to
e.g. perform interactive fluid simulations [51], or adapt it to
other problems [6,10,50]. The algorithm that we will pres-
ent in this paper is based on the free surface algorithm that
was developed to simulate metal foams [41]. The approach
is similar to volume-of-fluid methods, that are often used in
cases where mass conservation has to be guaranteed [17,39].
It furthermore does not require a simulation of the gas phase,

123

248 N. Thürey, U. Rüde

Fig. 1 An example of a free surface simulation created with the method
described in this paper

and thus saves significant amounts of work for cases with
large gas regions [20].

We will first give an overview of the basic algorithm and
its extensions. This will include the free surface boundary
treatment, a subgrid turbulence model, a method to resize the
time step and the standard approach to LBM simulations on
multiple grids. Afterwards we will discuss how to combine
these extensions and present our adaptive coarsening algo-
rithm. The goal of our approach is to efficiently compute the
motion of the free surface. Thus, our criterion for coarsening
is given by the distance to the free surface. As we consider
the algorithm to optimize a given simulation with a fine grid
resolution, we will in the following refer to it as a coarsening
algorithm, although it also requires the refinement of regions,
to account for the movement of the free surface. In Sect. 4, the
accuracy of our method will be validated with an error met-
ric that measures the difference of two free surface positions.
Afterwards we will present performance measurements for
two different simulation setups with varying grid resolutions.
Moreover, visualizations of these simulations with raytracing
will be shown.

2 The lattice Boltzmann method

The LBM was derived from the lattice gas methods and
can be regarded as a first order explicit discretization of the
Boltzmann equation discretized in phase space. Currently
there are two different ways of showing that this discretiza-
tion approximates the Navier–Stokes (NS) equations—either
by the method of Chapman–Enskog expansion from statisti-
cal physics [9], or by direct discretization of the Boltzmann
equation [15]. A more detailed overview of the basic algo-
rithm together with extensions and applications can be found
e.g. in [38] or in [54].

For the LBM the velocity space of the molecules or par-
ticles in the fluid is discretized. Hence, depending on the
dimension and the number of velocity directions, there are
different models that can be used. We apply the D3Q19
model with 19 velocity vectors in three dimensions, as it was
shown to have good numerical properties. For two dimen-
sions, the D2Q9 model with nine velocities is commonly

Fig. 2 Apart from physically based animations, the simulation of metal
foaming processes is another possible application of the methods pre-
sented in this paper. To the left, an actual metal foam sample can be
seen, while the right picture shows a foaming simulation performed
with LBM in cooperation with C. Körner (WTM Erlangen)

Fig. 3 The most commonly used LBM models in two and three
dimensions

used. For clarity the following illustrations will be based on
this model, while the simulations themselves are performed
in three dimensions (Fig. 1). The velocity vectors e1, . . . , e9

of the D2Q9 model, and e1, . . . , e19 of the D3Q19 model are
shown in Fig. 3. For each velocity vector a particle distribu-
tion function (DF) is stored. A DF fi represents an amount
of fluid moving with the velocity ei . The velocities of the
D3Q19 model are

e1 = (0, 0, 0)T ,

e2,...,7 = (±1, 0, 0)T , (0,±1, 0)T , (0, 0,±1)T ,

e8,...,11 = (±1,±1, 0)T ,

e12,...,15 = (0,±1,±1)T and

e16,...,19 = (±1, 0,±1)T . (1)

Thus there are particles not moving at all (f1), moving
with speed 1 (f2, . . . , f7) and moving with speed

√
2 (f8, . . . ,

f19). In the following, a DF with subscript ĩ will denote the
value from the reverse direction of a DF with subscript i , thus
eĩ = −ei . For simplicity, the size of a cell ∆x and the length
of a time step ∆t both are normalized to 1 in lattice units. The
normalization procedure is explained below in more detail.

The basic LBM consists of two steps, the stream- and the
collide-step. An overview of the two steps of the algorithm is
given in Fig. 4. Here the streaming step represents the advec-
tion of the particles in the fluid. Post-streaming DFs f ′

i thus
can be written as:

f ′
i (x, t + ∆t) = fi (x − ∆tei , t). (2)

123

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 249

Fig. 4 This figure gives an
overview of the stream and
collide steps for a cell next to an
obstacle

As ∆x and ∆t are both equal to one this results in copying
each DF to its adjacent cell along the corresponding veloc-
ity vector. The particle collisions that take place during the
movement of the particles in the fluid are represented by
relaxing the post-streaming DFs of a cell with density ρ and
fluid velocity u towards the equilibrium distribution function:

f eq
i = wi

[
ρ + 3ei · u − 3

2
u2 + 9

2
(ei · u)2

]
, (3)

where the weights wi are: wi = 1/3 for i = 1, wi = 1/18 for
i = 2, . . . , 7, and wi = 1/36 for i = 8, . . . , 19. The macro-
scopic fluid variables density and velocity are computed as
the first two moments of the distribution functions for each
cell

ρ =
19∑

i=1

fi and u =
19∑

i=1

ei fi . (4)

Here we use the incompressible model as described in [16],
which alleviates compressibility effects of the standard model
[33], by using a modified equilibrium distribution function
and velocity calculation. Relaxing the DFs towards the equi-
librium is performed with the relaxation time τ that takes
values in the range from zero to two. It is given by the kine-
matic viscosity, see Eq. (8) below. The DFs for the next time
step are then computed with the post-streaming DFs and the
equilibrium distribution functions, calculated using velocity
and density given by the post-streaming DFs, with

fi (x, t + ∆t) = (1 − ω) f ′
i (x, t + ∆t) + ω f eq

i , (5)

with ω = 1/τ .
This model is explained in more detail in e.g. [16]. It is

commonly called LBGK model due to the simplification of
the particle collisions with a single relaxation time [2,33].
Note that density and velocity are not changed by the colli-
sion process. Hence, the post-streaming DFs, the equilibrium
DFs and the post-collision DFs all give the same values for
ρ and u according to Eq. (4).

The simplest boundary conditions for LBM are no-slip
obstacles implemented with the bounce-back rule. During
streaming all values that would move into a wall are inverted
and copied back to the originating cell. This is equivalent of

changing Eq. (2) to:

f ′
i (x, t + ∆t) = fĩ (x, t), (6)

and results in a zero tangential and normal velocity between
fluid and obstacle cells. It has been shown, e.g., in [12] that the
actual position of the boundary depends on the chosen lattice
viscosity. This can be overcome by using the multi relaxa-
tion time method (MRT, [25]) that, in contrast to the single
relaxation time described above, relaxes the different hydro-
dynamic moments individually. Moreover, various models
for higher order no-slip boundary conditions are available,
e.g., [3,28,49], and [12], as the bounce-back scheme only
yields first order accuracy for arbitrary obstacles.

In the following we will describe the conversion of dimen-
sional quantities, denoted by primed symbols, into dimen-
sionless quantities used in the LBM. Given the real-world
values for viscosity ν′ (m2/s), domain size S (m), a desired
grid resolution r and gravitational force g′ (m/s2) we com-
pute the lattice values in the following way. For simplicity, we
will assume that S is the length of one side of the domain, that
should be resolved with r cells. Thus, the cell size used by
the LBM can be computed as ∆x ′ = S/r . The dimensional
time step ∆t ′ is computed by limiting the compressibility due
to the gravitational force. In the following we have chosen a
value of gc = 0.005 to keep the compressibility error below
half a percent. Thus,

∆t ′ =
√

gc · ∆x ′
|g′| (7)

yields a time step ensuring that the force exerted upon each
cell due to the gravitational acceleration is causing less than
a factor gc of compression. Given ∆x ′ and ∆t ′, the lattice
viscosity ν and relaxation time τ are computed as

ν = ν′ ∆t ′

∆x ′ 2 , and τ = 3ν + 1/2. (8)

Likewise, the lattice acceleration g is calculated as

g = g′ ∆t ′ 2

∆x ′ . (9)

123

250 N. Thürey, U. Rüde

The following sections will describe extensions to the
basic LBM described so far. We will introduce free surface
handling, adaptive time step resizing, the subgrid turbulence
model and a grid refinement algorithm. Section 3 will then
explain how to couple these extensions to create an efficient
and stable free surface fluid simulator.

2.1 Free surfaces

To track free surfaces we introduce two additional cell types:
interface cells, and empty cells. Empty cells are void of
fluid, while partially filled interface cells are required to
separate empty cells from fluid cells. Free surface bound-
ary conditions are set for interface cells, which also store a
fluid fraction value, similar to volume-of-fluid methods for
conventional NS solvers [17]. Furthermore cell type conver-
sions need to be handled if interface cells become completely
filled or empty. The boundary conditions presented here do
not compute the gas phase as a separate fluid, but assume a
viscosity difference between gas and fluid phase that is high
enough to approximate the gas velocity near the interface
with the fluid velocity. This is especially suitable for sim-
ulations with large gas regions, since these do not require
any computations. Empty cells that contain no fluid need not
be considered in the algorithm until they are eventually con-
verted to interface cells as described below. An outline of the
free surface treatment is given in Fig. 5 . While the VOF free
surface model applied here was developed for the simulation
of metal foams [21], without the need to explicitly simulate
the gas phase, other multi-phase LBM approaches have been
developed. In [14], Gunstensen et al. use a Rothmann–Kel-
ler type model with differently colored sets of distribution
functions to simulate fluids with multiple phases. Several
other methods exist for multi-phase flows, e.g., [35,40] or
[46]. These have also been extended in different ways, e.g.,
to allow for high density ratios [19]. On the other hand, in
[13], Ginzburg et al. present a free surface LBM model that
makes use of more complicated boundary conditions, and
prescribes shear stresses at the interface. For problems such
as rising bubbles, these shear stresses should be considered,
but in Sect. 5 we will focus on test cases where they can be
neglected.

For the model of this paper, the movement of the free
surface is computed directly from the DFs, as these are the
values that are actually advected during the streaming step.
For each interface cell we additionally store the current mass
m that it contains. The fluid fraction ε of the cell is computed
with the mass value as

ε(x, t) = m(x, t)/ρ(x, t), (10)

where cell density is computed with Eq. (4). For the mass
exchange between two interface cells, their fluid fraction is

Fig. 5 An illustration of the steps that have to be executed for an inter-
face cell

taken into account to approximate the area they share at the
cell boundary:

∆mi (x, t + ∆t) = [
fĩ (x + ∆tei , t) − fi (x, t)

]
·ε(x + ∆tei , t) + ε(x, t)

2
. (11)

In order to guarantee mass conservation, the mass exchange
and the computation of the fluid fraction coefficient are sym-
metric. If the adjacent cell is a fluid cell, the mass exchange
is simplified to

∆mi (x, t + ∆t) = fĩ (x + ∆tei , t) − fi (x, t) (12)

to match the DFs that are exchanged during the streaming
step. For all interface cells, the value of m for the next time
step is computed by summing the mass changes of all veloc-
ity directions before performing the streaming step:

m(x, t + ∆t) = m(x, t) +
19∑

i=1

∆mi (x, t + ∆t). (13)

For fluid cells, the mass is equal to their density, the fluid
fraction being ε = 1. For empty and boundary cells, no mass
exchange needs to be considered, as the mass exchange is
only computed according to the streaming step, and no DFs
are streamed from or into the two latter cell types.

123

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 251

DFs in interface cells coming from the direction of an
empty cell during streaming must be reconstructed to ensure
correct interface movement and a valid set of DFs for inter-
face cells. It is assumed, that the pressure in the gas phase and
its density ρG is the same as reference pressure and density of
the LBM simulation, hence ρG = 1. In terms of distribution
functions, this means that for an interface cell at position x
with an empty cell at (x + ∆tei) the post-streaming DF f ′

ĩ
is reconstructed as:

f ′
ĩ
(x, t +∆t) = f eq

i (ρG, u)+ f eq
ĩ

(ρG, u)− fi (x, t). (14)

Here u is the velocity of the interface cell. In this form
the boundary conditions do not include effects such as sur-
face tension or bubble pressure. These could, however, be
included as a scaling factor of the two equilibrium distribu-
tion functions (for details see e.g. [41] or [22]) and could
thus be combined with the algorithm described in Sect. 3.
All DFs that would be streamed from empty cells are calcu-
lated with Eq. (14), in addition to the DFs coming from the
half space given by the tangential plane of the fluid surface.
The latter step is required to balance forces on both sides of
the fluid gas interface. A surface normal n is calculated by
finite differences from the fluid fraction values. It is used to
determine the velocity directions coming from the gas phase
half space given by the surface normal (all fi with n ·ei < 0).
The new set of DFs is now used to calculate the current cell
density, and determine from the fluid fraction value whether
the interface cell might have been filled (ε > 1) or emptied
(ε < 0).

Once the stream step including interface cell treatment
and the collide step have taken place, the cell type conver-
sion of filled or emptied interface cells is carried out. While
previous computations for the boundary conditions and the
mass transfer can be computed locally for an interface cell,
this conversion handling requires accesses to neighboring
cells. When performing a cell type conversion from inter-
face cell to empty or fluid cell, usually some excess mass
needs to be redistributed to surrounding interface cells, as
the interface cells often do not end up with exactly m = ρ

or m = 0 at the end of a time step. Furthermore, the layer of
interface cells must remain closed, thus fluid cells may never
have an empty cell neighbor. For an emptied interface cell, all
fluid cells in its neighborhood have to be converted to
interface cells. Likewise empty cells must be converted to
interface cells when interface cells in their neighborhood
have become filled. Once all filled and emptied cells have
been handled, the next LBM step is performed. Further details
of the algorithm can be found in, e.g., [43], where interac-
tive simulations were performed, or in [22], where valida-
tion experiments including surface tension were evaluated.
Overall, in addition to the high computational efficiency, the
advantages of the algorithm are the mainly local treatment

of the free surface boundary conditions, and the mass con-
servation up to machine precision. In the following we will
demonstrate, that the algorithm can also be used to efficiently
produce high quality animations with large grid resolutions.

2.2 Turbulence model

In order to simulate high Reynolds number flows with the
LBM, the basic algorithm needs to be extended as its sta-
bility is limited once the relaxation parameter τ approaches
1/2. In the following we will apply the Smagorinsky subgrid
turbulence model, as used in e.g. [52]. The subgrid model,
as derived in [18], models the effect of subgrid scale vortices
by modifying the viscosity according to the Reynolds stress
tensor, and can be combined with approaches such as MRT
[57]. The increase in stability allows the computation of tur-
bulent flows with a relatively low grid resolution. Compared
to the small slowdown due to the increased complexity of the
collision operator this usually results in a large improvement
of efficiency.

The subgrid turbulence model applies the calculation of
the local stress tensor as described in [36] to the LBM. This
is simplified, since for LBM each cell already contains infor-
mation about the derivatives of the hydrodynamic variables
in each DF. The magnitude of the strain rate tensor is then
used in each cell to modify the relaxation time according to
the eddy viscosity. For the calculation of the modified relax-
ation time, the Smagorinsky constant C is used, for which
we chose a value of 0.04. Values in this range are commonly
used for LBM simulations, and were shown to yield good
modeling of the subgrid vortices [56]. The turbulence model
is integrated into the basic algorithm as described in Sect. 2
by adding the calculation of the modified relaxation time
after the streaming step, and using this value in the normal
collision step that was described earlier.

The modified relaxation time τs is calculated by perform-
ing the steps that are described in the following. First the
tensor Πα,β is obtained for each cell by taking the second
moment of the non-equilibrium parts of the distribution func-
tions with

Πα,β =
19∑

i=1

eiα eiβ

(
fi − f eq

i

)
, (15)

where we have used the notation from [18]. Thus α and β

each run over the three spatial dimensions, while i is the
index of the respective velocity vector for the D3Q19 model.

As in [18], the intensity of the local strain tensor S is then
computed as

S = 1

6C2

(√
ν2 + 18C2

√
Πα,βΠα,β − ν

)
. (16)

123

252 N. Thürey, U. Rüde

Now the modified relaxation time is computed as

τs = 3(ν + C2S) + 1

2
. (17)

From Eq. (16) it can be seen that S will always have a positive
value—thus the local viscosity will be increased depend-
ing on the size of the stress tensor calculated from the non-
equilibrium parts of the distribution functions of the cell to
be relaxed. This effectively removes instabilities due to small
values of τ .

2.3 Adaptive time steps

Gravity driven flows such as the free surface flow of Fig. 1
are usually initialized by a fluid configuration and an gravi-
tational force. The maximum velocities are often not a priori
known, which makes it hard to parametrize LBM simulations
and often leads to unnecessarily small time steps in combina-
tion with long computation times. The method described in
this section dynamically changes the LBM parametrization
according to the velocities [44]. As the size of the time step is
not a parameter of the LBM equations it is only changed when
necessary due to large or small velocities. This furthermore
requires a recalculation of the LBM relaxation time and a
rescaling of the DFs to match the new values for pressure and
velocity according to the chosen time step size. The rescal-
ing ensures that dimensionless numbers, such as Reynolds
and Froude number, remain the same after the change of the
time step. The Mach number, on the other hand, changes due
to the rescaling. This is, however, uncritical for free surface
flows, such as those presented in Sect. 5. An evaluation of the
effects of this Mach number change can be found in [44]. In
the following, a subscript of o will denote values before the
time step change, while a subscript of n will indicate values
for the new parametrization.

Given an initial simulation setup as described in Sect. 2
with a value for τ and an external force g, the time step has
to be reduced if the norm of the maximum velocity umax

exceeds a certain value:

|umax| >
1

6
/ξ, with ξ = 4

5
. (18)

We use 1/6 as the velocity threshold, as it is the half of 1/3,
at which point the equilibrium DFs according to Eq. (3) can
become negative. If Eq. (18) holds, the new time step size is
given by

∆tn = ξ∆to, (19)

where ∆to, the old step size is initially equal to 1. Once the
fluid slows down, the time step could be increased again to
to ∆tn = ∆to/ξ . As for LBM the value of τ also depends on

the size of the time step, it changes according to:

τn = st

(
τo − 1

2

)
+ 1

2
, with st = ∆tn/∆to. (20)

The new acceleration for a LBM step is then calculated as

gn = s2
t go. (21)

To account for the new time step size, the velocity and also
the density deviation from the median density ρmed have to
be rescaled for each cell. Hence, after calculating ρo and uo

with Eq. (4) for an interface or fluid cell, the new values are
computed with:

ρn = st (ρo − ρmed) + ρmed and

un = st uo,
(22)

where the median density ρmed is calculated from the total
fluid volume V and the total mass M as ρmed = V/M . The
total volume is calculated by summing the values of ε over
all cells, while M is the sum of all masses. The fill fraction
and mass of interface cells are given by:

mn = mo(ρo/ρn) and

εn = mn/ρn, (23)

The non-equilibrium parts of the DFs determine the relax-
ation towards equilibrium state according to the relaxation
time τ . When τ changes with the changing time step size,
the fluid behavior should not be influenced by this repara-
metrization. Therefore the non-equilibrium parts have to be
rescaled in a way that is similar to the rescaling procedure
for grid refinement from [8]. Furthermore, the rescaled DFs
have to match the new macroscopic quantities for velocity
vn and pressure deviation ρn . DFs f n

i for the new time step
size are calculated with:

f n
i = s f

[
f eq
i (ρo, uo) + sτ

(
fi − f eq

i (ρo, uo)
)]

, (24)

where s f and sτ are calculated as follows:

s f = f eq
i (ρn, un)/ f eq

i (ρo, uo)

sτ = st (τn/τo).
(25)

The rescaling procedure to change the time step size requires
roughly the same computational effort as a normal collision
step. As it is performed seldom in comparison to the number
of LBM steps, it usually requires ca. 1% of the overall com-
putation time, however, it can reduce the overall number of
time steps significantly.

2.4 Grid refinement

In [8], Filippova et al. developed an algorithm to couple
LBM simulations of different resolutions. The coupling of

123

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 253

Fig. 6 Example of a coarsened fluid region near the free surface with
two levels of coarser grids. To the left the transfer cell layers for coupling
adjacent levels can be seen

the different grids is done by setting boundary conditions
for adjacent grids in transfer cells. This transfer of infor-
mation between the grids requires a rescaling of the DFs
similar to Eq. (24). In addition, the values have to be inter-
polated in space and time for the transfer from coarse to fine
grids. This approach is usually used to refine a simulation
grid around regions of interest, to save computational time
by using a fine grid in this region only, or alternatively to
increase the accuracy of the computation by refining the grid
in important regions. E.g., two-phase simulations with MRT
using the model from [14] in combination with adaptive grid
refinement have been demonstrated by Tölke et al. in [45].
Below, we will use a rescaling similar to the one presented in
[45]. Grid refinement has also been used in [54] to compute
simulations of an airfoil on a grid with refined blocks. Rohde
recently proposed an alternative approach for grid refinement
with LBM, see [34] for details. However, since this method
requires an additional filtering step to ensure stability, our
work is based on the algorithm described in [8].

Figure 6 illustrates how the transfer between a fine and
a coarse grid is realized. In the following, c and f sub-
scripts will denote variables on the coarse and fine grids,
respectively. Hence, the DF fc,i is a coarse grid distribu-
tion function for the direction of the velocity vector ei , with
f f,i being its counterpart on the fine grid. As can be seen
in Fig. 6, the grid spacing ∆xc and ∆tc on the coarse grid
are twice those of the fine grid. According to Eq. (8) this
means that the relaxation time needs to be calculated with
the corresponding parameters for each grid. Reformulating
Eq. (8) using ∆xc = 2∆x f , the relaxation time for the coarse
grid is calculated by

τc = 1

2

(
τ f − 1

2

)
+ 1

2
. (26)

In Fig. 6 two kinds of transfer cells are shown: one for trans-
fer from fine to the coarse grid, and vice versa. Due to the
arrangement of the grids, the fine grid cells lie at the same
position as the coarse grid nodes, thus data for a cell of the
coarse grid transfer cells is taken directly from the corre-
sponding fine grid cell. As the macroscopic properties such
as pressure and velocity of the fluid are the same on both

grids, these are not changed during the transfer. However, due
to the different relaxation times, the non-equilibrium parts of
the DFs have to be rescaled with

fc,i = f eq
f,i + sc f

[
f f,i − f eq

f,i

]
, with sc f = 2τc

τ f
. (27)

Here we use rescaling factors similar to those proposed in
[45], instead of those from [8], as the latter ones have a sin-
gularity for τ = 1. For a transfer in the other direction, from
the coarse to the fine grid, Eq. (27) becomes

f f,i = f eq
c,i + s f c

[
fc,i − f eq

c,i

]
, with s f c = 1

sc f
= τ f

2τ f
.

(28)

Note that the rescaling for transfer cells is performed after
collision on both grids. Thus, the DFs are only streamed on
the fine destination grid, while no collision is necessary, as
the DFs are overwritten directly afterwards with DFs from
the coarse grid again.

Likewise, fine grid transfer cells (marked with a filled
downward arrow) again lie at the same positions as coarse
grid cells, thus their DFs are transferred directly with Eq. (27).
However, especially in three dimensions, most of the fine grid
transfer cells are those marked with an outlined downward
arrow. For these, the information from the coarse grid has
to be interpolated spatially. Hence, instead of the values fc,i

and f eq
c,i of Eq. (27), the DFs of the coarse grid are first inter-

polated to compute the corresponding values at the position
of the fine grid cell. As described in e.g. [54], a second order
interpolation is usually performed spatially.

In addition to saving operations by reducing the total num-
ber of computational cells, the number of time steps to be
performed on coarser grids is reduced, since each time step
on a coarse grid is twice as large as that of the next finer grid.
Thus for two fine grid LBM steps, only a single one has to be
performed on the coarse grid. This, however, means that for
one of the two fine grid LBM steps, the grid transfer also has
to include temporal interpolation of first or second order. An
overview of the basic time step scheme for a total of three
coupled grids is given in Fig. 7.

3 Adaptive coarsening algorithm

In this paper we take the view that the simulation is defined
by a global uniform fine grid, that can be augmented with
auxiliary coarser grids to accelerate the computation—at the
price of a possibly reduced accuracy. This adaptive coarsen-
ing will be described in the following paragraphs. We will
explain how to combine the free surface LBM method with
the turbulence model and the adaptive time steps described

123

254 N. Thürey, U. Rüde

Fig. 7 Here the effect of the
different time step sizes for
multiple simulation grids is
shown. The numbers indicate
the order in which the steps are
performed. Dashed arrows
indicate interpolation, while
straight arrows from one circle
to another represent LBM steps
with the indicated time step
length

above. Afterwards we will show how to adaptively perform
a coarsening of the fine grid simulation using a set of cell
flag based rules, and how to ensure stability of the trans-
fer between the different grid levels. Note that this approach
also requires a subsequent refinement of initially coarsened
regions, once the free surface moves there during the course
of the simulation.

3.1 Turbulence model

The free surface extension of Sect. 2.1 and the subgrid model
of Sect. 2.2 can be combined directly. The turbulence model
differs from approaches such as MRT since it does not change
the equilibrium DFs. Furthermore, the free surface equations
in Sect. 2.1 are independent of the lattice viscosity. Thus,
the boundary conditions and mass tracking formulas remain
valid. The stability of the turbulence model is transferred
directly to the free surface simulations, hence enabling the
computation of free surface flows with high Reynolds num-
bers, and values of τ close to 0.5. A remaining source of insta-
bility, however, is the problem of fluid velocities becoming
too large during the course of the simulation.

3.2 Adaptive time steps

The adaptive time step procedure from Sect. 2.3 can be used
in order to avoid too large time steps causing instabilities.
When the size of the time step is reduced to simulate large
velocities, the value of τ becomes smaller according to
Eq. (20). Instabilities due to τ being almost 0.5 are allevi-
ated by applying the turbulence model. This in turn requires
a modification of Eq. (24), as the non-equilibrium scaling of
the adaptive time steps depends on the relaxation time τ .

With Eq. (20), the lattice viscosities νn and νo for the old
and the new time step are calculated. Equations (15), (16)
and (17) can then be used to compute the modified local
relaxation times for each cell, τs,n and τs,o, with νn and νo.
Equation (24) must be modified to include the local relaxation
time from the turbulence model. This is done by calculating
the scaling factor sτ using the local relaxation times as

sτ = st (τs,n / τs,o). (29)

Combining the turbulence model and the adaptive time steps
in this way enables the simulation of high velocities with-
out stability problems. Nevertheless, small time steps require
more LBM steps to compute the solution.

The following section will demonstrate how to combine
the techniques presented so far with an algorithm to adap-
tively coarsen the computational grid inside of the fluid
domain with the goal of reducing the computational effort
required for each LBM step. This is an important compo-
nent for a stable and highly efficient LBM free surface fluid
simulator.

3.3 Adaptively coarsened grids

For dynamic problems, such as free surface flows or flows
with moving obstacles, the techniques described in Sect. 2.4
cannot be applied without modifications. In [7] and [24] an
algorithm based on the work of Filippova et al. is used to
increase the accuracy of a simulation by adaptively refin-
ing the grid around an obstacle or a bubble in the fluid.
As this work is focused on the simulation of free surface
flows such as those of Fig. 1, the region of interest, that
needs to be accurately computed is the free surface itself.
Hence, we perform the simulation of this surface on a fine
computational grid, while the accuracy of the computation
inside of the fluid may be less important. In the following
we will describe an approach to adaptively coarsen the grid
inside of large fluid regions by dynamically changing a set
of coarser grids according to the movement of the surface
on the fine grid. The criterion for coarsening is thus given
by the distance of a cell to the free surface. An alternative
would be to allow also the coarsening of e.g. smooth free
surface regions with few details. However, this would cause
problems for the mass conservation with the mass flux given
by Eq. (11) and make generating a triangulated surface more
complicated.

We thus ensure that all interface cells are treated on the
finest grid. Likewise, obstacle boundaries are calculated on
the finest grid. Similar to the notation used in multi-grid lit-
erature [47], we will denote the fine to coarse grid trans-
fer with restriction and the coarse to fine grid transfer with
prolongation in the following sections.

123

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 255

Fig. 8 Cell types for the adaptive coarsening algorithm

3.3.1 Boundary cell conversion

To adapt the coarse grids to the movement of the free sur-
face, while keeping the transfer cell layers consistent, we
have developed a set of rules to determine when to refine or
coarsen a grid region. The handling of the adaptive coarsen-
ing requires five passes in total, each of which, however, only
applies to a single type of transfer cell. For these flag checks,
a cell and its neighborhood, together with the neighborhood
of the cell on the next finer grid, are necessary. The first three
passes handle refining the coarse fluid regions, e.g. when
the free surface comes near the coarsened grid region, while
passes four and five handle coarsening fluid regions where
the free surface has moved away from. It would be possi-
ble to perform some computations of the passes in parallel,
but they only take a small part of the overall computational
time, as will be explained in more detail in Sect. 5. Hence,
we have decided to explain and implement each pass as a
separate sweep over the cell flags. In the following, we will
distinguish the five cell types shown in Fig. 8:

– Fluid: these are valid fluid cells treated as described in
Sect. 2. They are not interpolated or used for interpola-
tion.

– Unused: these cells are not included in the simulation
similar to the empty cells that represent regions without
fluid.

– From-fine: DFs for these cells are transferred from the
adjacent fine grid.

– From-coarse: Likewise, DFs are transferred from the next
coarser grid (possibly with interpolation).

– To-fine: the DFs of these cells are used to interpolate the
from-coarse transfer cells on the finer level. During the
simulation they are treated as normal fluid cells.

The following rules are applied to all coarse levels. For
the first level of coarsening, we ensure that the coarsened
region keeps a distance of one cell layer to the free surface,
while subsequent coarsened levels ensure that they keep a
distance to the restriction region of the next finer level. In
the following explanation we can therefore focus on from-
fine and to-fine cells, which are equivalent to interface cells
for the finest coarse level. Due to the alignment of grids as
described in Sect. 2.4. the fine grid neighbor c f of a coarse
grid cell cc at position (i, j, k) is obtained by accessing cell
(2i, 2 j, 2k) on the fine level.

Fig. 9 Pass 1

Fig. 10 Pass 2

Pass 1: During the first pass, from-fine transfer cells on the
coarse grid are checked for consistency. They are removed if
the fine grid cell is not used for interpolation to a finer grid
itself. Thus, if c f is a from-fine or to-fine cell, cc is converted
to an unused cell. In this case fluid cells in the neighborhood
of cc have to be converted into from-fine cells, to ensure a
closed transfer cell layer (Fig. 9).

Pass 2: The second pass checks whether there are any
unnecessary from-coarse cells. It only affects the coarse grid
layer. One of these cells can be converted to a fluid cell when
there are no unused cells in its neighborhood. Hence, the
transfer cell is not required in the prolongation region. Like-
wise, a from-coarse cell can be turned to unused, if none of
its neighbors are fluid cells. A special case for from-coarse
cells is necessary to prevent a double transfer between grids.
It is not desirable to to have two from-coarse cells at the
same position on different grids. Thus for a from-coarse cell
cc, it has to be checked whether c f is a from-coarse cell as
well. If this is the case, cc has to be converted into a fluid
cell, reinitializing its neighborhood to keep a closed layer of
from-coarse cells (Fig. 10).

Pass 3: After this, from-fine cells are checked for conver-
sion to fluid cells. This has to be done when the corresponding
fine grid cell is a from-coarse cell, meaning that the finer grid
transfer layer has moved away from the prolongation trans-
fer layer on the coarse grid. In consequence, the from-coarse
transfer cell layer of the finer grid has to be updated, turning
from-coarse and fluid cells in the fluid region of the coarser
grid into unused cells, and adding new from-coarse cells at
the moved border (Fig. 11).

These three passes are enough to ensure a refinement of
coarsened regions when there is an inward movement of the
free surface and the prolongation regions. The following two
passes are similarly used to handle moving the restriction
regions outwards, once the free surface moves away from it.

123

256 N. Thürey, U. Rüde

Fig. 11 Pass 3

Fig. 12 Pass 4

Fig. 13 Pass 5

Thus, passes four and five handle coarsening the computa-
tional grid.

Pass 4: For the coarsening it is first necessary to check
whether an empty cell is a candidate for a from-fine transfer.
This is the case if its fine grid neighbor is a valid fluid cell, and
not a from-fine or to-fine cell. The empty cell is then turned
into a from-fine transfer cell and initialized by a transfer of
the DFs from the fine grid (Fig. 12).

Pass 5: The last pass thus checks whether a from-fine
cell can be converted into a fluid cell, coarsening the region
around it. This is possible when all fine grid neighbors are
valid fluid cells, not from-fine or to-fine transfer cells. Fur-
thermore, the neighborhood of the from-fine cell on the coarse
level must not contain any unused cells. If these criteria are
met, the from-fine cell is turned into a fluid cell. Due to the pre-
vious checks, its neighborhood is already valid. Afterwards,
all fine grid cells lying between the coarse grid cell and its
neighbors have to be checked to reinitialize the from-coarse
transfer cell layer. Fine grid cells in the center of eight valid
fluid coarse grid cells are directly turned into unused cells.
Fine grid cells lying between fluid cells on the coarse grid
have to be converted to from-coarse cells, while remaining
from-coarse cells without fluid neighbors are removed from
the simulation by setting them to unused (Fig. 13).

Although the cell conversion does require five passes in
total, the neighborhood checks are confined to small regions
as we apply linear instead of second-order spatial interpola-
tion for the prolongation. This is essential for the simplicity
and efficiency of the conversion rules, as irregularities of the
coarse grid transfer layer for the free surface would otherwise
require checks in large neighborhoods of the from-coarse
transfer cells. In Sect. 4 we will provide evidence that the
accuracy of the linear interpolation is computationally suffi-
cient by comparing it directly to a second order interpolation.

3.3.2 Grid transfer

These conversion rules are checked before each coarse grid
LBM step. They are enough to ensure a valid and closed
layer for both restriction and prolongation. As direct transfers
across multiple grid levels are prevented, and the restriction
transfer layer of first coarsened level does not cover inter-
face cells, the resulting simulation regions usually span 2–3
fluid cells between their transfer layers. After adapting the
grid, restriction and prolongation are performed to set correct
boundary conditions for the actual LBM step.

The transfer of DFs on the boundaries is done by includ-
ing the modified relaxation time of the turbulence model in
Eq. (27). After interpolation of the DFs, the modified relax-
ation times τsc and τs f are calculated with Eq. (27) using the
viscosities νc and ν f , respectively. Finally, the scaling factor
sc f is calculated with

sc f =
(

1

τsc
− 1

)
2τsc

τs f
. (30)

and used instead of Eq. (27) with Eqs. (27) and (28).
A remaining problem of the algorithm discussed so far is,

that simulations with low viscosities are disturbed by artifacts
that are caused by the overlapping grids. An example of this
problem can be seen in Fig. 14. The artifacts are caused by
pressure fluctuations near obstacles and become noticeable
as self-reinforcing patterns at the grid boundaries that cause
strong disturbances of the flow field. The problem here is,
that according to the description of Sect. 2.4 the restriction
is done using a single fine grid cell, analogous to injection in
a multi-grid algorithm. The resulting information is used on
the coarse grid, and during the subsequent steps propagated
to the fine grid again two cells further in the fluid region at the
from-fine transfer cells. To break up this pattern of informa-
tion flow, we use a restriction that takes into account all fine
grid cells within the fine grid neighborhood of a coarse grid
cell, as shown on the right side of Fig. 14 for a two dimen-
sional example. Thus, the cells that were previously not taken
into account for the restriction also contribute to the coarse
grid transfer cells. For interpolation a simple Gauss kernel
gives good results. Thus, the interpolated DFs f̃ f,i to use with

123

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 257

Fig. 14 Example of artifacts that occur for a simple standing fluid test
case with a resolution of 1282 and two coarse levels. Each picture shows
the density distribution in the lower left corner of the fluid, where green

values indicate ρ = 1.0 while a red color indicates larger values. The
upper row of pictures was created without any interpolation for the
prolongation, while the lower row makes use of Eq. (31)

Eq. (28) are calculated as

f̃ f,i (x) =
19∑
j=1

f f,i (x + ∆te j)
w j

wtotal
(31)

with

w j = e−|e j | − e−2·3, wtotal =
19∑
j=1

w j (32)

This interpolation requires more accesses to fine grid DFs
for restriction, but effectively prevents the development of
the artifacts described earlier.

In conclusion, our algorithm proceeds with the following
steps for all levels that are advanced at a given time:

1. Start with coarsest grid level.
2. Adapt the grid:

(a) perform refinement passes 1, 2 and 3,
(b) perform coarsening passes 4, 5.

3. Set the boundary conditions with restriction and prolon-
gation.

4. Perform the LBM step (for the finest level this includes
handling the free surface).

5. Continue with the next finer grid.

We will evaluate the accuracy of both the interpolation
scheme and the adaptive coarsening algorithm in the fol-
lowing section.

4 Validation

The accuracy of the different grid transfer methods will be
determined by comparing E , which is the average deviation
of the fluid fraction values ε over all cells. The fluid fraction
deviation measurement effectively compares the difference

of the position of the free surface for two given
configurations. If the configurations are completely differ-
ent, its value will be close to one, while values close to zero
indicate a similar shape of the fluid. We normalize the mea-
surements by the total number of measured points to compare
simulations of different sizes, and average the measurements
at different times during the course of the simulation. The
values shown in Figs. 15 and 16 are thus computed as

E = 1

ttotal

1

ntotal

ttotal∑
t=1

∑
x∈Ω

|εref(x, t) − ε(x, t)|, (33)

where εref are the fluid fraction values of the correspond-
ing fine-resolution reference simulation, Ω is the size of the
domain ranging from 0 to 1 in each spatial dimension, and
ttotal is the number of timesteps to average over. Likewise,
ntotal is the total number of chosen points where E is mea-
sured at. For Fig. 15 the grid resolution of the reference sim-
ulation was used to set the number of measurement points.
Note that E in contrast to e.g. error metrics from the multi
grid literature does not measure the error caused by repre-
senting the problem on a coarser grid, but only the position
of the free surface.

The following test cases were parametrized to represent
a cubic domain of 0.1m length with water and earth gravity.
Hence, we chose ν′ = 10−6 (m2/s) and an acceleration of
g′ = (0,−9.81, 0)T (m/s2).

4.1 Test case with static coarsening

The different interpolation methods will be tested with a
setup of a drop falling into a standing fluid, similar to Figs. 17,
18, 19. The lower half of the domain is statically coars-
ened. During the course of the simulation the free surface
keeps a distance of several cells to the coarsened region,
hence the coarse cells grids do not have to be changed. Fig-
ure 15 shows results in two and three dimensions, to the left
and right, respectively, each for three grid resolutions. The

123

258 N. Thürey, U. Rüde

Fig. 15 Accuracy
measurement for the
interpolation test case with static
coarsening

reference simulation is a simulation run on an uncoarsened
grid with the shown resolution. The coarsened simulation is
run three times with the following interpolation methods:

(A) without temporal interpolation and with linear spatial
interpolation,

(B) without temporal interpolation and with second order
spatial interpolation,

(C) with linear temporal and second order spatial interpo-
lation.

Each of these runs was performed with two levels of coars-
ening, one with halved, and the coarsest one with 25% of the
original resolution. For reference, the simulation is also run
once on a grid with half the shown resolution (referenced as
coarse in the following).

Throughout the runs it can be seen, that the adaptively
coarsened simulations are significantly more accurate than
the one run with halved resolution. Furthermore, there is only
a slight difference between the different interpolation vari-
ants. The interpolation method C is the most accurate one,
as was expected. The other two, however, only show small
decreases in accuracy. This can be attributed to the fact, that
for the coarsened grids, the free surface and the obstacles are
still calculated on the finest grid everywhere. These regions
determine the overall motion of the fluid. Thus, in contrast to
test cases such as [55], the coupling with the coarser grids is
sufficiently accurate without the temporal interpolation, and
more importantly, without second order spatial interpolation.
Former allows us to use the grid compression technique [31]
on all grids, as only a single time step needs to be stored in
memory. It also saves one third of the total memory accesses
that are required to interpolate the coarse grid DFs to the fine
grid, as for each second interpolation step the temporal inter-
polation would require access of two DFs instead of one. The

Fig. 16 Accuracy measurement for the dynamic test case with the
adaptive coarsening

linear spatial interpolation greatly simplifies the handling of
the grid adaptivity, and significantly reduces the number of
memory accesses. For linear interpolation, fine grid cells that
lie between 2, 4 and 8 coarse grid cells require the same num-
ber of DF accesses for each interpolated one. With second
order spatial interpolation, it would, however, require 4, 16
and 64 DF accesses, respectively. For the test case described
above with a grid resolution of 1283 this means, that on aver-
age only 130773 DFs have to be accessed and interpolated
for method A, instead of 363253 for interpolation method B.

4.2 Test case with dynamic coarsening

To validate the accuracy of the adaptive coarsening technique
described in Sect. 3 we have used a breaking liquid column
setup similar to Fig. 20. The domain is filled with a region
of fluid in the lower left corner, taking up a quarter of the
domain volume. The gravity causes the fluid to splash back
and forth, which makes constant updates of the coarsened
region necessary.

Accuracy measurements of E computed with Eq. (33) are
shown in Fig. 16. Here again a coarse simulation with half

123

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 259

Fig. 17 Images of the falling
drop simulation with a grid
resolution of 4803 and the
adaptive coarsening algorithm.
The simulation was
parametrized to represent a
basin of water with 10cm side
length

Table 1 Workload distribution for an typical simulation

Procedure Workload (%)

Fine grid LBM steps 73.46

Adaptive coarsening 14.27

LBM steps of all coarse grids 7.25

Other code 5.02

the shown resolution and an adaptively coarsened simulation
(using interpolation method A) are compared to a simulation
run on a homogeneously fine grid. It can be seen, that the
accuracy of the adaptive simulations is slightly less than those
of the previous test case. However, throughout the runs they
are more accurate than the coarse simulation, while requir-
ing significantly less LBM cells than the fine simulation and
yielding the same amount of surface details. The following
section will show several examples of detailed simulations
and illustrate the speedup that can be achieved by adaptive
coarsening.

5 Results and performance

Before analyzing the overall performance, it is important to
know how the workload is distributed between the different
parts of the algorithm. We have therefore profiled a run of
the test case shown in Fig. 17 with a resolution of 2563 and
three coarse levels.

As can be seen in Table 1, the majority of the computations
is necessary for advancing the finest grid and computing the
free surface boundary conditions. The adaptive coarsening
itself requires more computational effort than the LBM steps
on the coarse grids themselves. This is due to the fact that the
coarse grids usually only contain relatively few fluid cells,
and the adaptive coarsening includes the calculation of the

Table 2 Performance measurements of the basic free surface
simulation code without adaptive coarsening on different architectures
with up to four processors

CPU MLSUPS

Pentium4 3.2 GHz 1.84

Athlon64 2.4 GHz 1.98

4-way Opteron 4 · 2.2 GHz (with OpenMP) 3.73

grid transfer which for a single cell requires computations
similar to a normal LBM cell update.

Usually, the performance of LBM programs is measured
with the number of cell updates per second: MLSUPS (mil-
lion lattice site updates per second). However, this is not valid
anymore once adaptive grid resolutions are involved. In this
case, it is crucial how much faster the overall simulation is
done in comparison to a standard simulation using a single
grid level. The following tables show several MLSUPS mea-
surements only to illustrate the performance of our imple-
mentation without adaptive coarsening for a falling drop test
case as shown in Fig. 17.

Table 2 shows that our basic implementation yields a high
performance on different CPU architectures. This is impor-
tant, as a poor implementation of the basic algorithm might
yield larger speedups when combined with our adaptive coars-
ening technique—even when the overall performance would
still be low. In the following we will demonstrate the achiev-
able speedups with the test cases shown in

– Figure 17(A), the impingement of a falling drop on a fluid
surface, and

– Figure 20(B), the breaking of a column of liquid.

Both cases were run in two different sizes: 1203 and 4803.
Each graph shows the total computation time with a different
number of coarse grids. The simulation of the first bar to the

123

260 N. Thürey, U. Rüde

Table 3 Reynolds number (Re) and Froude number (Fr) for the three
test cases used in Sect. 5. The domain size is 0.1m, ν′ = 10−6 [m2/s]
and g′ = (0,−9.81, 0)T [m/s2]

Falling drop Breaking dam Filled glass

Re 200,000 450,000 100,000

Fr 14.28 5.32 6.39

L [m] 0.02 0.09 0.025

v [m/s] 10 5 4

H [m] 0.05 0.09 0.04

Fig. 18 Performance for a resolution of 1203 on a single Pentium4
CPU with 3.2 GHz

left is run only on the finest level, while the others use up to
three levels of adaptive coarsening.

Two dimensionless variables, the Reynolds number (Re)
and the Froude number (Fr) for the three test cases are shown
in Table 3. The Reynolds number represents the ratio between
a characteristic length L times velocity v and the viscosity
(Re = Lv/ν), while the Froude number relates the velocity
to the gravity and water height H (Fr = v/

√
gH). Note

that the high Reynolds numbers are the result of the chosen
viscosity of water, which is close to zero. These parametri-
zations clearly represent the upper limits of this method. As
the primary goal of these test cases was the measurement of
the performance of the adaptive coarsening, these parameters
were chosen to test the limits of stability of the algorithm.

In Fig. 18 the performance for the relatively small reso-
lution of 1203 on a Pentium4 CPU with 3.2 GHz is visible.
For test case A, speedup of ca. 2.5 is achieved once the first
coarsened level is used. Due to the small size of the domain,
additional levels of coarsening do not yield a further speedup.
Similarly for test case B, the first coarsened level yields a
speedup of ca. 1.6. The lower speedup in comparison to test
case A can be attributed to the fact that test case B has a
smaller volume of fluid and exhibits a larger number of thin
fluid sheets. Hence, it is a harder problem for our adaptive
coarsening technique.

The performance results of Fig. 19 are for a resolution of
4803 on a four-way Opteron node with 2.2 GHz for each of
the four CPUs. The traversal of the finest grid was parallel-
ized with OpenMP. As was demonstrated above, the majority

Fig. 19 Performance with OpenMP parallelization for a resolution of
4803 on a four-way Opteron node (each CPU with 2.2 GHz)

of the work is done on the finest grid—thus the paralleliza-
tion is only applied to the traversal of the finest grid level.
For a simulation without adaptive coarsening, test case A
now requires more than 54 million cells. The total speedup
with 3 coarsened grids is 3.85 in this case, and 3.16 for test
case B. In contrast to the 1203 runs, more than a single level
of coarsening yields a further speedup for test case A.

To allow the setup of more complicated simulation prob-
lems, and demonstrate the ability of our implementation to
efficiently simulate free surface animations, we have imple-
mented an interface to the 3D software Blender. Since ver-
sion 2.40 the free surface simulation is part of the package,
and can be obtained from [48]. It allows the productions of
high quality fluid animations as shown in Fig. 21, and was
used to produce the visualizations of our simulation runs.
The sources for the solver including the implementation of
our adaptive coarsening algorithm were released under the
GNU Public License, and are available on the same website.

6 Conclusions and outlook

We have presented a stable method for free surface simu-
lations with the LBM. It can be used to efficiently perform
simulations with large volumes of fluid and thus enables the
creation of highly detailed and physically correct fluid anima-
tions. This is achieved by our algorithm to adaptively coarsen
the simulation resolution inside of larger fluid volumes. A set
of rules is used to dynamically adapt the coarsened regions
to the movement of the free surface.

The combination with a subgrid turbulence model and an
adaptive time step algorithm ensures stability of the fluid
simulator. We have validated the algorithm by comparing it
to a fine grid simulation for static and dynamic test cases. The
performance was evaluated with two different simulation set-
ups and various grid sizes. Depending on the architecture and
amount of fluid in the simulation, speedup factors of more
than 3.5 are possible in comparison with a simulation on a
single fine grid.

One area of future work will be to not only reduce the
computational time but also to reduce the amount of mem-
ory. In our current implementation we allocate all simulation

123

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 261

Fig. 20 Pictures of the
breaking dam setup, again with
a grid resolution of 4803 and a
parametrization of a 10cm
domain with water

Fig. 21 Several frames of
animation from a simulation of
filling a glass shaped obstacle

grids throughout the computational domain. Hence, we are
planning to adaptively allocate patches in the fluid region for
each grid level separately. This should significantly decrease
the required memory, as coarsened regions inside of the fluid
only have to store the coarsest grid level. It might, however,
decrease the performance due to increased overhead of the
patch management.

In order to e.g. accurately resolve near wall shear layers
of turbulent flows, the coarsening criterion could be changed
to only coarsen areas with a low shear stress. Another chal-

lenge will be to efficiently parallelize our algorithm to run on
large distributed memory systems, as was e.g. demonstrated
for adaptive multigrid solvers in [1]. Such a parallelization
becomes more difficult once adaptive approaches, like the
one presented here, are used, since the information across all
grids involved in the simulation needs to be synchronized. In
order to further enhance the impression of large fluid scenes
for animations, the three dimensional simulation could be
coupled to a two dimensional one for efficient simulations of
large water surfaces.

123

262 N. Thürey, U. Rüde

As the motion of the free surface is naturally hard to esti-
mate from still pictures, we have made the animations cor-
responding to Figs. 17, 20 and 21 available on our website
[42].

Acknowledgments This research is funded by the DFG Graduate
College GRK-244 3-D Image Analysis and Synthesis. We furthermore
thank Carolin Körner for the metal foam samples, and Thomas Zeiser
for the helpful discussions.

References

1. Bastian, P., Birken, K., Lang, S., Johannsen, K., Neuß, N., Rentz-
Reichert, H., Wieners, C.: UG: A flexible software toolbox for solv-
ing partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)

2. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision pro-
cesses in gases. Phys. Rev. 94, 511–525 (1954)

3. Bouzidi, M., Firadouss, M., Lallemand, P.: Momentum transfer of
a lattice-boltzmann fluid with boundaries. Phys. Fluids 13, 3452–
3459 (2002)

4. Buwa, V.V., Deo, D.S., Ranade, V.V.: Eulerian–Lagrangian sim-
ulations of unsteady gas–liquid flows in bubble Columns. Int. J.
Multiphase Flow (2005)

5. Causin, P., Miglio, E., Saleri, F.: Algebraic factorizations for 3D
non-hydrostatic free surface flows. Comput. Vis. Sci. 5(2), 85–
94 (2002)

6. Chu, N.S.H., Tai, C.L.: MoXi: real-time ink dispersion in absorbent
paper. ACM Trans. Graph. 24(3), 504–511 (2005)

7. Crouse, B., Krafcyzk, M., Tölke, J., Rank, E.: A LB-based approach
for adaptive flow simulations. Int. J. Modern Phys. B 17, 109–
112 (2003)

8. Filippova, O., Hänel, D.: Grid refinement for lattice-BGK mod-
els. J. Comp. Phys. 147, 219–228 (1998)

9. Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau,
Y., Rivert, J.P.: Lattice gas hydrodynamics in two and three dimen-
sions. Complex Syst. 1, 649–707 (1987)

10. Geist, R., Rasche, K., Westall, J., Schalkoff, R.: Lattice-Boltzmann
Lighting. In: Proceedings of Eurographics Symposium on Render-
ing 2004, pp. 355–362 (2004)

11. Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Bench-
mark computations based on Lattice-Boltzmann, Finite Element
and Finite Volume Methods for laminar Flows. Comput. Fluids 35,
8–9 (2006)

12. Ginzburg, I., d’Humières, D.: Multi-reflection boundary conditions
for lattice Boltzmann models. Phys. Rev. E 68:066614-1-30 (2003)

13. Ginzburg, I., Steiner, K.: Lattice Boltzmann model for free-surface
flow and its application to filling process in casting. J. Comp. Phys.
185/1 (2003)

14. Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice
Boltzmann model of immiscible fluids. Phys. Rev. A 43 (1991)

15. He, X., Luo, L.S.: A priori derivation of lattice Boltzmann equa-
tion. Phys. Rev. E 55, R6333–R6336 (1997)

16. He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible
Navier–Stokes equations. J. Stat. Phys. 88, 927–944 (1997)

17. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the
dynamics of free boundaries. J. Comp. Phys. 39, 201–225 (1981)

18. Hou, S., Sterling, J.D., Chen, S., Doolen, G.: A lattice Boltzmann
subgrid model for high Reynolds number flow. Fields Inst. Com-
mun. 6, 151–166 (1996)

19. Inamuro, T., Ogata, T., Tajima, S., Konishi, N.: A lattice boltzmann
method for incompressible two-phase flows with large density dif-
ferences. J. Comp. Phys. 198, 628–644 (2004)

20. Körner, C., Pohl, T., Rüde, U., Thürey, N., Zeiser, T.: Parallel lattice
Boltzmann methods for CFD applications. In: Bruaset, A., Tvei-
to, A. (eds.) Numerical Solution of Partial Differential Equations
on Parallel Computers, LNCSE, vol. 51, pp. 439–465. Springer,
Heidelberg (2005)

21. Körner, C., Singer, R.: Numerical Simulation of Foam Formation
and Evolution with Modified Cellular Automata. Metal Foams and
Porous Metal Structures, pp. 91–96 (1999)

22. Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, U.: Lat-
tice Boltzmann model for free surface flow for modeling foaming.
J. Stat. Phys. 121(1-2), 179–196 (2005)

23. Körner, C., Thies, M., Singer, R.F.: Modeling of metal foaming
with lattice Boltzmann automata. Adv. Eng. Mater. (2002)

24. Krafczyk, M.: Gitter–Boltzmann-Methoden, von der Theorie zur
Anwendung. Habilitation (2001)

25. Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method:
dispersion, dissipation, isotropy, Galilean invariance, and stabil-
ity. Phys. Rev. E 61(6), 6546–6562 (2000)

26. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke
with an octree data structure. ACM Trans. Graph. 23(3), 457–
462 (2004)

27. Krafczyk, M., Tölke, J., Rank, E., Schulz, M.: Two-dimensional
simulation of fluid-structure interaction using lattice-Boltzmann
methods. Comput. Struct. 79 (2001)

28. Mei, R., Luo, L.S., Shyy, W.: An accurate curved boundary treat-
ment in the lattice Boltzmann method. J. Comp. Phys. 155, 307–
330 (1999)

29. Monaghan, J.: Smoothed particle hydrodynamics. Ann. Rev.
Astron. Phys. 30, 543–574 (1992)

30. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simula-
tion for interactive applications. In: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer animation,
pp. 154–159 (2003)

31. Pohl, T., Kowarschik, M., Wilke, J., Iglberger, K., Rüde, U.: Opti-
mization and Profiling of the Cache Performance of Parallel Lattice
Boltzmann Codes in 2D and 3D. Technical Report 3–8, Germany
(2003)

32. Pohl, T., Thürey, N., Deserno, F., Rüde, U., Lammers, P., Wellein,
G., Zeiser, T.: Performance evaluation of parallel large-scale lattice
Boltzmann applications on three supercomputing architectures. In:
Proceedings of supercomputing conference 2004 (2004)

33. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for
Navier–Stokes equation. Europhys. Lett. 17(6), 479–484 (1992)

34. Rohde, M., Kandhai, D., Derksen, J.J., van den Akker, H.E.A.:
A generic mass conservative local grid refinement technique
for lattice-Boltzmann schemes. Int. J. Num. Methods Fluids
51, 439 (2006)

35. Shan, X., Chen, H.: Simulation of non-ideal gases and liquid–gas
phase transitiions by the lattice Boltzmann equation. Phys. Rev.
E 49, 2941–2948 (1994)

36. Smagorinsky, J.: General circulation experiments with the primi-
tive equations. Mon. Wea. Rev. 91, 99–164 (1963)

37. Stam, J.: Stable Fluids. In: Proceedings of ACM SIGGRAPH,
pp. 121–128 (1999)

38. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and
Beyond. Oxford University Press, Oxford (2001)

39. Sussman, M.: A second order coupled level set and volume-of-
fluid method for computing growth and collapse of vapor bubbles.
J. Comp. Phys. 187/1 (2003)

40. Swift, M.R., Orlandi, E., Osborn, W.R., Yeomans, J.M.: Lattice
Boltzmann simulations of liquid–gas and binary fluid sys-
tems. Phys. Rev. E 54, 5041–5052 (1996)

41. Thuerey, N.: A lattice Boltzmann method for single-phase free
surface flows in 3D. Masters Thesis, Department of Computer Sci-
ence 10, System-Simulation, University of Erlangen-Nuremberg
(2003)

123

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 263

42. Thürey, N., Rüde, U.: Webpage: stable free surface flows with the
lattice Boltzmann method on adaptively coarsened grids. http://
www10.informatik.uni-erlangen.de/~sinithue/sfsflbmacg/

43. Thürey, N., Körner, C., Rüde, U.: Interactive free surface fluids with
the lattice Boltzmann method, Technical Report 05–4. Technical
Report, Department of Computer Science 10, System Simulation
(2005)

44. Thürey, N., Pohl, T., Rüde, U., Oechsner, M., Körner, C.: Opti-
mization and stabilization of LBM free surface flow simulations
using adaptive parameterization. Comput. Fluids 35(8–9), 934–
939 (2006)

45. Tölke, J., Freudiger, S., Krafcyzk, M.: An adaptive scheme using
hierarchical grids for lattice Boltzmann multi-phase flow simula-
tions. Comput. Fluids 17, 109–112 (2003)

46. Tölke, J., Krafcyzk, M., Schulz, M., Rank, E.: Lattice Boltzmann
simulations of binary fluid flow through porous media. Philos.
Trans. R. Soc. Lond. A 360, 535–545 (2002)

47. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic
Press, London (2001)

48. Veldhuizen, B., Langlotz, J., et al.: Blender open source 3D graph-
ics creation (2005) http://www.blender3d.org

49. Verberg, R., Ladd, A.J.C.: Accuracy and stability of a lattice-
boltzmann model with subgrid scale boundary conditions. Phys.
Rev. E 65(016701-1-6) (2001)

50. Wang, C., Wang, Z., Xia, T., Peng, Q.: Real-time snowing simula-
tion. The Visual Computer, pp. 315–323 (2006)

51. Wei, X., Li, W., M"uller, K., Kaufman, A.E.: The lattice-Boltzmann
method for simulating gaseous phenomena. IEEE Trans. Vis. Com-
put. Graph. 10(2), 164–176 (2004)

52. Wei, X., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., Kaufman, A.:
Natural phenomena: blowing in the wind. In: Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on computer
animation, pp. 75–85 (2003)

53. Wittum, G.: Multi-grid methods for Stokes and Navier–Stokes
equations with transforming smoothers: algorithms and numeri-
cal results. Numer. Math. 54, 543–563 (1989)

54. Yu, D., Mei, R., Luo, L.S., Shyy, W.: Viscous flow computations
with the method of lattice Boltzmann equation. Prog. Aerospace
Sci. 39(5) (2003)

55. Yu, D., Mei, R., Shyy, W.: A multi-block lattice Boltzmann method
for viscous fluid flows. Int. J. Numer. Methods Fluids 39 (2002)

56. Yu, H., Girimaji, S., Luo, L.S.: Lattice Boltzmann simulations
of decaying homogeneous isotropic turbulence. Phys. Rev. E 71
(2005)

57. Yu, H., Luo, L.S., Girimaji, S.: LES of turbulent square jet flow
using an MRT lattice Boltzmann model. Comput. Fluids 25, 957–
965 (2006)

123

http://www10.informatik.uni-erlangen.de/~sinithue/sfsflbmacg/
http://www10.informatik.uni-erlangen.de/~sinithue/sfsflbmacg/
http://www.blender3d.org

	Stable free surface flows with the lattice Boltzmann methodon adaptively coarsened grids
	Abstract
	1 Introduction
	2 The lattice Boltzmann method
	2.1 Free surfaces
	2.2 Turbulence model
	2.3 Adaptive time steps
	2.4 Grid refinement

	3 Adaptive coarsening algorithm
	3.1 Turbulence model
	3.2 Adaptive time steps
	3.3 Adaptively coarsened grids

	4 Validation
	4.1 Test case with static coarsening
	4.2 Test case with dynamic coarsening

	5 Results and performance
	6 Conclusions and outlook
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

